/* bParse Copyright (c) 2006-2009 Charlie C & Erwin Coumans http://gamekit.googlecode.com This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include #include "bDNA.h" #include "bChunk.h" #include #include #include //this define will force traversal of structures, to check backward (and forward) compatibility //#define TEST_BACKWARD_FORWARD_COMPATIBILITY using namespace bParse; // ----------------------------------------------------- // bDNA::bDNA() : mPtrLen(0) { // -- } // ----------------------------------------------------- // bDNA::~bDNA() { // -- } // ----------------------------------------------------- // bool bDNA::lessThan(bDNA *file) { return ( m_Names.size() < file->m_Names.size()); } // ----------------------------------------------------- // char *bDNA::getName(int ind) { assert(ind <= (int)m_Names.size()); return m_Names[ind].m_name; } // ----------------------------------------------------- // char *bDNA::getType(int ind) { assert(ind<= (int)mTypes.size()); return mTypes[ind]; } // ----------------------------------------------------- // short *bDNA::getStruct(int ind) { assert(ind <= (int)mStructs.size()); return mStructs[ind]; } // ----------------------------------------------------- // short bDNA::getLength(int ind) { assert(ind <= (int)mTlens.size()); return mTlens[ind]; } // ----------------------------------------------------- // int bDNA::getReverseType(short type) { int* intPtr = mStructReverse.find(type); if (intPtr) return *intPtr; return -1; } // ----------------------------------------------------- // int bDNA::getReverseType(const char *type) { btHashString key(type); int* valuePtr = mTypeLookup.find(key); if (valuePtr) return *valuePtr; return -1; } // ----------------------------------------------------- // int bDNA::getNumStructs() { return (int)mStructs.size(); } // ----------------------------------------------------- // bool bDNA::flagNotEqual(int dna_nr) { assert(dna_nr <= (int)mCMPFlags.size()); return mCMPFlags[dna_nr] == FDF_STRUCT_NEQU; } // ----------------------------------------------------- // bool bDNA::flagEqual(int dna_nr) { assert(dna_nr <= (int)mCMPFlags.size()); int flag = mCMPFlags[dna_nr]; return flag == FDF_STRUCT_EQU; } // ----------------------------------------------------- // bool bDNA::flagNone(int dna_nr) { assert(dna_nr <= (int)mCMPFlags.size()); return mCMPFlags[dna_nr] == FDF_NONE; } // ----------------------------------------------------- // int bDNA::getPointerSize() { return mPtrLen; } // ----------------------------------------------------- // void bDNA::initRecurseCmpFlags(int iter) { // iter is FDF_STRUCT_NEQU short *oldStrc = mStructs[iter]; short type = oldStrc[0]; for (int i=0; i<(int)mStructs.size(); i++) { if (i != iter && mCMPFlags[i] == FDF_STRUCT_EQU ) { short *curStruct = mStructs[i]; int eleLen = curStruct[1]; curStruct+=2; for (int j=0; jgetReverseType(typeName); if (newLookup == -1) { mCMPFlags[i] = FDF_NONE; continue; } short *curStruct = memDNA->mStructs[newLookup]; #else // memory for file if (oldLookup < memDNA->mStructs.size()) { short *curStruct = memDNA->mStructs[oldLookup]; #endif // rebuild... mCMPFlags[i] = FDF_STRUCT_NEQU; #ifndef TEST_BACKWARD_FORWARD_COMPATIBILITY if (curStruct[1] == oldStruct[1]) { // type len same ... if (mTlens[oldStruct[0]] == memDNA->mTlens[curStruct[0]]) { bool isSame = true; int elementLength = oldStruct[1]; curStruct+=2; oldStruct+=2; for (int j=0; jmTypes[curStruct[0]])!=0) { isSame=false; break; } // name the same if (strcmp(m_Names[oldStruct[1]].m_name, memDNA->m_Names[curStruct[1]].m_name)!=0) { isSame=false; break; } } // flag valid == if (isSame) mCMPFlags[i] = FDF_STRUCT_EQU; } } #endif } } // recurse in for ( i=0; i<(int)mStructs.size(); i++) { if (mCMPFlags[i] == FDF_STRUCT_NEQU) initRecurseCmpFlags(i); } } static int name_is_array(char* name, int* dim1, int* dim2) { int len = strlen(name); /*fprintf(stderr,"[%s]",name);*/ /*if (len >= 1) { if (name[len-1] != ']') return 1; } return 0;*/ char *bp; int num; if (dim1) { *dim1 = 1; } if (dim2) { *dim2 = 1; } bp = strchr(name, '['); if (!bp) { return 0; } num = 0; while (++bp < name+len-1) { const char c = *bp; if (c == ']') { break; } if (c <= '9' && c >= '0') { num *= 10; num += (c - '0'); } else { printf("array parse error.\n"); return 0; } } if (dim2) { *dim2 = num; } /* find second dim, if any. */ bp = strchr(bp, '['); if (!bp) { return 1; /* at least we got the first dim. */ } num = 0; while (++bp < name+len-1) { const char c = *bp; if (c == ']') { break; } if (c <= '9' && c >= '0') { num *= 10; num += (c - '0'); } else { printf("array2 parse error.\n"); return 1; } } if (dim1) { if (dim2) { *dim1 = *dim2; *dim2 = num; } else { *dim1 = num; } } return 1; } // ----------------------------------------------------- // void bDNA::init(char *data, int len, bool swap) { int *intPtr=0;short *shtPtr=0; char *cp = 0;int dataLen =0; //long nr=0; intPtr = (int*)data; /* SDNA (4 bytes) (magic number) NAME (4 bytes) (4 bytes) amount of names (int) */ if (strncmp(data, "SDNA", 4)==0) { // skip ++ NAME intPtr++; intPtr++; } // Parse names if (swap) { *intPtr = ChunkUtils::swapInt(*intPtr); } dataLen = *intPtr; intPtr++; cp = (char*)intPtr; int i; for ( i=0; i amount of types (int) */ intPtr = (int*)cp; assert(strncmp(cp, "TYPE", 4)==0); intPtr++; if (swap) { *intPtr = ChunkUtils::swapInt(*intPtr); } dataLen = *intPtr; intPtr++; cp = (char*)intPtr; for ( i=0; i (short) the lengths of types */ // Parse type lens intPtr = (int*)cp; assert(strncmp(cp, "TLEN", 4)==0); intPtr++; dataLen = (int)mTypes.size(); shtPtr = (short*)intPtr; for ( i=0; i amount of structs (int) */ intPtr = (int*)shtPtr; cp = (char*)intPtr; assert(strncmp(cp, "STRC", 4)==0); intPtr++; if (swap) { *intPtr = ChunkUtils::swapInt(*intPtr); } dataLen = *intPtr; intPtr++; shtPtr = (short*)intPtr; for ( i=0; itypes_count; ++i) { /* if (!bf->types[i].is_struct)*/ { printf("%3d: sizeof(%s%s)=%d", i, bf->types[i].is_struct ? "struct " : "atomic ", bf->types[i].name, bf->types[i].size); if (bf->types[i].is_struct) { int j; printf(", %d fields: { ", bf->types[i].fieldtypes_count); for (j=0; jtypes[i].fieldtypes_count; ++j) { printf("%s %s", bf->types[bf->types[i].fieldtypes[j]].name, bf->names[bf->types[i].fieldnames[j]]); if (j == bf->types[i].fieldtypes_count-1) { printf(";}"); } else { printf("; "); } } } printf("\n\n"); } } #endif } //eof