import os import inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) os.sys.path.insert(0, parentdir) print("parentdir=", parentdir) import json from pybullet_envs.deep_mimic.learning.rl_world import RLWorld from pybullet_envs.deep_mimic.learning.ppo_agent import PPOAgent import pybullet_data from pybullet_utils.arg_parser import ArgParser from pybullet_utils.logger import Logger from pybullet_envs.deep_mimic.env.pybullet_deep_mimic_env import PyBulletDeepMimicEnv import sys import random update_timestep = 1. / 240. animating = True def update_world(world, time_elapsed): timeStep = update_timestep world.update(timeStep) reward = world.env.calc_reward(agent_id=0) #print("reward=",reward) end_episode = world.env.is_episode_end() if (end_episode): world.end_episode() world.reset() return def build_arg_parser(args): arg_parser = ArgParser() arg_parser.load_args(args) arg_file = arg_parser.parse_string('arg_file', '') if (arg_file != ''): path = pybullet_data.getDataPath() + "/args/" + arg_file succ = arg_parser.load_file(path) Logger.print2(arg_file) assert succ, Logger.print2('Failed to load args from: ' + arg_file) return arg_parser args = sys.argv[1:] def build_world(args, enable_draw): arg_parser = build_arg_parser(args) print("enable_draw=", enable_draw) env = PyBulletDeepMimicEnv(arg_parser, enable_draw) world = RLWorld(env, arg_parser) #world.env.set_playback_speed(playback_speed) motion_file = arg_parser.parse_string("motion_file") print("motion_file=", motion_file) bodies = arg_parser.parse_ints("fall_contact_bodies") print("bodies=", bodies) int_output_path = arg_parser.parse_string("int_output_path") print("int_output_path=", int_output_path) agent_files = pybullet_data.getDataPath() + "/" + arg_parser.parse_string("agent_files") AGENT_TYPE_KEY = "AgentType" print("agent_file=", agent_files) with open(agent_files) as data_file: json_data = json.load(data_file) print("json_data=", json_data) assert AGENT_TYPE_KEY in json_data agent_type = json_data[AGENT_TYPE_KEY] print("agent_type=", agent_type) agent = PPOAgent(world, id, json_data) agent.set_enable_training(False) world.reset() return world if __name__ == '__main__': world = build_world(args, True) while (world.env._pybullet_client.isConnected()): timeStep = update_timestep keys = world.env.getKeyboardEvents() if world.env.isKeyTriggered(keys, ' '): animating = not animating if (animating): update_world(world, timeStep) #animating=False