#include "float_math.h" #include "ConvexBuilder.h" #include "meshvolume.h" #include "bestfit.h" #include #include "cd_hull.h" #include "fitsphere.h" #include "bestfitobb.h" unsigned int MAXDEPTH = 8 ; float CONCAVE_PERCENT = 1.0f ; float MERGE_PERCENT = 2.0f ; CHull::CHull(const ConvexDecomposition::ConvexResult &result) { mResult = new ConvexDecomposition::ConvexResult(result); mVolume = computeMeshVolume( result.mHullVertices, result.mHullTcount, result.mHullIndices ); mDiagonal = getBoundingRegion( result.mHullVcount, result.mHullVertices, sizeof(float)*3, mMin, mMax ); float dx = mMax[0] - mMin[0]; float dy = mMax[1] - mMin[1]; float dz = mMax[2] - mMin[2]; dx*=0.1f; // inflate 1/10th on each edge dy*=0.1f; // inflate 1/10th on each edge dz*=0.1f; // inflate 1/10th on each edge mMin[0]-=dx; mMin[1]-=dy; mMin[2]-=dz; mMax[0]+=dx; mMax[1]+=dy; mMax[2]+=dz; } CHull::~CHull(void) { delete mResult; } bool CHull::overlap(const CHull &h) const { return overlapAABB(mMin,mMax, h.mMin, h.mMax ); } ConvexBuilder::ConvexBuilder(ConvexDecompInterface *callback) { mCallback = callback; } ConvexBuilder::~ConvexBuilder(void) { int i; for (i=0;ioverlap(*b) ) return 0; // if their AABB's (with a little slop) don't overlap, then return. CHull *ret = 0; // ok..we are going to combine both meshes into a single mesh // and then we are going to compute the concavity... VertexLookup vc = Vl_createVertexLookup(); UintVector indices; getMesh( *a->mResult, vc, indices ); getMesh( *b->mResult, vc, indices ); unsigned int vcount = Vl_getVcount(vc); const float *vertices = Vl_getVertices(vc); unsigned int tcount = indices.size()/3; //don't do anything if hull is empty if (!tcount) { Vl_releaseVertexLookup (vc); return 0; } ConvexDecomposition::HullResult hresult; ConvexDecomposition::HullLibrary hl; ConvexDecomposition::HullDesc desc; desc.SetHullFlag(ConvexDecomposition::QF_TRIANGLES); desc.mVcount = vcount; desc.mVertices = vertices; desc.mVertexStride = sizeof(float)*3; ConvexDecomposition::HullError hret = hl.CreateConvexHull(desc,hresult); if ( hret == ConvexDecomposition::QE_OK ) { float combineVolume = computeMeshVolume( hresult.mOutputVertices, hresult.mNumFaces, hresult.mIndices ); float sumVolume = a->mVolume + b->mVolume; float percent = (sumVolume*100) / combineVolume; if ( percent >= (100.0f-MERGE_PERCENT) ) { ConvexDecomposition::ConvexResult cr(hresult.mNumOutputVertices, hresult.mOutputVertices, hresult.mNumFaces, hresult.mIndices); ret = new CHull(cr); } } Vl_releaseVertexLookup(vc); return ret; } bool ConvexBuilder::combineHulls(void) { bool combine = false; sortChulls(mChulls); // sort the convex hulls, largest volume to least... CHullVector output; // the output hulls... int i; for (i=0;imResult; // the high resolution hull... ConvexDecomposition::HullResult result; ConvexDecomposition::HullLibrary hl; ConvexDecomposition::HullDesc hdesc; hdesc.SetHullFlag(ConvexDecomposition::QF_TRIANGLES); hdesc.mVcount = c.mHullVcount; hdesc.mVertices = c.mHullVertices; hdesc.mVertexStride = sizeof(float)*3; hdesc.mMaxVertices = desc.mMaxVertices; // maximum number of vertices allowed in the output if ( desc.mSkinWidth ) { hdesc.mSkinWidth = desc.mSkinWidth; hdesc.SetHullFlag(ConvexDecomposition::QF_SKIN_WIDTH); // do skin width computation. } ConvexDecomposition::HullError ret = hl.CreateConvexHull(hdesc,result); if ( ret == ConvexDecomposition::QE_OK ) { ConvexDecomposition::ConvexResult r(result.mNumOutputVertices, result.mOutputVertices, result.mNumFaces, result.mIndices); r.mHullVolume = computeMeshVolume( result.mOutputVertices, result.mNumFaces, result.mIndices ); // the volume of the hull. // compute the best fit OBB computeBestFitOBB( result.mNumOutputVertices, result.mOutputVertices, sizeof(float)*3, r.mOBBSides, r.mOBBTransform ); r.mOBBVolume = r.mOBBSides[0] * r.mOBBSides[1] *r.mOBBSides[2]; // compute the OBB volume. fm_getTranslation( r.mOBBTransform, r.mOBBCenter ); // get the translation component of the 4x4 matrix. fm_matrixToQuat( r.mOBBTransform, r.mOBBOrientation ); // extract the orientation as a quaternion. r.mSphereRadius = computeBoundingSphere( result.mNumOutputVertices, result.mOutputVertices, r.mSphereCenter ); r.mSphereVolume = fm_sphereVolume( r.mSphereRadius ); mCallback->ConvexDecompResult(r); } hl.ReleaseResult (result); delete cr; } ret = mChulls.size(); mChulls.clear(); return ret; } void ConvexBuilder::ConvexDebugTri(const float *p1,const float *p2,const float *p3,unsigned int color) { mCallback->ConvexDebugTri(p1,p2,p3,color); } void ConvexBuilder::ConvexDebugOBB(const float *sides, const float *matrix,unsigned int color) { mCallback->ConvexDebugOBB(sides,matrix,color); } void ConvexBuilder::ConvexDebugPoint(const float *p,float dist,unsigned int color) { mCallback->ConvexDebugPoint(p,dist,color); } void ConvexBuilder::ConvexDebugBound(const float *bmin,const float *bmax,unsigned int color) { mCallback->ConvexDebugBound(bmin,bmax,color); } void ConvexBuilder::ConvexDecompResult(ConvexDecomposition::ConvexResult &result) { CHull *ch = new CHull(result); mChulls.push_back(ch); } void ConvexBuilder::sortChulls(CHullVector &hulls) { hulls.quickSort(CHullSort()); //hulls.heapSort(CHullSort()); }