#include "PhysicsClientC_API.h" #include "PhysicsClientSharedMemory.h" #include "Bullet3Common/b3Scalar.h" #include "Bullet3Common/b3Vector3.h" #include "Bullet3Common/b3Matrix3x3.h" #include "Bullet3Common/b3Transform.h" #include #include "SharedMemoryCommands.h" b3SharedMemoryCommandHandle b3LoadSdfCommandInit(b3PhysicsClientHandle physClient, const char* sdfFileName) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_LOAD_SDF; int len = strlen(sdfFileName); if (lenm_sdfArguments.m_sdfFileName,sdfFileName); } else { command->m_sdfArguments.m_sdfFileName[0] = 0; } command->m_updateFlags = SDF_ARGS_FILE_NAME; return (b3SharedMemoryCommandHandle) command; } b3SharedMemoryCommandHandle b3SaveWorldCommandInit(b3PhysicsClientHandle physClient, const char* sdfFileName) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_SAVE_WORLD; int len = strlen(sdfFileName); if (lenm_sdfArguments.m_sdfFileName,sdfFileName); } else { command->m_sdfArguments.m_sdfFileName[0] = 0; } command->m_updateFlags = SDF_ARGS_FILE_NAME; return (b3SharedMemoryCommandHandle) command; } b3SharedMemoryCommandHandle b3LoadUrdfCommandInit(b3PhysicsClientHandle physClient, const char* urdfFileName) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); if (cl->canSubmitCommand()) { struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_LOAD_URDF; int len = strlen(urdfFileName); if (len < MAX_URDF_FILENAME_LENGTH) { strcpy(command->m_urdfArguments.m_urdfFileName, urdfFileName); } else { command->m_urdfArguments.m_urdfFileName[0] = 0; } command->m_updateFlags = URDF_ARGS_FILE_NAME; return (b3SharedMemoryCommandHandle)command; } return 0; } b3SharedMemoryCommandHandle b3LoadBulletCommandInit(b3PhysicsClientHandle physClient, const char* fileName) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); if (cl->canSubmitCommand()) { struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_LOAD_BULLET; int len = strlen(fileName); if (len < MAX_URDF_FILENAME_LENGTH) { strcpy(command->m_fileArguments.m_fileName, fileName); } else { command->m_fileArguments.m_fileName[0] = 0; } command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle)command; } return 0; } b3SharedMemoryCommandHandle b3SaveBulletCommandInit(b3PhysicsClientHandle physClient, const char* fileName) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); if (cl->canSubmitCommand()) { struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_SAVE_BULLET; int len = strlen(fileName); if (len < MAX_URDF_FILENAME_LENGTH) { strcpy(command->m_fileArguments.m_fileName, fileName); } else { command->m_fileArguments.m_fileName[0] = 0; } command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle)command; } return 0; } b3SharedMemoryCommandHandle b3LoadMJCFCommandInit(b3PhysicsClientHandle physClient, const char* fileName) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); if (cl->canSubmitCommand()) { struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_LOAD_MJCF; int len = strlen(fileName); if (len < MAX_URDF_FILENAME_LENGTH) { strcpy(command->m_mjcfArguments.m_mjcfFileName, fileName); } else { command->m_mjcfArguments.m_mjcfFileName[0] = 0; } command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle)command; } return 0; } void b3LoadMJCFCommandSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_LOAD_MJCF); if (command->m_type == CMD_LOAD_MJCF) { command->m_mjcfArguments.m_flags = flags; command->m_updateFlags |= URDF_ARGS_HAS_CUSTOM_URDF_FLAGS; } } b3SharedMemoryCommandHandle b3LoadBunnyCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_LOAD_BUNNY; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle) command; } int b3LoadBunnySetScale(b3SharedMemoryCommandHandle commandHandle, double scale) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_LOAD_BUNNY); command->m_loadBunnyArguments.m_scale = scale; command->m_updateFlags |= LOAD_BUNNY_UPDATE_SCALE; return 0; } int b3LoadBunnySetMass(b3SharedMemoryCommandHandle commandHandle, double mass) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_LOAD_BUNNY); command->m_loadBunnyArguments.m_mass = mass; command->m_updateFlags |= LOAD_BUNNY_UPDATE_MASS; return 0; } int b3LoadBunnySetCollisionMargin(b3SharedMemoryCommandHandle commandHandle, double collisionMargin) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_LOAD_BUNNY); command->m_loadBunnyArguments.m_collisionMargin = collisionMargin; command->m_updateFlags |= LOAD_BUNNY_UPDATE_COLLISION_MARGIN; return 0; } int b3LoadUrdfCommandSetUseMultiBody(b3SharedMemoryCommandHandle commandHandle, int useMultiBody) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_LOAD_URDF); command->m_updateFlags |=URDF_ARGS_USE_MULTIBODY; command->m_urdfArguments.m_useMultiBody = useMultiBody; return 0; } int b3LoadSdfCommandSetUseMultiBody(b3SharedMemoryCommandHandle commandHandle, int useMultiBody) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_LOAD_SDF); command->m_updateFlags |=URDF_ARGS_USE_MULTIBODY; command->m_sdfArguments.m_useMultiBody = useMultiBody; return 0; } int b3LoadUrdfCommandSetUseFixedBase(b3SharedMemoryCommandHandle commandHandle, int useFixedBase) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_LOAD_URDF); if (command && (command->m_type == CMD_LOAD_URDF)) { command->m_updateFlags |= URDF_ARGS_USE_FIXED_BASE; command->m_urdfArguments.m_useFixedBase = useFixedBase; return 0; } return -1; } int b3LoadUrdfCommandSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_LOAD_URDF); if (command && (command->m_type == CMD_LOAD_URDF)) { command->m_updateFlags |= URDF_ARGS_HAS_CUSTOM_URDF_FLAGS; command->m_urdfArguments.m_urdfFlags = flags; } return 0; } int b3LoadUrdfCommandSetStartPosition(b3SharedMemoryCommandHandle commandHandle, double startPosX,double startPosY,double startPosZ) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); if (command) { b3Assert(command->m_type == CMD_LOAD_URDF); if (command->m_type == CMD_LOAD_URDF) { command->m_urdfArguments.m_initialPosition[0] = startPosX; command->m_urdfArguments.m_initialPosition[1] = startPosY; command->m_urdfArguments.m_initialPosition[2] = startPosZ; command->m_updateFlags |= URDF_ARGS_INITIAL_POSITION; } return 0; } return -1; } int b3LoadUrdfCommandSetStartOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX,double startOrnY,double startOrnZ, double startOrnW) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); if (command) { b3Assert(command->m_type == CMD_LOAD_URDF); if (command->m_type == CMD_LOAD_URDF) { command->m_urdfArguments.m_initialOrientation[0] = startOrnX; command->m_urdfArguments.m_initialOrientation[1] = startOrnY; command->m_urdfArguments.m_initialOrientation[2] = startOrnZ; command->m_urdfArguments.m_initialOrientation[3] = startOrnW; command->m_updateFlags |= URDF_ARGS_INITIAL_ORIENTATION; } return 0; } return -1; } b3SharedMemoryCommandHandle b3InitPhysicsParamCommand(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_SEND_PHYSICS_SIMULATION_PARAMETERS; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle) command; } int b3PhysicsParamSetGravity(b3SharedMemoryCommandHandle commandHandle, double gravx,double gravy, double gravz) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_gravityAcceleration[0] = gravx; command->m_physSimParamArgs.m_gravityAcceleration[1] = gravy; command->m_physSimParamArgs.m_gravityAcceleration[2] = gravz; command->m_updateFlags |= SIM_PARAM_UPDATE_GRAVITY; return 0; } int b3PhysicsParamSetRealTimeSimulation(b3SharedMemoryCommandHandle commandHandle, int enableRealTimeSimulation) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_allowRealTimeSimulation = (enableRealTimeSimulation!=0); command->m_updateFlags |= SIM_PARAM_UPDATE_REAL_TIME_SIMULATION; return 0; } int b3PhysicsParamSetInternalSimFlags(b3SharedMemoryCommandHandle commandHandle, int flags) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_internalSimFlags = flags; command->m_updateFlags |= SIM_PARAM_UPDATE_INTERNAL_SIMULATION_FLAGS; return 0; } int b3PhysicsParamSetUseSplitImpulse(b3SharedMemoryCommandHandle commandHandle, int useSplitImpulse) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_useSplitImpulse = useSplitImpulse; command->m_updateFlags |= SIM_PARAM_UPDATE_USE_SPLIT_IMPULSE; return 0; } int b3PhysicsParamSetSplitImpulsePenetrationThreshold(b3SharedMemoryCommandHandle commandHandle, double splitImpulsePenetrationThreshold) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_splitImpulsePenetrationThreshold = splitImpulsePenetrationThreshold; command->m_updateFlags |= SIM_PARAM_UPDATE_SPLIT_IMPULSE_PENETRATION_THRESHOLD; return 0; } int b3PhysicsParamSetContactBreakingThreshold(b3SharedMemoryCommandHandle commandHandle, double contactBreakingThreshold) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_contactBreakingThreshold = contactBreakingThreshold; command->m_updateFlags |= SIM_PARAM_UPDATE_CONTACT_BREAKING_THRESHOLD; return 0; } int b3PhysicsParamSetMaxNumCommandsPer1ms(b3SharedMemoryCommandHandle commandHandle, int maxNumCmdPer1ms) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_maxNumCmdPer1ms = maxNumCmdPer1ms; command->m_updateFlags |= SIM_PARAM_MAX_CMD_PER_1MS; return 0; } int b3PhysicsParamSetEnableFileCaching(b3SharedMemoryCommandHandle commandHandle, int enableFileCaching) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_enableFileCaching= enableFileCaching; command->m_updateFlags |= SIM_PARAM_ENABLE_FILE_CACHING ; return 0; } int b3PhysicsParamSetRestitutionVelocityThreshold(b3SharedMemoryCommandHandle commandHandle, double restitutionVelocityThreshold) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_restitutionVelocityThreshold = restitutionVelocityThreshold; command->m_updateFlags |= SIM_PARAM_UPDATE_RESTITUTION_VELOCITY_THRESHOLD ; return 0; } int b3PhysicsParamSetNumSolverIterations(b3SharedMemoryCommandHandle commandHandle, int numSolverIterations) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_numSolverIterations = numSolverIterations; command->m_updateFlags |= SIM_PARAM_UPDATE_NUM_SOLVER_ITERATIONS; return 0; } int b3PhysicsParamSetCollisionFilterMode(b3SharedMemoryCommandHandle commandHandle, int filterMode) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_physSimParamArgs.m_collisionFilterMode = filterMode; command->m_updateFlags |= SIM_PARAM_UPDATE_COLLISION_FILTER_MODE; return 0; } int b3PhysicsParamSetTimeStep(b3SharedMemoryCommandHandle commandHandle, double timeStep) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_updateFlags |= SIM_PARAM_UPDATE_DELTA_TIME; command->m_physSimParamArgs.m_deltaTime = timeStep; return 0; } int b3PhysicsParamSetNumSubSteps(b3SharedMemoryCommandHandle commandHandle, int numSubSteps) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_updateFlags |= SIM_PARAM_UPDATE_NUM_SIMULATION_SUB_STEPS; command->m_physSimParamArgs.m_numSimulationSubSteps = numSubSteps; return 0; } int b3PhysicsParamSetDefaultContactERP(b3SharedMemoryCommandHandle commandHandle, double defaultContactERP) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_updateFlags |= SIM_PARAM_UPDATE_DEFAULT_CONTACT_ERP; command->m_physSimParamArgs.m_defaultContactERP = defaultContactERP; return 0; } int b3PhysicsParamSetDefaultNonContactERP(b3SharedMemoryCommandHandle commandHandle, double defaultNonContactERP) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_updateFlags |= SIM_PARAM_UPDATE_DEFAULT_NON_CONTACT_ERP; command->m_physSimParamArgs.m_defaultNonContactERP = defaultNonContactERP; return 0; } int b3PhysicsParamSetDefaultFrictionERP(b3SharedMemoryCommandHandle commandHandle, double frictionERP) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS); command->m_updateFlags |= SIM_PARAM_UPDATE_DEFAULT_FRICTION_ERP; command->m_physSimParamArgs.m_frictionERP = frictionERP; return 0; } b3SharedMemoryCommandHandle b3InitStepSimulationCommand(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_STEP_FORWARD_SIMULATION; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle) command; } b3SharedMemoryCommandHandle b3InitResetSimulationCommand(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_RESET_SIMULATION; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle) command; } b3SharedMemoryCommandHandle b3JointControlCommandInit(b3PhysicsClientHandle physClient, int controlMode) { return b3JointControlCommandInit2(physClient,0,controlMode); } b3SharedMemoryCommandHandle b3JointControlCommandInit2( b3PhysicsClientHandle physClient, int bodyUniqueId, int controlMode) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_SEND_DESIRED_STATE; command->m_sendDesiredStateCommandArgument.m_controlMode = controlMode; command->m_sendDesiredStateCommandArgument.m_bodyUniqueId = bodyUniqueId; command->m_updateFlags = 0; for (int i=0;im_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[i] = 0; } return (b3SharedMemoryCommandHandle) command; } int b3JointControlSetDesiredPosition(b3SharedMemoryCommandHandle commandHandle, int qIndex, double value) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); if ((qIndex>=0) && (qIndex < MAX_DEGREE_OF_FREEDOM)) { command->m_sendDesiredStateCommandArgument.m_desiredStateQ[qIndex] = value; command->m_updateFlags |= SIM_DESIRED_STATE_HAS_Q; command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[qIndex] |= SIM_DESIRED_STATE_HAS_Q; } return 0; } int b3JointControlSetKp(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); if ((dofIndex>=0) && (dofIndex < MAX_DEGREE_OF_FREEDOM)) { command->m_sendDesiredStateCommandArgument.m_Kp[dofIndex] = value; command->m_updateFlags |= SIM_DESIRED_STATE_HAS_KP; command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_KP; } return 0; } int b3JointControlSetKd(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); if ((dofIndex>=0) && (dofIndex < MAX_DEGREE_OF_FREEDOM)) { command->m_sendDesiredStateCommandArgument.m_Kd[dofIndex] = value; command->m_updateFlags |= SIM_DESIRED_STATE_HAS_KD; command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_KD; } return 0; } int b3JointControlSetDesiredVelocity(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); if ((dofIndex>=0) && (dofIndex < MAX_DEGREE_OF_FREEDOM)) { command->m_sendDesiredStateCommandArgument.m_desiredStateQdot[dofIndex] = value; command->m_updateFlags |= SIM_DESIRED_STATE_HAS_QDOT; command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_QDOT; } return 0; } int b3JointControlSetMaximumForce(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); if ((dofIndex>=0) && (dofIndex < MAX_DEGREE_OF_FREEDOM)) { command->m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex] = value; command->m_updateFlags |= SIM_DESIRED_STATE_HAS_MAX_FORCE; command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_MAX_FORCE; } return 0; } int b3JointControlSetDesiredForceTorque(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); if ((dofIndex>=0) && (dofIndex < MAX_DEGREE_OF_FREEDOM)) { command->m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex] = value; command->m_updateFlags |= SIM_DESIRED_STATE_HAS_MAX_FORCE; command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_MAX_FORCE; } return 0; } b3SharedMemoryCommandHandle b3RequestActualStateCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_REQUEST_ACTUAL_STATE; command->m_updateFlags = 0; command->m_requestActualStateInformationCommandArgument.m_bodyUniqueId = bodyUniqueId; return (b3SharedMemoryCommandHandle) command; } int b3RequestActualStateCommandComputeLinkVelocity(b3SharedMemoryCommandHandle commandHandle, int computeLinkVelocity) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); btAssert(command->m_type == CMD_REQUEST_ACTUAL_STATE); if (computeLinkVelocity && command->m_type == CMD_REQUEST_ACTUAL_STATE) { command->m_updateFlags |= ACTUAL_STATE_COMPUTE_LINKVELOCITY; } return 0; } int b3GetJointState(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int jointIndex, b3JointSensorState *state) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; b3Assert(status); int bodyIndex = status->m_sendActualStateArgs.m_bodyUniqueId; b3Assert(bodyIndex>=0); if (bodyIndex>=0) { b3JointInfo info; bool result = b3GetJointInfo(physClient, bodyIndex,jointIndex, &info)!=0; if (result) { if ((info.m_qIndex>=0) && (info.m_uIndex>=0) && (info.m_qIndex < MAX_DEGREE_OF_FREEDOM) && (info.m_uIndex < MAX_DEGREE_OF_FREEDOM)) { state->m_jointPosition = status->m_sendActualStateArgs.m_actualStateQ[info.m_qIndex]; state->m_jointVelocity = status->m_sendActualStateArgs.m_actualStateQdot[info.m_uIndex]; } else { state->m_jointPosition=0; state->m_jointVelocity=0; } for (int ii(0); ii < 6; ++ii) { state->m_jointForceTorque[ii] = status->m_sendActualStateArgs.m_jointReactionForces[6 * jointIndex + ii]; } state->m_jointMotorTorque = status->m_sendActualStateArgs.m_jointMotorForce[jointIndex]; return 1; } } return 0; } int b3GetLinkState(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int linkIndex, b3LinkState *state) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; b3Assert(status); int bodyIndex = status->m_sendActualStateArgs.m_bodyUniqueId; b3Assert(bodyIndex>=0); b3Assert(linkIndex >= 0); int numJoints = b3GetNumJoints(physClient,bodyIndex); b3Assert(linkIndex < numJoints); if ((bodyIndex>=0) && (linkIndex >= 0) && linkIndex < numJoints) { b3Transform wlf,com,inertial; for (int i = 0; i < 3; ++i) { state->m_worldPosition[i] = status->m_sendActualStateArgs.m_linkState[7 * linkIndex + i]; state->m_localInertialPosition[i] = status->m_sendActualStateArgs.m_linkLocalInertialFrames[7 * linkIndex + i]; state->m_worldLinearVelocity[i] = status->m_sendActualStateArgs.m_linkWorldVelocities[6*linkIndex+i]; state->m_worldAngularVelocity[i] = status->m_sendActualStateArgs.m_linkWorldVelocities[6*linkIndex+i+3]; } for (int i = 0; i < 4; ++i) { state->m_worldOrientation[i] = status->m_sendActualStateArgs.m_linkState[7 * linkIndex + 3 + i]; state->m_localInertialOrientation[i] = status->m_sendActualStateArgs.m_linkLocalInertialFrames[7 * linkIndex + 3 + i]; } com.setOrigin(b3MakeVector3(state->m_worldPosition[0],state->m_worldPosition[1],state->m_worldPosition[2])); com.setRotation(b3Quaternion(state->m_worldOrientation[0],state->m_worldOrientation[1],state->m_worldOrientation[2],state->m_worldOrientation[3])); inertial.setOrigin(b3MakeVector3(state->m_localInertialPosition[0],state->m_localInertialPosition[1],state->m_localInertialPosition[2])); inertial.setRotation(b3Quaternion(state->m_localInertialOrientation[0],state->m_localInertialOrientation[1],state->m_localInertialOrientation[2],state->m_localInertialOrientation[3])); wlf = com*inertial.inverse(); for (int i = 0; i < 3; ++i) { state->m_worldLinkFramePosition[i] = wlf.getOrigin()[i]; } b3Quaternion wlfOrn = wlf.getRotation(); for (int i = 0; i < 4; ++i) { state->m_worldLinkFrameOrientation[i] = wlfOrn[i]; } return 1; } return 0; } b3SharedMemoryCommandHandle b3CreateCollisionShapeCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); if (cl) { struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CREATE_COLLISION_SHAPE; command->m_updateFlags =0; command->m_createCollisionShapeArgs.m_numCollisionShapes = 0; return (b3SharedMemoryCommandHandle) command; } return 0; } int b3CreateCollisionShapeAddSphere(b3SharedMemoryCommandHandle commandHandle,double radius) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_COLLISION_SHAPE); if (command->m_type==CMD_CREATE_COLLISION_SHAPE) { int shapeIndex = command->m_createCollisionShapeArgs.m_numCollisionShapes; if (shapeIndex m_createCollisionShapeArgs.m_shapes[shapeIndex].m_type = GEOM_SPHERE; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_sphereRadius = radius; command->m_createCollisionShapeArgs.m_numCollisionShapes++; return shapeIndex; } } return -1; } int b3CreateCollisionShapeAddBox(b3SharedMemoryCommandHandle commandHandle,double halfExtents[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_COLLISION_SHAPE); if (command->m_type==CMD_CREATE_COLLISION_SHAPE) { int shapeIndex = command->m_createCollisionShapeArgs.m_numCollisionShapes; if (shapeIndex m_createCollisionShapeArgs.m_shapes[shapeIndex].m_type = GEOM_BOX; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_boxHalfExtents[0] = halfExtents[0]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_boxHalfExtents[1] = halfExtents[1]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_boxHalfExtents[2] = halfExtents[2]; command->m_createCollisionShapeArgs.m_numCollisionShapes++; return shapeIndex; } } return -1; } int b3CreateCollisionShapeAddCapsule(b3SharedMemoryCommandHandle commandHandle,double radius, double height) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_COLLISION_SHAPE); if (command->m_type==CMD_CREATE_COLLISION_SHAPE) { int shapeIndex = command->m_createCollisionShapeArgs.m_numCollisionShapes; if (shapeIndex m_createCollisionShapeArgs.m_shapes[shapeIndex].m_type = GEOM_CAPSULE; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_capsuleRadius = radius; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_capsuleHeight = height; command->m_createCollisionShapeArgs.m_numCollisionShapes++; return shapeIndex; } } return -1; } int b3CreateCollisionShapeAddCylinder(b3SharedMemoryCommandHandle commandHandle,double radius, double height) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_COLLISION_SHAPE); if (command->m_type==CMD_CREATE_COLLISION_SHAPE) { int shapeIndex = command->m_createCollisionShapeArgs.m_numCollisionShapes; if (shapeIndex m_createCollisionShapeArgs.m_shapes[shapeIndex].m_type = GEOM_CYLINDER; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_capsuleRadius = radius; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_capsuleHeight = height; command->m_createCollisionShapeArgs.m_numCollisionShapes++; return shapeIndex; } } return -1; } int b3CreateCollisionShapeAddPlane(b3SharedMemoryCommandHandle commandHandle, double planeNormal[3], double planeConstant) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_COLLISION_SHAPE); if (command->m_type==CMD_CREATE_COLLISION_SHAPE) { int shapeIndex = command->m_createCollisionShapeArgs.m_numCollisionShapes; if (shapeIndex m_createCollisionShapeArgs.m_shapes[shapeIndex].m_type = GEOM_PLANE; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_planeNormal[0] = planeNormal[0]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_planeNormal[1] = planeNormal[1]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_planeNormal[2] = planeNormal[2]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_planeConstant = planeConstant; command->m_createCollisionShapeArgs.m_numCollisionShapes++; return shapeIndex; } } return -1; } int b3CreateCollisionShapeAddMesh(b3SharedMemoryCommandHandle commandHandle,const char* fileName, double meshScale[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_COLLISION_SHAPE); if (command->m_type==CMD_CREATE_COLLISION_SHAPE) { int shapeIndex = command->m_createCollisionShapeArgs.m_numCollisionShapes; if (shapeIndex m_createCollisionShapeArgs.m_shapes[shapeIndex].m_type = GEOM_MESH; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0; strcpy(command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_meshFileName,fileName); command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_meshScale[0] = meshScale[0]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_meshScale[1] = meshScale[1]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_meshScale[2] = meshScale[2]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_meshFileType = 0; command->m_createCollisionShapeArgs.m_numCollisionShapes++; return shapeIndex; } } return -1; } void b3CreateCollisionSetFlag(b3SharedMemoryCommandHandle commandHandle,int shapeIndex, int flags) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_COLLISION_SHAPE); if (command->m_type==CMD_CREATE_COLLISION_SHAPE) { if (shapeIndexm_createCollisionShapeArgs.m_numCollisionShapes) { command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_collisionFlags |= flags; } } } void b3CreateCollisionShapeSetChildTransform(b3SharedMemoryCommandHandle commandHandle,int shapeIndex, double childPosition[3], double childOrientation[4]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_COLLISION_SHAPE); if (command->m_type==CMD_CREATE_COLLISION_SHAPE) { if (shapeIndexm_createCollisionShapeArgs.m_numCollisionShapes) { command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 1; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_childPosition[0] = childPosition[0]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_childPosition[1] = childPosition[1]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_childPosition[2] = childPosition[2]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_childOrientation[0] = childOrientation[0]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_childOrientation[1] = childOrientation[1]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_childOrientation[2] = childOrientation[2]; command->m_createCollisionShapeArgs.m_shapes[shapeIndex].m_childOrientation[3] = childOrientation[3]; } } } int b3GetStatusCollisionShapeUniqueId(b3SharedMemoryStatusHandle statusHandle) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; b3Assert(status); b3Assert(status->m_type == CMD_CREATE_COLLISION_SHAPE_COMPLETED); if (status && status->m_type == CMD_CREATE_COLLISION_SHAPE_COMPLETED) { return status->m_createCollisionShapeResultArgs.m_collisionShapeUniqueId; } return -1; } b3SharedMemoryCommandHandle b3CreateVisualShapeCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); if (cl) { struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CREATE_VISUAL_SHAPE; command->m_updateFlags =0; return (b3SharedMemoryCommandHandle) command; } return 0; } int b3GetStatusVisualShapeUniqueId(b3SharedMemoryStatusHandle statusHandle) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; b3Assert(status); b3Assert(status->m_type == CMD_CREATE_VISUAL_SHAPE_COMPLETED); if (status && status->m_type == CMD_CREATE_VISUAL_SHAPE_COMPLETED) { return status->m_createVisualShapeResultArgs.m_visualShapeUniqueId; } return -1; } b3SharedMemoryCommandHandle b3CreateMultiBodyCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); if (cl) { struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CREATE_MULTI_BODY; command->m_updateFlags =0; command->m_createMultiBodyArgs.m_bodyName[0] = 0; command->m_createMultiBodyArgs.m_baseLinkIndex = -1; command->m_createMultiBodyArgs.m_numLinks = 0; return (b3SharedMemoryCommandHandle) command; } return 0; } int b3CreateMultiBodyBase(b3SharedMemoryCommandHandle commandHandle, double mass, int collisionShapeUnique, int visualShapeUniqueId, double basePosition[3], double baseOrientation[4] , double baseInertialFramePosition[3], double baseInertialFrameOrientation[4]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_MULTI_BODY); if (command->m_type==CMD_CREATE_MULTI_BODY) { int numLinks = command->m_createMultiBodyArgs.m_numLinks; if (numLinksm_updateFlags |=MULTI_BODY_HAS_BASE; command->m_createMultiBodyArgs.m_baseLinkIndex = baseLinkIndex; command->m_createMultiBodyArgs.m_linkPositions[baseLinkIndex*3+0]=basePosition[0]; command->m_createMultiBodyArgs.m_linkPositions[baseLinkIndex*3+1]=basePosition[1]; command->m_createMultiBodyArgs.m_linkPositions[baseLinkIndex*3+2]=basePosition[2]; command->m_createMultiBodyArgs.m_linkOrientations[baseLinkIndex*4+0]=baseOrientation[0]; command->m_createMultiBodyArgs.m_linkOrientations[baseLinkIndex*4+1]=baseOrientation[1]; command->m_createMultiBodyArgs.m_linkOrientations[baseLinkIndex*4+2]=baseOrientation[2]; command->m_createMultiBodyArgs.m_linkOrientations[baseLinkIndex*4+3]=baseOrientation[3]; command->m_createMultiBodyArgs.m_linkInertias[baseLinkIndex*3+0] = 0;//unused, is computed automatically. Will add a method to explicitly set it (with a flag), similar to loadURDF etc. command->m_createMultiBodyArgs.m_linkInertias[baseLinkIndex*3+1] = 0; command->m_createMultiBodyArgs.m_linkInertias[baseLinkIndex*3+2] = 0; command->m_createMultiBodyArgs.m_linkInertialFramePositions[baseLinkIndex*3+0] = baseInertialFramePosition[0]; command->m_createMultiBodyArgs.m_linkInertialFramePositions[baseLinkIndex*3+1] = baseInertialFramePosition[1]; command->m_createMultiBodyArgs.m_linkInertialFramePositions[baseLinkIndex*3+2] = baseInertialFramePosition[2]; command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[baseLinkIndex*4+0] = baseInertialFrameOrientation[0]; command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[baseLinkIndex*4+1] = baseInertialFrameOrientation[1]; command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[baseLinkIndex*4+2] = baseInertialFrameOrientation[2]; command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[baseLinkIndex*4+3] = baseInertialFrameOrientation[3]; command->m_createMultiBodyArgs.m_linkCollisionShapeUniqueIds[baseLinkIndex]= collisionShapeUnique; command->m_createMultiBodyArgs.m_linkVisualShapeUniqueIds[baseLinkIndex] = visualShapeUniqueId; command->m_createMultiBodyArgs.m_linkMasses[baseLinkIndex] = mass; command->m_createMultiBodyArgs.m_linkParentIndices[baseLinkIndex] = -2;//no parent command->m_createMultiBodyArgs.m_linkJointAxis[baseLinkIndex+0]=0; command->m_createMultiBodyArgs.m_linkJointAxis[baseLinkIndex+1]=0; command->m_createMultiBodyArgs.m_linkJointAxis[baseLinkIndex+2]=0; command->m_createMultiBodyArgs.m_linkJointTypes[baseLinkIndex]=-1; command->m_createMultiBodyArgs.m_numLinks++; } return numLinks; } return -2; } int b3CreateMultiBodyLink(b3SharedMemoryCommandHandle commandHandle, double linkMass, double linkCollisionShapeIndex, double linkVisualShapeIndex, double linkPosition[3], double linkOrientation[4], double linkInertialFramePosition[3], double linkInertialFrameOrientation[4], int linkParentIndex, int linkJointType, double linkJointAxis[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_MULTI_BODY); if (command->m_type==CMD_CREATE_MULTI_BODY) { int numLinks = command->m_createMultiBodyArgs.m_numLinks; if (numLinksm_updateFlags |=MULTI_BODY_HAS_BASE; command->m_createMultiBodyArgs.m_linkPositions[linkIndex*3+0]=linkPosition[0]; command->m_createMultiBodyArgs.m_linkPositions[linkIndex*3+1]=linkPosition[1]; command->m_createMultiBodyArgs.m_linkPositions[linkIndex*3+2]=linkPosition[2]; command->m_createMultiBodyArgs.m_linkOrientations[linkIndex*4+0]=linkOrientation[0]; command->m_createMultiBodyArgs.m_linkOrientations[linkIndex*4+1]=linkOrientation[1]; command->m_createMultiBodyArgs.m_linkOrientations[linkIndex*4+2]=linkOrientation[2]; command->m_createMultiBodyArgs.m_linkOrientations[linkIndex*4+3]=linkOrientation[3]; command->m_createMultiBodyArgs.m_linkInertias[linkIndex*3+0] = linkMass; command->m_createMultiBodyArgs.m_linkInertias[linkIndex*3+1] = linkMass; command->m_createMultiBodyArgs.m_linkInertias[linkIndex*3+2] = linkMass; command->m_createMultiBodyArgs.m_linkInertialFramePositions[linkIndex*3+0] = linkInertialFramePosition[0]; command->m_createMultiBodyArgs.m_linkInertialFramePositions[linkIndex*3+1] = linkInertialFramePosition[1]; command->m_createMultiBodyArgs.m_linkInertialFramePositions[linkIndex*3+2] = linkInertialFramePosition[2]; command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[linkIndex*4+0] = linkInertialFrameOrientation[0]; command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[linkIndex*4+1] = linkInertialFrameOrientation[1]; command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[linkIndex*4+2] = linkInertialFrameOrientation[2]; command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[linkIndex*4+3] = linkInertialFrameOrientation[3]; command->m_createMultiBodyArgs.m_linkCollisionShapeUniqueIds[linkIndex]= linkCollisionShapeIndex; command->m_createMultiBodyArgs.m_linkVisualShapeUniqueIds[linkIndex] = linkVisualShapeIndex; command->m_createMultiBodyArgs.m_linkParentIndices[linkIndex] = linkParentIndex; command->m_createMultiBodyArgs.m_linkJointTypes[linkIndex] = linkJointType; command->m_createMultiBodyArgs.m_linkJointAxis[3*linkIndex+0] = linkJointAxis[0]; command->m_createMultiBodyArgs.m_linkJointAxis[3*linkIndex+1] = linkJointAxis[1]; command->m_createMultiBodyArgs.m_linkJointAxis[3*linkIndex+2] = linkJointAxis[2]; command->m_createMultiBodyArgs.m_linkMasses[linkIndex] = linkMass; command->m_createMultiBodyArgs.m_numLinks++; return numLinks; } } return -1; } //useMaximalCoordinates are disabled by default, enabling them is experimental and not fully supported yet void b3CreateMultiBodyUseMaximalCoordinates(b3SharedMemoryCommandHandle commandHandle) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_MULTI_BODY); if (command->m_type==CMD_CREATE_MULTI_BODY) { command->m_updateFlags |= MULT_BODY_USE_MAXIMAL_COORDINATES; } } int b3GetStatusMultiBodyUniqueId(b3SharedMemoryStatusHandle statusHandle) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; b3Assert(status); b3Assert(status->m_type == CMD_CREATE_MULTI_BODY_COMPLETED); if (status && status->m_type == CMD_CREATE_MULTI_BODY_COMPLETED) { return status->m_createMultiBodyResultArgs.m_bodyUniqueId; } return -1; } b3SharedMemoryCommandHandle b3CreateBoxShapeCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CREATE_BOX_COLLISION_SHAPE; command->m_updateFlags =0; return (b3SharedMemoryCommandHandle) command; } int b3CreateBoxCommandSetStartPosition(b3SharedMemoryCommandHandle commandHandle, double startPosX,double startPosY,double startPosZ) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE); command->m_updateFlags |=BOX_SHAPE_HAS_INITIAL_POSITION; command->m_createBoxShapeArguments.m_initialPosition[0] = startPosX; command->m_createBoxShapeArguments.m_initialPosition[1] = startPosY; command->m_createBoxShapeArguments.m_initialPosition[2] = startPosZ; return 0; } int b3CreateBoxCommandSetHalfExtents(b3SharedMemoryCommandHandle commandHandle, double halfExtentsX,double halfExtentsY,double halfExtentsZ) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE); command->m_updateFlags |=BOX_SHAPE_HAS_HALF_EXTENTS; command->m_createBoxShapeArguments.m_halfExtentsX = halfExtentsX; command->m_createBoxShapeArguments.m_halfExtentsY = halfExtentsY; command->m_createBoxShapeArguments.m_halfExtentsZ = halfExtentsZ; return 0; } int b3CreateBoxCommandSetMass(b3SharedMemoryCommandHandle commandHandle, double mass) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE); command->m_updateFlags |=BOX_SHAPE_HAS_MASS; command->m_createBoxShapeArguments.m_mass = mass; return 0; } int b3CreateBoxCommandSetCollisionShapeType(b3SharedMemoryCommandHandle commandHandle, int collisionShapeType) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE); command->m_updateFlags |=BOX_SHAPE_HAS_COLLISION_SHAPE_TYPE; command->m_createBoxShapeArguments.m_collisionShapeType = collisionShapeType; return 0; } int b3CreateBoxCommandSetColorRGBA(b3SharedMemoryCommandHandle commandHandle, double red,double green,double blue, double alpha) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE); command->m_updateFlags |=BOX_SHAPE_HAS_COLOR; command->m_createBoxShapeArguments.m_colorRGBA[0] = red; command->m_createBoxShapeArguments.m_colorRGBA[1] = green; command->m_createBoxShapeArguments.m_colorRGBA[2] = blue; command->m_createBoxShapeArguments.m_colorRGBA[3] = alpha; return 0; } int b3CreateBoxCommandSetStartOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX,double startOrnY,double startOrnZ, double startOrnW) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE); command->m_updateFlags |=BOX_SHAPE_HAS_INITIAL_ORIENTATION; command->m_createBoxShapeArguments.m_initialOrientation[0] = startOrnX; command->m_createBoxShapeArguments.m_initialOrientation[1] = startOrnY; command->m_createBoxShapeArguments.m_initialOrientation[2] = startOrnZ; command->m_createBoxShapeArguments.m_initialOrientation[3] = startOrnW; return 0; } b3SharedMemoryCommandHandle b3CreatePoseCommandInit(b3PhysicsClientHandle physClient, int bodyIndex) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_INIT_POSE; command->m_updateFlags =0; command->m_initPoseArgs.m_bodyUniqueId = bodyIndex; //a bit slow, initialing the full range to zero... for (int i=0;im_initPoseArgs.m_hasInitialStateQ[i] = 0; command->m_initPoseArgs.m_hasInitialStateQdot[i] = 0; } return (b3SharedMemoryCommandHandle) command; } int b3CreatePoseCommandSetBasePosition(b3SharedMemoryCommandHandle commandHandle, double startPosX,double startPosY,double startPosZ) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_INIT_POSE); command->m_updateFlags |=INIT_POSE_HAS_INITIAL_POSITION; command->m_initPoseArgs.m_initialStateQ[0] = startPosX; command->m_initPoseArgs.m_initialStateQ[1] = startPosY; command->m_initPoseArgs.m_initialStateQ[2] = startPosZ; command->m_initPoseArgs.m_hasInitialStateQ[0] = 1; command->m_initPoseArgs.m_hasInitialStateQ[1] = 1; command->m_initPoseArgs.m_hasInitialStateQ[2] = 1; return 0; } int b3CreatePoseCommandSetBaseOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX,double startOrnY,double startOrnZ, double startOrnW) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_INIT_POSE); command->m_updateFlags |=INIT_POSE_HAS_INITIAL_ORIENTATION; command->m_initPoseArgs.m_initialStateQ[3] = startOrnX; command->m_initPoseArgs.m_initialStateQ[4] = startOrnY; command->m_initPoseArgs.m_initialStateQ[5] = startOrnZ; command->m_initPoseArgs.m_initialStateQ[6] = startOrnW; command->m_initPoseArgs.m_hasInitialStateQ[3] = 1; command->m_initPoseArgs.m_hasInitialStateQ[4] = 1; command->m_initPoseArgs.m_hasInitialStateQ[5] = 1; command->m_initPoseArgs.m_hasInitialStateQ[6] = 1; return 0; } int b3CreatePoseCommandSetBaseLinearVelocity(b3SharedMemoryCommandHandle commandHandle, double linVel[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_INIT_POSE); command->m_updateFlags |= INIT_POSE_HAS_BASE_LINEAR_VELOCITY; command->m_initPoseArgs.m_hasInitialStateQdot[0] = 1; command->m_initPoseArgs.m_hasInitialStateQdot[1] = 1; command->m_initPoseArgs.m_hasInitialStateQdot[2] = 1; command->m_initPoseArgs.m_initialStateQdot[0] = linVel[0]; command->m_initPoseArgs.m_initialStateQdot[1] = linVel[1]; command->m_initPoseArgs.m_initialStateQdot[2] = linVel[2]; return 0; } int b3CreatePoseCommandSetBaseAngularVelocity(b3SharedMemoryCommandHandle commandHandle, double angVel[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_INIT_POSE); command->m_updateFlags |= INIT_POSE_HAS_BASE_ANGULAR_VELOCITY; command->m_initPoseArgs.m_hasInitialStateQdot[3] = 1; command->m_initPoseArgs.m_hasInitialStateQdot[4] = 1; command->m_initPoseArgs.m_hasInitialStateQdot[5] = 1; command->m_initPoseArgs.m_initialStateQdot[3] = angVel[0]; command->m_initPoseArgs.m_initialStateQdot[4] = angVel[1]; command->m_initPoseArgs.m_initialStateQdot[5] = angVel[2]; return 0; } int b3CreatePoseCommandSetJointPositions(b3SharedMemoryCommandHandle commandHandle, int numJointPositions, const double* jointPositions) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_INIT_POSE); command->m_updateFlags |=INIT_POSE_HAS_JOINT_STATE; for (int i=0;im_initPoseArgs.m_initialStateQ[i+7] = jointPositions[i]; command->m_initPoseArgs.m_hasInitialStateQ[i+7] = 1; } } return 0; } int b3CreatePoseCommandSetJointPosition(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, double jointPosition) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_INIT_POSE); command->m_updateFlags |=INIT_POSE_HAS_JOINT_STATE; b3JointInfo info; b3GetJointInfo(physClient, command->m_initPoseArgs.m_bodyUniqueId,jointIndex, &info); btAssert((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && info.m_qIndex >=0); if ((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && info.m_qIndex >=0) { command->m_initPoseArgs.m_initialStateQ[info.m_qIndex] = jointPosition; command->m_initPoseArgs.m_hasInitialStateQ[info.m_qIndex] = 1; } return 0; } int b3CreatePoseCommandSetJointVelocities(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int numJointVelocities, const double* jointVelocities) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_INIT_POSE); command->m_updateFlags |=INIT_POSE_HAS_JOINT_VELOCITY; for (int i=0;im_initPoseArgs.m_initialStateQdot[i+6] = jointVelocities[i]; command->m_initPoseArgs.m_hasInitialStateQdot[i+6] = 1; } } return 0; } int b3CreatePoseCommandSetJointVelocity(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, double jointVelocity) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_INIT_POSE); command->m_updateFlags |=INIT_POSE_HAS_JOINT_VELOCITY; b3JointInfo info; b3GetJointInfo(physClient, command->m_initPoseArgs.m_bodyUniqueId,jointIndex, &info); btAssert((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && info.m_uIndex >=0); if ((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && (info.m_uIndex >=0) && (info.m_uIndexm_initPoseArgs.m_initialStateQdot[info.m_uIndex] = jointVelocity; command->m_initPoseArgs.m_hasInitialStateQdot[info.m_uIndex] = 1; } return 0; } b3SharedMemoryCommandHandle b3CreateSensorCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CREATE_SENSOR; command->m_updateFlags = 0; command->m_createSensorArguments.m_numJointSensorChanges = 0; command->m_createSensorArguments.m_bodyUniqueId = bodyUniqueId; return (b3SharedMemoryCommandHandle) command; } int b3CreateSensorEnable6DofJointForceTorqueSensor(b3SharedMemoryCommandHandle commandHandle, int jointIndex, int enable) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_SENSOR); int curIndex = command->m_createSensorArguments.m_numJointSensorChanges; command->m_createSensorArguments.m_sensorType[curIndex] = SENSOR_FORCE_TORQUE; command->m_createSensorArguments.m_jointIndex[curIndex] = jointIndex; command->m_createSensorArguments.m_enableJointForceSensor[curIndex] = enable; command->m_createSensorArguments.m_numJointSensorChanges++; return 0; } int b3CreateSensorEnableIMUForLink(b3SharedMemoryCommandHandle commandHandle, int linkIndex, int enable) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CREATE_SENSOR); int curIndex = command->m_createSensorArguments.m_numJointSensorChanges; command->m_createSensorArguments.m_sensorType[curIndex] = SENSOR_IMU; command->m_createSensorArguments.m_linkIndex[curIndex] = linkIndex; command->m_createSensorArguments.m_enableSensor[curIndex] = enable; command->m_createSensorArguments.m_numJointSensorChanges++; return 0; } void b3DisconnectSharedMemory(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; cl->disconnectSharedMemory(); delete cl; } b3SharedMemoryStatusHandle b3ProcessServerStatus(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; if (cl && cl->isConnected()) { const SharedMemoryStatus* stat = cl->processServerStatus(); return (b3SharedMemoryStatusHandle) stat; } return 0; } int b3GetStatusType(b3SharedMemoryStatusHandle statusHandle) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; //b3Assert(status); if (status) { return status->m_type; } return CMD_INVALID_STATUS; } int b3GetStatusBodyIndices(b3SharedMemoryStatusHandle statusHandle, int* bodyIndicesOut, int bodyIndicesCapacity) { int numBodies = 0; const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; b3Assert(status); if (status) { switch (status->m_type) { case CMD_MJCF_LOADING_COMPLETED: case CMD_BULLET_LOADING_COMPLETED: case CMD_SDF_LOADING_COMPLETED: { int i,maxBodies; numBodies = status->m_sdfLoadedArgs.m_numBodies; maxBodies = btMin(bodyIndicesCapacity, numBodies); for (i=0;im_sdfLoadedArgs.m_bodyUniqueIds[i]; } break; } } } return numBodies; } int b3GetStatusBodyIndex(b3SharedMemoryStatusHandle statusHandle) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; b3Assert(status); int bodyId = -1; if (status) { switch (status->m_type) { case CMD_URDF_LOADING_COMPLETED: { bodyId = status->m_dataStreamArguments.m_bodyUniqueId; break; } case CMD_RIGID_BODY_CREATION_COMPLETED: { bodyId = status->m_rigidBodyCreateArgs.m_bodyUniqueId; break; } case CMD_CREATE_MULTI_BODY_COMPLETED: { bodyId = status->m_dataStreamArguments.m_bodyUniqueId; break; } default: { b3Assert(0); } }; } return bodyId; } b3SharedMemoryCommandHandle b3RequestCollisionInfoCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_REQUEST_COLLISION_INFO; command->m_updateFlags = 0; command->m_requestCollisionInfoArgs.m_bodyUniqueId = bodyUniqueId; return (b3SharedMemoryCommandHandle) command; } int b3GetStatusAABB(b3SharedMemoryStatusHandle statusHandle, int linkIndex, double aabbMin[3], double aabbMax[3]) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; const b3SendCollisionInfoArgs &args = status->m_sendCollisionInfoArgs; btAssert(status->m_type == CMD_REQUEST_COLLISION_INFO_COMPLETED); if (status->m_type != CMD_REQUEST_COLLISION_INFO_COMPLETED) return 0; if (linkIndex==-1) { aabbMin[0] = args.m_rootWorldAABBMin[0]; aabbMin[1] = args.m_rootWorldAABBMin[1]; aabbMin[2] = args.m_rootWorldAABBMin[2]; aabbMax[0] = args.m_rootWorldAABBMax[0]; aabbMax[1] = args.m_rootWorldAABBMax[1]; aabbMax[2] = args.m_rootWorldAABBMax[2]; return 1; } if (linkIndex >= 0 && linkIndex < args.m_numLinks) { aabbMin[0] = args.m_linkWorldAABBsMin[linkIndex*3+0]; aabbMin[1] = args.m_linkWorldAABBsMin[linkIndex*3+1]; aabbMin[2] = args.m_linkWorldAABBsMin[linkIndex*3+2]; aabbMax[0] = args.m_linkWorldAABBsMax[linkIndex*3+0]; aabbMax[1] = args.m_linkWorldAABBsMax[linkIndex*3+1]; aabbMax[2] = args.m_linkWorldAABBsMax[linkIndex*3+2]; return 1; } return 0; } int b3GetStatusActualState(b3SharedMemoryStatusHandle statusHandle, int* bodyUniqueId, int* numDegreeOfFreedomQ, int* numDegreeOfFreedomU, const double* rootLocalInertialFrame[], const double* actualStateQ[], const double* actualStateQdot[], const double* jointReactionForces[]) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; const SendActualStateArgs &args = status->m_sendActualStateArgs; btAssert(status->m_type == CMD_ACTUAL_STATE_UPDATE_COMPLETED); if (status->m_type != CMD_ACTUAL_STATE_UPDATE_COMPLETED) return false; if (bodyUniqueId) { *bodyUniqueId = args.m_bodyUniqueId; } if (numDegreeOfFreedomQ) { *numDegreeOfFreedomQ = args.m_numDegreeOfFreedomQ; } if (numDegreeOfFreedomU) { *numDegreeOfFreedomU = args.m_numDegreeOfFreedomU; } if (rootLocalInertialFrame) { *rootLocalInertialFrame = args.m_rootLocalInertialFrame; } if (actualStateQ) { *actualStateQ = args.m_actualStateQ; } if (actualStateQdot) { *actualStateQdot = args.m_actualStateQdot; } if (jointReactionForces) { *jointReactionForces = args.m_jointReactionForces; } return true; } int b3CanSubmitCommand(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; if (cl) { return (int)cl->canSubmitCommand(); } return false; } int b3SubmitClientCommand(b3PhysicsClientHandle physClient, const b3SharedMemoryCommandHandle commandHandle) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(command); b3Assert(cl); if (command && cl) { return (int)cl->submitClientCommand(*command); } return -1; } #include "../Utils/b3Clock.h" b3SharedMemoryStatusHandle b3SubmitClientCommandAndWaitStatus(b3PhysicsClientHandle physClient, const b3SharedMemoryCommandHandle commandHandle) { B3_PROFILE("b3SubmitClientCommandAndWaitStatus"); b3Clock clock; double startTime = clock.getTimeInSeconds(); b3SharedMemoryStatusHandle statusHandle = 0; b3Assert(commandHandle); b3Assert(physClient); if (physClient && commandHandle) { PhysicsClient* cl = (PhysicsClient* ) physClient; double timeOutInSeconds = cl->getTimeOut(); { B3_PROFILE("b3SubmitClientCommand"); b3SubmitClientCommand(physClient, commandHandle); } { B3_PROFILE("b3ProcessServerStatus"); while (cl->isConnected() && (statusHandle == 0) && (clock.getTimeInSeconds()-startTime < timeOutInSeconds)) { clock.usleep(0); statusHandle = b3ProcessServerStatus(physClient); } } return (b3SharedMemoryStatusHandle)statusHandle; } return 0; } ///return the total number of bodies in the simulation int b3GetNumBodies(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; return cl->getNumBodies(); } int b3GetNumUserConstraints(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; return cl->getNumUserConstraints(); } int b3GetUserConstraintInfo(b3PhysicsClientHandle physClient, int constraintUniqueId, struct b3UserConstraint* infoPtr) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3UserConstraint constraintInfo1; b3Assert(physClient); b3Assert(infoPtr); b3Assert(constraintUniqueId>=0); if (infoPtr==0) return 0; if (cl->getUserConstraintInfo(constraintUniqueId, constraintInfo1)) { *infoPtr = constraintInfo1; return 1; } return 0; } /// return the user constraint id, given the index in range [0 , b3GetNumUserConstraints() ) int b3GetUserConstraintId(b3PhysicsClientHandle physClient, int serialIndex) { PhysicsClient* cl = (PhysicsClient* ) physClient; return cl->getUserConstraintId(serialIndex); } /// return the body unique id, given the index in range [0 , b3GetNumBodies() ) int b3GetBodyUniqueId(b3PhysicsClientHandle physClient, int serialIndex) { PhysicsClient* cl = (PhysicsClient* ) physClient; return cl->getBodyUniqueId(serialIndex); } ///given a body unique id, return the body information. See b3BodyInfo in SharedMemoryPublic.h int b3GetBodyInfo(b3PhysicsClientHandle physClient, int bodyUniqueId, struct b3BodyInfo* info) { PhysicsClient* cl = (PhysicsClient* ) physClient; return cl->getBodyInfo(bodyUniqueId,*info); } int b3GetNumJoints(b3PhysicsClientHandle physClient, int bodyId) { PhysicsClient* cl = (PhysicsClient* ) physClient; return cl->getNumJoints(bodyId); } int b3GetJointInfo(b3PhysicsClientHandle physClient, int bodyIndex, int jointIndex, struct b3JointInfo* info) { PhysicsClient* cl = (PhysicsClient* ) physClient; return cl->getJointInfo(bodyIndex, jointIndex, *info); } b3SharedMemoryCommandHandle b3GetDynamicsInfoCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_GET_DYNAMICS_INFO; command->m_getDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId; command->m_getDynamicsInfoArgs.m_linkIndex = linkIndex; return (b3SharedMemoryCommandHandle) command; } int b3GetDynamicsInfo(b3SharedMemoryStatusHandle statusHandle, struct b3DynamicsInfo* info) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; const b3DynamicsInfo &dynamicsInfo = status->m_dynamicsInfo; btAssert(status->m_type == CMD_GET_DYNAMICS_INFO); if (status->m_type != CMD_GET_DYNAMICS_INFO_COMPLETED) return false; info->m_mass = dynamicsInfo.m_mass; info->m_lateralFrictionCoeff = dynamicsInfo.m_lateralFrictionCoeff; return true; } b3SharedMemoryCommandHandle b3InitChangeDynamicsInfo(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CHANGE_DYNAMICS_INFO; command->m_changeDynamicsInfoArgs.m_bodyUniqueId = -1; command->m_changeDynamicsInfoArgs.m_linkIndex = -2; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle) command; } int b3ChangeDynamicsInfoSetMass(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double mass) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO); b3Assert(mass > 0); command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId; command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex; command->m_changeDynamicsInfoArgs.m_mass = mass; command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_MASS; return 0; } int b3ChangeDynamicsInfoSetLateralFriction(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double lateralFriction) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO); command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId; command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex; command->m_changeDynamicsInfoArgs.m_lateralFriction = lateralFriction; command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION; return 0; } int b3ChangeDynamicsInfoSetSpinningFriction(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double friction) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO); command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId; command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex; command->m_changeDynamicsInfoArgs.m_spinningFriction = friction; command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION; return 0; } int b3ChangeDynamicsInfoSetRollingFriction(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double friction) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO); command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId; command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex; command->m_changeDynamicsInfoArgs.m_rollingFriction = friction; command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION; return 0; } int b3ChangeDynamicsInfoSetRestitution(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double restitution) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO); command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId; command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex; command->m_changeDynamicsInfoArgs.m_restitution = restitution; command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_RESTITUTION; return 0; } int b3ChangeDynamicsInfoSetLinearDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId,double linearDamping) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO); command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId; command->m_changeDynamicsInfoArgs.m_linearDamping = linearDamping; command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_LINEAR_DAMPING; return 0; } int b3ChangeDynamicsInfoSetAngularDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId,double angularDamping) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO); command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId; command->m_changeDynamicsInfoArgs.m_linearDamping = angularDamping; command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_ANGULAR_DAMPING; return 0; } int b3ChangeDynamicsInfoSetContactStiffnessAndDamping(b3SharedMemoryCommandHandle commandHandle,int bodyUniqueId,int linkIndex,double contactStiffness, double contactDamping) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO); command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId; command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex; command->m_changeDynamicsInfoArgs.m_contactStiffness =contactStiffness; command->m_changeDynamicsInfoArgs.m_contactDamping = contactDamping; command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING; return 0; } int b3ChangeDynamicsInfoSetFrictionAnchor(b3SharedMemoryCommandHandle commandHandle,int bodyUniqueId,int linkIndex, int frictionAnchor) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO); command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId; command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex; command->m_changeDynamicsInfoArgs.m_frictionAnchor = frictionAnchor; command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR; return 0; } b3SharedMemoryCommandHandle b3InitCreateUserConstraintCommand(b3PhysicsClientHandle physClient, int parentBodyIndex, int parentJointIndex, int childBodyIndex, int childJointIndex, struct b3JointInfo* info) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_USER_CONSTRAINT; command->m_updateFlags = USER_CONSTRAINT_ADD_CONSTRAINT; command->m_userConstraintArguments.m_parentBodyIndex = parentBodyIndex; command->m_userConstraintArguments.m_parentJointIndex = parentJointIndex; command->m_userConstraintArguments.m_childBodyIndex = childBodyIndex; command->m_userConstraintArguments.m_childJointIndex = childJointIndex; for (int i = 0; i < 7; ++i) { command->m_userConstraintArguments.m_parentFrame[i] = info->m_parentFrame[i]; command->m_userConstraintArguments.m_childFrame[i] = info->m_childFrame[i]; } for (int i = 0; i < 3; ++i) { command->m_userConstraintArguments.m_jointAxis[i] = info->m_jointAxis[i]; } command->m_userConstraintArguments.m_jointType = info->m_jointType; return (b3SharedMemoryCommandHandle)command; } b3SharedMemoryCommandHandle b3InitChangeUserConstraintCommand(b3PhysicsClientHandle physClient, int userConstraintUniqueId) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_USER_CONSTRAINT; command->m_updateFlags = USER_CONSTRAINT_CHANGE_CONSTRAINT; command->m_userConstraintArguments.m_userConstraintUniqueId = userConstraintUniqueId; return (b3SharedMemoryCommandHandle)command; } int b3InitChangeUserConstraintSetPivotInB(b3SharedMemoryCommandHandle commandHandle, double pivotInB[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_USER_CONSTRAINT); b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT); command->m_updateFlags |= USER_CONSTRAINT_CHANGE_PIVOT_IN_B; command->m_userConstraintArguments.m_childFrame[0] = pivotInB[0]; command->m_userConstraintArguments.m_childFrame[1] = pivotInB[1]; command->m_userConstraintArguments.m_childFrame[2] = pivotInB[2]; return 0; } int b3InitChangeUserConstraintSetFrameInB(b3SharedMemoryCommandHandle commandHandle, double frameOrnInB[4]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_USER_CONSTRAINT); b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT); command->m_updateFlags |= USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B; command->m_userConstraintArguments.m_childFrame[3] = frameOrnInB[0]; command->m_userConstraintArguments.m_childFrame[4] = frameOrnInB[1]; command->m_userConstraintArguments.m_childFrame[5] = frameOrnInB[2]; command->m_userConstraintArguments.m_childFrame[6] = frameOrnInB[3]; return 0; } int b3InitChangeUserConstraintSetMaxForce(b3SharedMemoryCommandHandle commandHandle, double maxAppliedForce) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_USER_CONSTRAINT); b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT); command->m_updateFlags |=USER_CONSTRAINT_CHANGE_MAX_FORCE; command->m_userConstraintArguments.m_maxAppliedForce = maxAppliedForce; return 0; } int b3InitChangeUserConstraintSetGearRatio(b3SharedMemoryCommandHandle commandHandle, double gearRatio) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_USER_CONSTRAINT); b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT); command->m_updateFlags |=USER_CONSTRAINT_CHANGE_GEAR_RATIO; command->m_userConstraintArguments.m_gearRatio = gearRatio; return 0; } int b3InitChangeUserConstraintSetGearAuxLink(b3SharedMemoryCommandHandle commandHandle, int gearAuxLink) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_USER_CONSTRAINT); b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT); command->m_updateFlags |=USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK; command->m_userConstraintArguments.m_gearAuxLink = gearAuxLink; return 0; } b3SharedMemoryCommandHandle b3InitRemoveUserConstraintCommand(b3PhysicsClientHandle physClient, int userConstraintUniqueId) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_USER_CONSTRAINT; command->m_updateFlags = USER_CONSTRAINT_REMOVE_CONSTRAINT; command->m_userConstraintArguments.m_userConstraintUniqueId = userConstraintUniqueId; return (b3SharedMemoryCommandHandle)command; } b3SharedMemoryCommandHandle b3InitRemoveBodyCommand(b3PhysicsClientHandle physClient, int bodyUniqueId) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_REMOVE_BODY; command->m_updateFlags = BODY_DELETE_FLAG; command->m_removeObjectArgs.m_numBodies = 1; command->m_removeObjectArgs.m_bodyUniqueIds[0] = bodyUniqueId; command->m_removeObjectArgs.m_numUserConstraints = 0; return (b3SharedMemoryCommandHandle)command; } int b3GetStatusUserConstraintUniqueId(b3SharedMemoryStatusHandle statusHandle) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; b3Assert(status); b3Assert(status->m_type == CMD_USER_CONSTRAINT_COMPLETED); if (status && status->m_type == CMD_USER_CONSTRAINT_COMPLETED) { return status->m_userConstraintResultArgs.m_userConstraintUniqueId; } return -1; } b3SharedMemoryCommandHandle b3PickBody(b3PhysicsClientHandle physClient, double rayFromWorldX, double rayFromWorldY, double rayFromWorldZ, double rayToWorldX, double rayToWorldY, double rayToWorldZ) { PhysicsClient *cl = (PhysicsClient *)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand *command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_PICK_BODY; command->m_pickBodyArguments.m_rayFromWorld[0] = rayFromWorldX; command->m_pickBodyArguments.m_rayFromWorld[1] = rayFromWorldY; command->m_pickBodyArguments.m_rayFromWorld[2] = rayFromWorldZ; command->m_pickBodyArguments.m_rayToWorld[0] = rayToWorldX; command->m_pickBodyArguments.m_rayToWorld[1] = rayToWorldY; command->m_pickBodyArguments.m_rayToWorld[2] = rayToWorldZ; return (b3SharedMemoryCommandHandle)command; } b3SharedMemoryCommandHandle b3MovePickedBody(b3PhysicsClientHandle physClient, double rayFromWorldX, double rayFromWorldY, double rayFromWorldZ, double rayToWorldX, double rayToWorldY, double rayToWorldZ) { PhysicsClient *cl = (PhysicsClient *)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand *command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_MOVE_PICKED_BODY; command->m_pickBodyArguments.m_rayFromWorld[0] = rayFromWorldX; command->m_pickBodyArguments.m_rayFromWorld[1] = rayFromWorldY; command->m_pickBodyArguments.m_rayFromWorld[2] = rayFromWorldZ; command->m_pickBodyArguments.m_rayToWorld[0] = rayToWorldX; command->m_pickBodyArguments.m_rayToWorld[1] = rayToWorldY; command->m_pickBodyArguments.m_rayToWorld[2] = rayToWorldZ; return (b3SharedMemoryCommandHandle)command; } b3SharedMemoryCommandHandle b3RemovePickingConstraint(b3PhysicsClientHandle physClient) { PhysicsClient *cl = (PhysicsClient *)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand *command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_REMOVE_PICKING_CONSTRAINT_BODY; return (b3SharedMemoryCommandHandle)command; } b3SharedMemoryCommandHandle b3CreateRaycastCommandInit(b3PhysicsClientHandle physClient, double rayFromWorldX, double rayFromWorldY, double rayFromWorldZ, double rayToWorldX, double rayToWorldY, double rayToWorldZ) { PhysicsClient *cl = (PhysicsClient *)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand *command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_REQUEST_RAY_CAST_INTERSECTIONS; command->m_requestRaycastIntersections.m_numRays = 1; command->m_requestRaycastIntersections.m_rayFromPositions[0][0] = rayFromWorldX; command->m_requestRaycastIntersections.m_rayFromPositions[0][1] = rayFromWorldY; command->m_requestRaycastIntersections.m_rayFromPositions[0][2] = rayFromWorldZ; command->m_requestRaycastIntersections.m_rayToPositions[0][0] = rayToWorldX; command->m_requestRaycastIntersections.m_rayToPositions[0][1] = rayToWorldY; command->m_requestRaycastIntersections.m_rayToPositions[0][2] = rayToWorldZ; return (b3SharedMemoryCommandHandle)command; } b3SharedMemoryCommandHandle b3CreateRaycastBatchCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient *cl = (PhysicsClient *)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand *command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_REQUEST_RAY_CAST_INTERSECTIONS; command->m_updateFlags = 0; command->m_requestRaycastIntersections.m_numRays = 0; return (b3SharedMemoryCommandHandle)command; } void b3RaycastBatchAddRay(b3SharedMemoryCommandHandle commandHandle, const double rayFromWorld[3], const double rayToWorld[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_RAY_CAST_INTERSECTIONS); if (command->m_type == CMD_REQUEST_RAY_CAST_INTERSECTIONS) { int numRays = command->m_requestRaycastIntersections.m_numRays; if (numRaysm_requestRaycastIntersections.m_rayFromPositions[numRays][0] = rayFromWorld[0]; command->m_requestRaycastIntersections.m_rayFromPositions[numRays][1] = rayFromWorld[1]; command->m_requestRaycastIntersections.m_rayFromPositions[numRays][2] = rayFromWorld[2]; command->m_requestRaycastIntersections.m_rayToPositions[numRays][0] = rayToWorld[0]; command->m_requestRaycastIntersections.m_rayToPositions[numRays][1] = rayToWorld[1]; command->m_requestRaycastIntersections.m_rayToPositions[numRays][2] = rayToWorld[2]; command->m_requestRaycastIntersections.m_numRays++; } } } void b3GetRaycastInformation(b3PhysicsClientHandle physClient, struct b3RaycastInformation* raycastInfo) { PhysicsClient* cl = (PhysicsClient* ) physClient; if (cl) { cl->getCachedRaycastHits(raycastInfo); } } ///If you re-connected to an existing server, or server changed otherwise, sync the body info b3SharedMemoryCommandHandle b3InitSyncBodyInfoCommand(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_SYNC_BODY_INFO; return (b3SharedMemoryCommandHandle) command; } b3SharedMemoryCommandHandle b3InitRequestDebugLinesCommand(b3PhysicsClientHandle physClient, int debugMode) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_REQUEST_DEBUG_LINES; command->m_requestDebugLinesArguments.m_debugMode = debugMode; command->m_requestDebugLinesArguments.m_startingLineIndex = 0; return (b3SharedMemoryCommandHandle) command; } void b3GetDebugLines(b3PhysicsClientHandle physClient, struct b3DebugLines* lines) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(lines); if (lines) { lines->m_numDebugLines = cl->getNumDebugLines(); lines->m_linesFrom = cl->getDebugLinesFrom(); lines->m_linesTo = cl->getDebugLinesTo(); lines->m_linesColor = cl->getDebugLinesColor(); } } /// Add/remove user-specific debug lines and debug text messages b3SharedMemoryCommandHandle b3InitUserDebugDrawAddLine3D(b3PhysicsClientHandle physClient, double fromXYZ[3], double toXYZ[3], double colorRGB[3], double lineWidth, double lifeTime) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_USER_DEBUG_DRAW; command->m_updateFlags = USER_DEBUG_HAS_LINE; //USER_DEBUG_HAS_TEXT command->m_userDebugDrawArgs.m_debugLineFromXYZ[0] = fromXYZ[0]; command->m_userDebugDrawArgs.m_debugLineFromXYZ[1] = fromXYZ[1]; command->m_userDebugDrawArgs.m_debugLineFromXYZ[2] = fromXYZ[2]; command->m_userDebugDrawArgs.m_debugLineToXYZ[0] = toXYZ[0]; command->m_userDebugDrawArgs.m_debugLineToXYZ[1] = toXYZ[1]; command->m_userDebugDrawArgs.m_debugLineToXYZ[2] = toXYZ[2]; command->m_userDebugDrawArgs.m_debugLineColorRGB[0] = colorRGB[0]; command->m_userDebugDrawArgs.m_debugLineColorRGB[1] = colorRGB[1]; command->m_userDebugDrawArgs.m_debugLineColorRGB[2] = colorRGB[2]; command->m_userDebugDrawArgs.m_lineWidth = lineWidth; command->m_userDebugDrawArgs.m_lifeTime = lifeTime; command->m_userDebugDrawArgs.m_parentObjectUniqueId = -1; command->m_userDebugDrawArgs.m_parentLinkIndex = -1; command->m_userDebugDrawArgs.m_optionFlags = 0; return (b3SharedMemoryCommandHandle) command; } b3SharedMemoryCommandHandle b3InitUserDebugDrawAddText3D(b3PhysicsClientHandle physClient, const char* txt, double positionXYZ[3], double colorRGB[3], double textSize, double lifeTime) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_USER_DEBUG_DRAW; command->m_updateFlags = USER_DEBUG_HAS_TEXT; int len = strlen(txt); if (lenm_userDebugDrawArgs.m_text,txt); } else { command->m_userDebugDrawArgs.m_text[0] = 0; } command->m_userDebugDrawArgs.m_textPositionXYZ[0] = positionXYZ[0]; command->m_userDebugDrawArgs.m_textPositionXYZ[1] = positionXYZ[1]; command->m_userDebugDrawArgs.m_textPositionXYZ[2] = positionXYZ[2]; command->m_userDebugDrawArgs.m_textColorRGB[0] = colorRGB[0]; command->m_userDebugDrawArgs.m_textColorRGB[1] = colorRGB[1]; command->m_userDebugDrawArgs.m_textColorRGB[2] = colorRGB[2]; command->m_userDebugDrawArgs.m_textSize = textSize; command->m_userDebugDrawArgs.m_lifeTime = lifeTime; command->m_userDebugDrawArgs.m_parentObjectUniqueId = -1; command->m_userDebugDrawArgs.m_parentLinkIndex = -1; command->m_userDebugDrawArgs.m_optionFlags = 0; return (b3SharedMemoryCommandHandle) command; } void b3UserDebugTextSetOptionFlags(b3SharedMemoryCommandHandle commandHandle, int optionFlags) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_USER_DEBUG_DRAW); b3Assert(command->m_updateFlags & USER_DEBUG_HAS_TEXT); command->m_userDebugDrawArgs.m_optionFlags = optionFlags; command->m_updateFlags |= USER_DEBUG_HAS_OPTION_FLAGS; } void b3UserDebugTextSetOrientation(b3SharedMemoryCommandHandle commandHandle, double orientation[4]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_USER_DEBUG_DRAW); b3Assert(command->m_updateFlags & USER_DEBUG_HAS_TEXT); command->m_userDebugDrawArgs.m_textOrientation[0] = orientation[0]; command->m_userDebugDrawArgs.m_textOrientation[1] = orientation[1]; command->m_userDebugDrawArgs.m_textOrientation[2] = orientation[2]; command->m_userDebugDrawArgs.m_textOrientation[3] = orientation[3]; command->m_updateFlags |= USER_DEBUG_HAS_TEXT_ORIENTATION; } void b3UserDebugItemSetParentObject(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId, int linkIndex) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_USER_DEBUG_DRAW); command->m_updateFlags |= USER_DEBUG_HAS_PARENT_OBJECT; command->m_userDebugDrawArgs.m_parentObjectUniqueId = objectUniqueId; command->m_userDebugDrawArgs.m_parentLinkIndex = linkIndex; } b3SharedMemoryCommandHandle b3InitUserDebugAddParameter(b3PhysicsClientHandle physClient, const char* txt, double rangeMin, double rangeMax, double startValue) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_USER_DEBUG_DRAW; command->m_updateFlags = USER_DEBUG_ADD_PARAMETER; int len = strlen(txt); if (lenm_userDebugDrawArgs.m_text,txt); } else { command->m_userDebugDrawArgs.m_text[0] = 0; } command->m_userDebugDrawArgs.m_rangeMin = rangeMin; command->m_userDebugDrawArgs.m_rangeMax = rangeMax; command->m_userDebugDrawArgs.m_startValue = startValue; command->m_userDebugDrawArgs.m_parentObjectUniqueId = -1; command->m_userDebugDrawArgs.m_optionFlags = 0; return (b3SharedMemoryCommandHandle)command; } b3SharedMemoryCommandHandle b3InitUserDebugReadParameter(b3PhysicsClientHandle physClient, int debugItemUniqueId) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_USER_DEBUG_DRAW; command->m_updateFlags = USER_DEBUG_READ_PARAMETER; command->m_userDebugDrawArgs.m_itemUniqueId = debugItemUniqueId; return (b3SharedMemoryCommandHandle) command; } int b3GetStatusDebugParameterValue(b3SharedMemoryStatusHandle statusHandle, double* paramValue) { const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle; btAssert(status->m_type == CMD_USER_DEBUG_DRAW_PARAMETER_COMPLETED); if (paramValue && (status->m_type == CMD_USER_DEBUG_DRAW_PARAMETER_COMPLETED)) { *paramValue = status->m_userDebugDrawArgs.m_parameterValue; return 1; } return 0; } b3SharedMemoryCommandHandle b3InitUserDebugDrawRemove(b3PhysicsClientHandle physClient, int debugItemUniqueId) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_USER_DEBUG_DRAW; command->m_updateFlags = USER_DEBUG_REMOVE_ONE_ITEM; command->m_userDebugDrawArgs.m_itemUniqueId = debugItemUniqueId; return (b3SharedMemoryCommandHandle) command; } b3SharedMemoryCommandHandle b3InitUserDebugDrawRemoveAll(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_USER_DEBUG_DRAW; command->m_updateFlags = USER_DEBUG_REMOVE_ALL; return (b3SharedMemoryCommandHandle) command; } int b3GetDebugItemUniqueId(b3SharedMemoryStatusHandle statusHandle) { const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle; btAssert(status->m_type == CMD_USER_DEBUG_DRAW_COMPLETED); if (status->m_type != CMD_USER_DEBUG_DRAW_COMPLETED) return -1; return status->m_userDebugDrawArgs.m_debugItemUniqueId; } b3SharedMemoryCommandHandle b3InitDebugDrawingCommand(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_USER_DEBUG_DRAW; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle)command; } void b3SetDebugObjectColor(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId, int linkIndex, double objectColorRGB[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_USER_DEBUG_DRAW); command->m_updateFlags |= USER_DEBUG_SET_CUSTOM_OBJECT_COLOR; command->m_userDebugDrawArgs.m_objectUniqueId = objectUniqueId; command->m_userDebugDrawArgs.m_linkIndex = linkIndex; command->m_userDebugDrawArgs.m_objectDebugColorRGB[0] = objectColorRGB[0]; command->m_userDebugDrawArgs.m_objectDebugColorRGB[1] = objectColorRGB[1]; command->m_userDebugDrawArgs.m_objectDebugColorRGB[2] = objectColorRGB[2]; } void b3RemoveDebugObjectColor(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId, int linkIndex) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_USER_DEBUG_DRAW); command->m_updateFlags |= USER_DEBUG_REMOVE_CUSTOM_OBJECT_COLOR; command->m_userDebugDrawArgs.m_objectUniqueId = objectUniqueId; command->m_userDebugDrawArgs.m_linkIndex = linkIndex; } ///request an image from a simulated camera, using a software renderer. b3SharedMemoryCommandHandle b3InitRequestCameraImage(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_REQUEST_CAMERA_IMAGE_DATA; command->m_requestPixelDataArguments.m_startPixelIndex = 0; command->m_updateFlags = 0;//REQUEST_PIXEL_ARGS_USE_HARDWARE_OPENGL; return (b3SharedMemoryCommandHandle) command; } void b3RequestCameraImageSelectRenderer(b3SharedMemoryCommandHandle commandHandle, int renderer) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); b3Assert(renderer>(1<<15)); if (renderer>(1<<15)) { command->m_updateFlags |= renderer; } } void b3RequestCameraImageSetCameraMatrices(b3SharedMemoryCommandHandle commandHandle, float viewMatrix[16], float projectionMatrix[16]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); for (int i=0;i<16;i++) { command->m_requestPixelDataArguments.m_projectionMatrix[i] = projectionMatrix[i]; command->m_requestPixelDataArguments.m_viewMatrix[i] = viewMatrix[i]; } command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES; } void b3RequestCameraImageSetLightDirection(b3SharedMemoryCommandHandle commandHandle, const float lightDirection[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); for (int i = 0; i<3; i++) { command->m_requestPixelDataArguments.m_lightDirection[i] = lightDirection[i]; } command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_LIGHT_DIRECTION; } void b3RequestCameraImageSetLightColor(b3SharedMemoryCommandHandle commandHandle, const float lightColor[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); for (int i = 0; i<3; i++) { command->m_requestPixelDataArguments.m_lightColor[i] = lightColor[i]; } command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_LIGHT_COLOR; } void b3RequestCameraImageSetLightDistance(b3SharedMemoryCommandHandle commandHandle, float lightDistance) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); command->m_requestPixelDataArguments.m_lightDistance = lightDistance; command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_LIGHT_DISTANCE; } void b3RequestCameraImageSetLightAmbientCoeff(b3SharedMemoryCommandHandle commandHandle, float lightAmbientCoeff) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); command->m_requestPixelDataArguments.m_lightAmbientCoeff = lightAmbientCoeff; command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_AMBIENT_COEFF; } void b3RequestCameraImageSetLightDiffuseCoeff(b3SharedMemoryCommandHandle commandHandle, float lightDiffuseCoeff) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); command->m_requestPixelDataArguments.m_lightDiffuseCoeff = lightDiffuseCoeff; command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_DIFFUSE_COEFF; } void b3RequestCameraImageSetLightSpecularCoeff(b3SharedMemoryCommandHandle commandHandle, float lightSpecularCoeff) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); command->m_requestPixelDataArguments.m_lightSpecularCoeff = lightSpecularCoeff; command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_SPECULAR_COEFF; } void b3RequestCameraImageSetShadow(b3SharedMemoryCommandHandle commandHandle, int hasShadow) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); command->m_requestPixelDataArguments.m_hasShadow = hasShadow; command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_SHADOW; } void b3ComputePositionFromViewMatrix(const float viewMatrix[16], float cameraPosition[3], float cameraTargetPosition[3], float cameraUp[3]) { b3Matrix3x3 r(viewMatrix[0], viewMatrix[4], viewMatrix[8], viewMatrix[1], viewMatrix[5], viewMatrix[9], viewMatrix[2], viewMatrix[6], viewMatrix[10]); b3Vector3 p = b3MakeVector3(viewMatrix[12], viewMatrix[13], viewMatrix[14]); b3Transform t(r,p); b3Transform tinv = t.inverse(); b3Matrix3x3 basis = tinv.getBasis(); b3Vector3 origin = tinv.getOrigin(); b3Vector3 s = b3MakeVector3(basis[0][0], basis[1][0], basis[2][0]); b3Vector3 u = b3MakeVector3(basis[0][1], basis[1][1], basis[2][1]); b3Vector3 f = b3MakeVector3(-basis[0][2], -basis[1][2], -basis[2][2]); b3Vector3 eye = origin; cameraPosition[0] = eye[0]; cameraPosition[1] = eye[1]; cameraPosition[2] = eye[2]; b3Vector3 center = f + eye; cameraTargetPosition[0] = center[0]; cameraTargetPosition[1] = center[1]; cameraTargetPosition[2] = center[2]; cameraUp[0] = u[0]; cameraUp[1] = u[1]; cameraUp[2] = u[2]; } void b3ComputeViewMatrixFromPositions(const float cameraPosition[3], const float cameraTargetPosition[3], const float cameraUp[3], float viewMatrix[16]) { b3Vector3 eye = b3MakeVector3(cameraPosition[0], cameraPosition[1], cameraPosition[2]); b3Vector3 center = b3MakeVector3(cameraTargetPosition[0], cameraTargetPosition[1], cameraTargetPosition[2]); b3Vector3 up = b3MakeVector3(cameraUp[0], cameraUp[1], cameraUp[2]); b3Vector3 f = (center - eye).normalized(); b3Vector3 u = up.normalized(); b3Vector3 s = (f.cross(u)).normalized(); u = s.cross(f); viewMatrix[0 * 4 + 0] = s.x; viewMatrix[1 * 4 + 0] = s.y; viewMatrix[2 * 4 + 0] = s.z; viewMatrix[0 * 4 + 1] = u.x; viewMatrix[1 * 4 + 1] = u.y; viewMatrix[2 * 4 + 1] = u.z; viewMatrix[0 * 4 + 2] = -f.x; viewMatrix[1 * 4 + 2] = -f.y; viewMatrix[2 * 4 + 2] = -f.z; viewMatrix[0 * 4 + 3] = 0.f; viewMatrix[1 * 4 + 3] = 0.f; viewMatrix[2 * 4 + 3] = 0.f; viewMatrix[3 * 4 + 0] = -s.dot(eye); viewMatrix[3 * 4 + 1] = -u.dot(eye); viewMatrix[3 * 4 + 2] = f.dot(eye); viewMatrix[3 * 4 + 3] = 1.f; } void b3ComputeViewMatrixFromYawPitchRoll(const float cameraTargetPosition[3], float distance, float yaw, float pitch, float roll, int upAxis, float viewMatrix[16]) { b3Vector3 camUpVector; b3Vector3 camForward; b3Vector3 camPos; b3Vector3 camTargetPos = b3MakeVector3(cameraTargetPosition[0], cameraTargetPosition[1], cameraTargetPosition[2]); b3Vector3 eyePos = b3MakeVector3(0, 0, 0); b3Scalar yawRad = yaw * b3Scalar(0.01745329251994329547);// rads per deg b3Scalar pitchRad = pitch * b3Scalar(0.01745329251994329547);// rads per deg b3Scalar rollRad = 0.0; b3Quaternion eyeRot; int forwardAxis(-1); switch (upAxis) { case 1: forwardAxis = 2; camUpVector = b3MakeVector3(0,1,0); eyeRot.setEulerZYX(rollRad, yawRad, -pitchRad); break; case 2: forwardAxis = 1; camUpVector = b3MakeVector3(0,0,1); eyeRot.setEulerZYX(yawRad, rollRad, pitchRad); break; default: return; }; eyePos[forwardAxis] = -distance; camForward = b3MakeVector3(eyePos[0],eyePos[1],eyePos[2]); if (camForward.length2() < B3_EPSILON) { camForward.setValue(1.f,0.f,0.f); } else { camForward.normalize(); } eyePos = b3Matrix3x3(eyeRot)*eyePos; camUpVector = b3Matrix3x3(eyeRot)*camUpVector; camPos = eyePos; camPos += camTargetPos; float camPosf[4] = { camPos[0],camPos[1],camPos[2],0 }; float camPosTargetf[4] = { camTargetPos[0],camTargetPos[1],camTargetPos[2],0 }; float camUpf[4] = { camUpVector[0],camUpVector[1],camUpVector[2],0 }; b3ComputeViewMatrixFromPositions(camPosf, camPosTargetf, camUpf,viewMatrix); } void b3ComputeProjectionMatrix(float left, float right, float bottom, float top, float nearVal, float farVal, float projectionMatrix[16]) { projectionMatrix[0 * 4 + 0] = (float(2) * nearVal) / (right - left); projectionMatrix[0 * 4 + 1] = float(0); projectionMatrix[0 * 4 + 2] = float(0); projectionMatrix[0 * 4 + 3] = float(0); projectionMatrix[1 * 4 + 0] = float(0); projectionMatrix[1 * 4 + 1] = (float(2) * nearVal) / (top - bottom); projectionMatrix[1 * 4 + 2] = float(0); projectionMatrix[1 * 4 + 3] = float(0); projectionMatrix[2 * 4 + 0] = (right + left) / (right - left); projectionMatrix[2 * 4 + 1] = (top + bottom) / (top - bottom); projectionMatrix[2 * 4 + 2] = -(farVal + nearVal) / (farVal - nearVal); projectionMatrix[2 * 4 + 3] = float(-1); projectionMatrix[3 * 4 + 0] = float(0); projectionMatrix[3 * 4 + 1] = float(0); projectionMatrix[3 * 4 + 2] = -(float(2) * farVal * nearVal) / (farVal - nearVal); projectionMatrix[3 * 4 + 3] = float(0); } void b3ComputeProjectionMatrixFOV(float fov, float aspect, float nearVal, float farVal, float projectionMatrix[16]) { float yScale = 1.0 / tan((3.141592538 / 180.0) * fov / 2); float xScale = yScale / aspect; projectionMatrix[0 * 4 + 0] = xScale; projectionMatrix[0 * 4 + 1] = float(0); projectionMatrix[0 * 4 + 2] = float(0); projectionMatrix[0 * 4 + 3] = float(0); projectionMatrix[1 * 4 + 0] = float(0); projectionMatrix[1 * 4 + 1] = yScale; projectionMatrix[1 * 4 + 2] = float(0); projectionMatrix[1 * 4 + 3] = float(0); projectionMatrix[2 * 4 + 0] = 0; projectionMatrix[2 * 4 + 1] = 0; projectionMatrix[2 * 4 + 2] = (nearVal + farVal) / (nearVal - farVal); projectionMatrix[2 * 4 + 3] = float(-1); projectionMatrix[3 * 4 + 0] = float(0); projectionMatrix[3 * 4 + 1] = float(0); projectionMatrix[3 * 4 + 2] = (float(2) * farVal * nearVal) / (nearVal - farVal); projectionMatrix[3 * 4 + 3] = float(0); } void b3RequestCameraImageSetViewMatrix2(b3SharedMemoryCommandHandle commandHandle, const float cameraTargetPosition[3], float distance, float yaw, float pitch, float roll, int upAxis) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); b3ComputeViewMatrixFromYawPitchRoll(cameraTargetPosition, distance, yaw, pitch, roll, upAxis, command->m_requestPixelDataArguments.m_viewMatrix); command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES; } void b3RequestCameraImageSetViewMatrix(b3SharedMemoryCommandHandle commandHandle, const float cameraPosition[3], const float cameraTargetPosition[3], const float cameraUp[3]) { float viewMatrix[16]; b3ComputeViewMatrixFromPositions(cameraPosition, cameraTargetPosition, cameraUp, viewMatrix); struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); b3ComputeViewMatrixFromPositions(cameraPosition, cameraTargetPosition, cameraUp, command->m_requestPixelDataArguments.m_viewMatrix); command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES; } void b3RequestCameraImageSetProjectionMatrix(b3SharedMemoryCommandHandle commandHandle, float left, float right, float bottom, float top, float nearVal, float farVal) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); b3ComputeProjectionMatrix(left, right, bottom, top, nearVal, farVal, command->m_requestPixelDataArguments.m_projectionMatrix); command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES; } void b3RequestCameraImageSetFOVProjectionMatrix(b3SharedMemoryCommandHandle commandHandle, float fov, float aspect, float nearVal, float farVal) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); b3ComputeProjectionMatrixFOV(fov, aspect, nearVal, farVal, command->m_requestPixelDataArguments.m_projectionMatrix); command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES; } void b3RequestCameraImageSetPixelResolution(b3SharedMemoryCommandHandle commandHandle, int width, int height ) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA); command->m_requestPixelDataArguments.m_pixelWidth = width; command->m_requestPixelDataArguments.m_pixelHeight = height; command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT; } void b3GetCameraImageData(b3PhysicsClientHandle physClient, struct b3CameraImageData* imageData) { PhysicsClient* cl = (PhysicsClient* ) physClient; if (cl) { cl->getCachedCameraImage(imageData); } } ///request an contact point information b3SharedMemoryCommandHandle b3InitRequestContactPointInformation(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type =CMD_REQUEST_CONTACT_POINT_INFORMATION; command->m_requestContactPointArguments.m_startingContactPointIndex = 0; command->m_requestContactPointArguments.m_objectAIndexFilter = -1; command->m_requestContactPointArguments.m_objectBIndexFilter = -1; command->m_requestContactPointArguments.m_linkIndexAIndexFilter = -2; command->m_requestContactPointArguments.m_linkIndexBIndexFilter = -2; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle) command; } void b3SetContactFilterBodyA(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION); command->m_requestContactPointArguments.m_objectAIndexFilter = bodyUniqueIdA; } void b3SetContactFilterLinkA(b3SharedMemoryCommandHandle commandHandle, int linkIndexA) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION); command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_A_FILTER; command->m_requestContactPointArguments.m_linkIndexAIndexFilter= linkIndexA; } void b3SetContactFilterLinkB(b3SharedMemoryCommandHandle commandHandle, int linkIndexB) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION); command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_B_FILTER; command->m_requestContactPointArguments.m_linkIndexBIndexFilter = linkIndexB; } void b3SetClosestDistanceFilterLinkA(b3SharedMemoryCommandHandle commandHandle, int linkIndexA) { b3SetContactFilterLinkA(commandHandle, linkIndexA); } void b3SetClosestDistanceFilterLinkB(b3SharedMemoryCommandHandle commandHandle, int linkIndexB) { b3SetContactFilterLinkB(commandHandle, linkIndexB); } void b3SetContactFilterBodyB(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdB) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION); command->m_requestContactPointArguments.m_objectBIndexFilter = bodyUniqueIdB; } ///compute the closest points between two bodies b3SharedMemoryCommandHandle b3InitClosestDistanceQuery(b3PhysicsClientHandle physClient) { b3SharedMemoryCommandHandle commandHandle =b3InitRequestContactPointInformation(physClient); struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION); command->m_updateFlags = CMD_REQUEST_CONTACT_POINT_HAS_QUERY_MODE; command->m_requestContactPointArguments.m_mode = CONTACT_QUERY_MODE_COMPUTE_CLOSEST_POINTS; return commandHandle; } void b3SetClosestDistanceFilterBodyA(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA) { b3SetContactFilterBodyA(commandHandle,bodyUniqueIdA); } void b3SetClosestDistanceFilterBodyB(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdB) { b3SetContactFilterBodyB(commandHandle,bodyUniqueIdB); } void b3SetClosestDistanceThreshold(b3SharedMemoryCommandHandle commandHandle, double distance) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION); command->m_updateFlags += CMD_REQUEST_CONTACT_POINT_HAS_CLOSEST_DISTANCE_THRESHOLD; command->m_requestContactPointArguments.m_closestDistanceThreshold = distance; } ///get all the bodies that touch a given axis aligned bounding box specified in world space (min and max coordinates) b3SharedMemoryCommandHandle b3InitAABBOverlapQuery(b3PhysicsClientHandle physClient, const double aabbMin[3], const double aabbMax[3]) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_REQUEST_AABB_OVERLAP; command->m_updateFlags = 0; command->m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex = 0; command->m_requestOverlappingObjectsArgs.m_aabbQueryMin[0] = aabbMin[0]; command->m_requestOverlappingObjectsArgs.m_aabbQueryMin[1] = aabbMin[1]; command->m_requestOverlappingObjectsArgs.m_aabbQueryMin[2] = aabbMin[2]; command->m_requestOverlappingObjectsArgs.m_aabbQueryMax[0] = aabbMax[0]; command->m_requestOverlappingObjectsArgs.m_aabbQueryMax[1] = aabbMax[1]; command->m_requestOverlappingObjectsArgs.m_aabbQueryMax[2] = aabbMax[2]; return (b3SharedMemoryCommandHandle)command; } void b3GetAABBOverlapResults(b3PhysicsClientHandle physClient, struct b3AABBOverlapData* data) { PhysicsClient* cl = (PhysicsClient*)physClient; if (cl) { cl->getCachedOverlappingObjects(data); } } void b3GetContactPointInformation(b3PhysicsClientHandle physClient, struct b3ContactInformation* contactPointData) { PhysicsClient* cl = (PhysicsClient* ) physClient; if (cl) { cl->getCachedContactPointInformation(contactPointData); } } void b3GetClosestPointInformation(b3PhysicsClientHandle physClient, struct b3ContactInformation* contactPointInfo) { b3GetContactPointInformation(physClient,contactPointInfo); } //request visual shape information b3SharedMemoryCommandHandle b3InitRequestVisualShapeInformation(b3PhysicsClientHandle physClient, int bodyUniqueIdA) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_REQUEST_VISUAL_SHAPE_INFO; command->m_requestVisualShapeDataArguments.m_bodyUniqueId = bodyUniqueIdA; command->m_requestVisualShapeDataArguments.m_startingVisualShapeIndex = 0; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle) command; } void b3GetVisualShapeInformation(b3PhysicsClientHandle physClient, struct b3VisualShapeInformation* visualShapeInfo) { PhysicsClient* cl = (PhysicsClient*)physClient; if (cl) { cl->getCachedVisualShapeInformation(visualShapeInfo); } } b3SharedMemoryCommandHandle b3CreateChangeTextureCommandInit(b3PhysicsClientHandle physClient, int textureUniqueId, int width, int height, const char* rgbPixels) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CHANGE_TEXTURE; command->m_changeTextureArgs.m_textureUniqueId = textureUniqueId; command->m_changeTextureArgs.m_width = width; command->m_changeTextureArgs.m_height = height; int numPixels = width*height; cl->uploadBulletFileToSharedMemory(rgbPixels,numPixels*3); command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle) command; } b3SharedMemoryCommandHandle b3InitLoadTexture(b3PhysicsClientHandle physClient, const char* filename) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_LOAD_TEXTURE; int len = strlen(filename); if (lenm_loadTextureArguments.m_textureFileName,filename); } else { command->m_loadTextureArguments.m_textureFileName[0] = 0; } command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle) command; } int b3GetStatusTextureUniqueId(b3SharedMemoryStatusHandle statusHandle) { int uid = -1; const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle; btAssert(status->m_type == CMD_LOAD_TEXTURE_COMPLETED); if (status->m_type == CMD_LOAD_TEXTURE_COMPLETED) { uid = status->m_loadTextureResultArguments.m_textureUniqueId; } return uid; } b3SharedMemoryCommandHandle b3InitUpdateVisualShape(b3PhysicsClientHandle physClient, int bodyUniqueId, int jointIndex, int shapeIndex, int textureUniqueId) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_UPDATE_VISUAL_SHAPE; command->m_updateVisualShapeDataArguments.m_bodyUniqueId = bodyUniqueId; command->m_updateVisualShapeDataArguments.m_jointIndex = jointIndex; command->m_updateVisualShapeDataArguments.m_shapeIndex = shapeIndex; command->m_updateVisualShapeDataArguments.m_textureUniqueId = textureUniqueId; command->m_updateFlags = 0; if (textureUniqueId>=0) { command->m_updateFlags |= CMD_UPDATE_VISUAL_SHAPE_TEXTURE; } return (b3SharedMemoryCommandHandle) command; } void b3UpdateVisualShapeRGBAColor(b3SharedMemoryCommandHandle commandHandle, double rgbaColor[4]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_UPDATE_VISUAL_SHAPE); if (command->m_type == CMD_UPDATE_VISUAL_SHAPE) { command->m_updateVisualShapeDataArguments.m_rgbaColor[0] = rgbaColor[0]; command->m_updateVisualShapeDataArguments.m_rgbaColor[1] = rgbaColor[1]; command->m_updateVisualShapeDataArguments.m_rgbaColor[2] = rgbaColor[2]; command->m_updateVisualShapeDataArguments.m_rgbaColor[3] = rgbaColor[3]; command->m_updateFlags |= CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR; } } void b3UpdateVisualShapeSpecularColor(b3SharedMemoryCommandHandle commandHandle, double specularColor[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_UPDATE_VISUAL_SHAPE); if (command->m_type == CMD_UPDATE_VISUAL_SHAPE) { command->m_updateVisualShapeDataArguments.m_specularColor[0] = specularColor[0]; command->m_updateVisualShapeDataArguments.m_specularColor[1] = specularColor[1]; command->m_updateVisualShapeDataArguments.m_specularColor[2] = specularColor[2]; command->m_updateFlags |= CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR; } } b3SharedMemoryCommandHandle b3ApplyExternalForceCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient* ) physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_APPLY_EXTERNAL_FORCE; command->m_updateFlags = 0; command->m_externalForceArguments.m_numForcesAndTorques = 0; return (b3SharedMemoryCommandHandle) command; } void b3ApplyExternalForce(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkId, const double force[3], const double position[3], int flag) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_APPLY_EXTERNAL_FORCE); int index = command->m_externalForceArguments.m_numForcesAndTorques; command->m_externalForceArguments.m_bodyUniqueIds[index] = bodyUniqueId; command->m_externalForceArguments.m_linkIds[index] = linkId; command->m_externalForceArguments.m_forceFlags[index] = EF_FORCE+flag; for (int i = 0; i < 3; ++i) { command->m_externalForceArguments.m_forcesAndTorques[index+i] = force[i]; command->m_externalForceArguments.m_positions[index+i] = position[i]; } command->m_externalForceArguments.m_numForcesAndTorques++; } void b3ApplyExternalTorque(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkId, const double torque[3], int flag) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_APPLY_EXTERNAL_FORCE); int index = command->m_externalForceArguments.m_numForcesAndTorques; command->m_externalForceArguments.m_bodyUniqueIds[index] = bodyUniqueId; command->m_externalForceArguments.m_linkIds[index] = linkId; command->m_externalForceArguments.m_forceFlags[index] = EF_TORQUE+flag; for (int i = 0; i < 3; ++i) { command->m_externalForceArguments.m_forcesAndTorques[index+i] = torque[i]; } command->m_externalForceArguments.m_numForcesAndTorques++; } ///compute the forces to achieve an acceleration, given a state q and qdot using inverse dynamics b3SharedMemoryCommandHandle b3CalculateInverseDynamicsCommandInit(b3PhysicsClientHandle physClient, int bodyIndex, const double* jointPositionsQ, const double* jointVelocitiesQdot, const double* jointAccelerations) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CALCULATE_INVERSE_DYNAMICS; command->m_updateFlags = 0; command->m_calculateInverseDynamicsArguments.m_bodyUniqueId = bodyIndex; int numJoints = cl->getNumJoints(bodyIndex); for (int i = 0; i < numJoints;i++) { command->m_calculateInverseDynamicsArguments.m_jointPositionsQ[i] = jointPositionsQ[i]; command->m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot[i] = jointVelocitiesQdot[i]; command->m_calculateInverseDynamicsArguments.m_jointAccelerations[i] = jointAccelerations[i]; } return (b3SharedMemoryCommandHandle)command; } int b3GetStatusInverseDynamicsJointForces(b3SharedMemoryStatusHandle statusHandle, int* bodyUniqueId, int* dofCount, double* jointForces) { const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle; btAssert(status->m_type == CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED); if (status->m_type != CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED) return false; if (dofCount) { *dofCount = status->m_inverseDynamicsResultArgs.m_dofCount; } if (bodyUniqueId) { *bodyUniqueId = status->m_inverseDynamicsResultArgs.m_bodyUniqueId; } if (jointForces) { for (int i = 0; i < status->m_inverseDynamicsResultArgs.m_dofCount; i++) { jointForces[i] = status->m_inverseDynamicsResultArgs.m_jointForces[i]; } } return true; } b3SharedMemoryCommandHandle b3CalculateJacobianCommandInit(b3PhysicsClientHandle physClient, int bodyIndex, int linkIndex, const double* localPosition, const double* jointPositionsQ, const double* jointVelocitiesQdot, const double* jointAccelerations) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CALCULATE_JACOBIAN; command->m_updateFlags = 0; command->m_calculateJacobianArguments.m_bodyUniqueId = bodyIndex; command->m_calculateJacobianArguments.m_linkIndex = linkIndex; command->m_calculateJacobianArguments.m_localPosition[0] = localPosition[0]; command->m_calculateJacobianArguments.m_localPosition[1] = localPosition[1]; command->m_calculateJacobianArguments.m_localPosition[2] = localPosition[2]; int numJoints = cl->getNumJoints(bodyIndex); for (int i = 0; i < numJoints;i++) { command->m_calculateJacobianArguments.m_jointPositionsQ[i] = jointPositionsQ[i]; command->m_calculateJacobianArguments.m_jointVelocitiesQdot[i] = jointVelocitiesQdot[i]; command->m_calculateJacobianArguments.m_jointAccelerations[i] = jointAccelerations[i]; } return (b3SharedMemoryCommandHandle)command; } int b3GetStatusJacobian(b3SharedMemoryStatusHandle statusHandle, double* linearJacobian, double* angularJacobian) { const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle; btAssert(status->m_type == CMD_CALCULATED_JACOBIAN_COMPLETED); if (status->m_type != CMD_CALCULATED_JACOBIAN_COMPLETED) return false; if (linearJacobian) { for (int i = 0; i < status->m_jacobianResultArgs.m_dofCount*3; i++) { linearJacobian[i] = status->m_jacobianResultArgs.m_linearJacobian[i]; } } if (angularJacobian) { for (int i = 0; i < status->m_jacobianResultArgs.m_dofCount*3; i++) { angularJacobian[i] = status->m_jacobianResultArgs.m_angularJacobian[i]; } } return true; } ///compute the joint positions to move the end effector to a desired target using inverse kinematics b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsClientHandle physClient, int bodyIndex) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CALCULATE_INVERSE_KINEMATICS; command->m_updateFlags = 0; command->m_calculateInverseKinematicsArguments.m_bodyUniqueId = bodyIndex; return (b3SharedMemoryCommandHandle)command; } void b3CalculateInverseKinematicsAddTargetPurePosition(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS); command->m_updateFlags |= IK_HAS_TARGET_POSITION; command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex; command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0]; command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1]; command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2]; } void b3CalculateInverseKinematicsAddTargetPositionWithOrientation(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3], const double targetOrientation[4]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS); command->m_updateFlags |= IK_HAS_TARGET_POSITION+IK_HAS_TARGET_ORIENTATION; command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex; command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0]; command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1]; command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2]; command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = targetOrientation[0]; command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1]; command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = targetOrientation[2]; command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = targetOrientation[3]; } void b3CalculateInverseKinematicsPosWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[3], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS); command->m_updateFlags |= IK_HAS_TARGET_POSITION+IK_HAS_NULL_SPACE_VELOCITY; command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex; command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0]; command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1]; command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2]; for (int i = 0; i < numDof; ++i) { command->m_calculateInverseKinematicsArguments.m_lowerLimit[i] = lowerLimit[i]; command->m_calculateInverseKinematicsArguments.m_upperLimit[i] = upperLimit[i]; command->m_calculateInverseKinematicsArguments.m_jointRange[i] = jointRange[i]; command->m_calculateInverseKinematicsArguments.m_restPose[i] = restPose[i]; } } void b3CalculateInverseKinematicsPosOrnWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[3], const double targetOrientation[4], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS); command->m_updateFlags |= IK_HAS_TARGET_POSITION+IK_HAS_TARGET_ORIENTATION+IK_HAS_NULL_SPACE_VELOCITY; command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex; command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0]; command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1]; command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2]; command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = targetOrientation[0]; command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1]; command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = targetOrientation[2]; command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = targetOrientation[3]; for (int i = 0; i < numDof; ++i) { command->m_calculateInverseKinematicsArguments.m_lowerLimit[i] = lowerLimit[i]; command->m_calculateInverseKinematicsArguments.m_upperLimit[i] = upperLimit[i]; command->m_calculateInverseKinematicsArguments.m_jointRange[i] = jointRange[i]; command->m_calculateInverseKinematicsArguments.m_restPose[i] = restPose[i]; } } void b3CalculateInverseKinematicsSetJointDamping(b3SharedMemoryCommandHandle commandHandle, int numDof, const double* jointDampingCoeff) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS); command->m_updateFlags |= IK_HAS_JOINT_DAMPING; for (int i = 0; i < numDof; ++i) { command->m_calculateInverseKinematicsArguments.m_jointDamping[i] = jointDampingCoeff[i]; } } int b3GetStatusInverseKinematicsJointPositions(b3SharedMemoryStatusHandle statusHandle, int* bodyUniqueId, int* dofCount, double* jointPositions) { const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle; btAssert(status->m_type == CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED); if (status->m_type != CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED) return false; if (dofCount) { *dofCount = status->m_inverseKinematicsResultArgs.m_dofCount; } if (bodyUniqueId) { *bodyUniqueId = status->m_inverseKinematicsResultArgs.m_bodyUniqueId; } if (jointPositions) { for (int i = 0; i < status->m_inverseKinematicsResultArgs.m_dofCount; i++) { jointPositions[i] = status->m_inverseKinematicsResultArgs.m_jointPositions[i]; } } return true; } b3SharedMemoryCommandHandle b3RequestVREventsCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_REQUEST_VR_EVENTS_DATA; command->m_updateFlags = VR_DEVICE_CONTROLLER; return (b3SharedMemoryCommandHandle)command; } void b3VREventsSetDeviceTypeFilter(b3SharedMemoryCommandHandle commandHandle, int deviceTypeFilter) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); if (command->m_type == CMD_REQUEST_VR_EVENTS_DATA) { command->m_updateFlags = deviceTypeFilter; } } void b3GetVREventsData(b3PhysicsClientHandle physClient, struct b3VREventsData* vrEventsData) { PhysicsClient* cl = (PhysicsClient* ) physClient; if (cl) { cl->getCachedVREvents(vrEventsData); } } b3SharedMemoryCommandHandle b3SetVRCameraStateCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_SET_VR_CAMERA_STATE; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle)command; } int b3SetVRCameraRootPosition(b3SharedMemoryCommandHandle commandHandle, double rootPos[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_SET_VR_CAMERA_STATE); command->m_updateFlags |= VR_CAMERA_ROOT_POSITION; command->m_vrCameraStateArguments.m_rootPosition[0] = rootPos[0]; command->m_vrCameraStateArguments.m_rootPosition[1] = rootPos[1]; command->m_vrCameraStateArguments.m_rootPosition[2] = rootPos[2]; return 0; } int b3SetVRCameraRootOrientation(b3SharedMemoryCommandHandle commandHandle, double rootOrn[4]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_SET_VR_CAMERA_STATE); command->m_updateFlags |= VR_CAMERA_ROOT_ORIENTATION; command->m_vrCameraStateArguments.m_rootOrientation[0] = rootOrn[0]; command->m_vrCameraStateArguments.m_rootOrientation[1] = rootOrn[1]; command->m_vrCameraStateArguments.m_rootOrientation[2] = rootOrn[2]; command->m_vrCameraStateArguments.m_rootOrientation[3] = rootOrn[3]; return 0; } int b3SetVRCameraTrackingObject(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_SET_VR_CAMERA_STATE); command->m_updateFlags |= VR_CAMERA_ROOT_TRACKING_OBJECT; command->m_vrCameraStateArguments.m_trackingObjectUniqueId = objectUniqueId; return 0; } int b3SetVRCameraTrackingObjectFlag(b3SharedMemoryCommandHandle commandHandle, int flag) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_SET_VR_CAMERA_STATE); command->m_updateFlags |= VR_CAMERA_FLAG; command->m_vrCameraStateArguments.m_trackingObjectFlag = flag; return 0; } b3SharedMemoryCommandHandle b3RequestKeyboardEventsCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_REQUEST_KEYBOARD_EVENTS_DATA; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle)command; } void b3GetKeyboardEventsData(b3PhysicsClientHandle physClient, struct b3KeyboardEventsData* keyboardEventsData) { PhysicsClient* cl = (PhysicsClient* ) physClient; if (cl) { cl->getCachedKeyboardEvents(keyboardEventsData); } } b3SharedMemoryCommandHandle b3RequestMouseEventsCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_REQUEST_MOUSE_EVENTS_DATA; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle)command; } void b3GetMouseEventsData(b3PhysicsClientHandle physClient, struct b3MouseEventsData* mouseEventsData) { PhysicsClient* cl = (PhysicsClient* ) physClient; if (cl) { cl->getCachedMouseEvents(mouseEventsData); } } b3SharedMemoryCommandHandle b3ProfileTimingCommandInit(b3PhysicsClientHandle physClient, const char* name) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); int len = strlen(name); if (len>=0 && len < (MAX_FILENAME_LENGTH+1)) { command->m_type = CMD_PROFILE_TIMING; strcpy(command->m_profile.m_name,name); command->m_profile.m_name[len]=0; } else { const char* invalid = "InvalidProfileTimingName"; int len = strlen(invalid); strcpy(command->m_profile.m_name,invalid); command->m_profile.m_name[len] = 0; } command->m_profile.m_durationInMicroSeconds = 0; return (b3SharedMemoryCommandHandle)command; } void b3SetProfileTimingDuractionInMicroSeconds(b3SharedMemoryCommandHandle commandHandle, int duration) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_PROFILE_TIMING); if (command->m_type == CMD_PROFILE_TIMING) { command->m_profile.m_durationInMicroSeconds = duration; } } b3SharedMemoryCommandHandle b3StateLoggingCommandInit(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_STATE_LOGGING; command->m_updateFlags = 0; command->m_stateLoggingArguments.m_numBodyUniqueIds = 0; command->m_stateLoggingArguments.m_deviceFilterType = VR_DEVICE_CONTROLLER; return (b3SharedMemoryCommandHandle)command; } int b3StateLoggingStart(b3SharedMemoryCommandHandle commandHandle, int loggingType, const char* fileName) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_STATE_LOGGING); if (command->m_type == CMD_STATE_LOGGING) { command->m_updateFlags |= STATE_LOGGING_START_LOG; int len = strlen(fileName); if (len < MAX_FILENAME_LENGTH) { strcpy(command->m_stateLoggingArguments.m_fileName, fileName); } else { command->m_stateLoggingArguments.m_fileName[0] = 0; } command->m_stateLoggingArguments.m_logType = loggingType; } return 0; } int b3GetStatusLoggingUniqueId(b3SharedMemoryStatusHandle statusHandle) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; b3Assert(status); b3Assert(status->m_type == CMD_STATE_LOGGING_START_COMPLETED); if (status && status->m_type == CMD_STATE_LOGGING_START_COMPLETED) { return status->m_stateLoggingResultArgs.m_loggingUniqueId; } return -1; } int b3StateLoggingAddLoggingObjectUniqueId(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_STATE_LOGGING); if (command->m_type == CMD_STATE_LOGGING) { command->m_updateFlags |= STATE_LOGGING_FILTER_OBJECT_UNIQUE_ID; if (command->m_stateLoggingArguments.m_numBodyUniqueIds < MAX_SDF_BODIES) { command->m_stateLoggingArguments.m_bodyUniqueIds[command->m_stateLoggingArguments.m_numBodyUniqueIds++] = objectUniqueId; } } return 0; } int b3StateLoggingSetLinkIndexA(b3SharedMemoryCommandHandle commandHandle, int linkIndexA) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type = CMD_STATE_LOGGING); if (command->m_type == CMD_STATE_LOGGING) { command->m_updateFlags |= STATE_LOGGING_FILTER_LINK_INDEX_A; command->m_stateLoggingArguments.m_linkIndexA = linkIndexA; } return 0; } int b3StateLoggingSetLinkIndexB(b3SharedMemoryCommandHandle commandHandle, int linkIndexB) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type = CMD_STATE_LOGGING); if (command->m_type == CMD_STATE_LOGGING) { command->m_updateFlags |= STATE_LOGGING_FILTER_LINK_INDEX_B; command->m_stateLoggingArguments.m_linkIndexB = linkIndexB; } return 0; } int b3StateLoggingSetBodyAUniqueId(b3SharedMemoryCommandHandle commandHandle, int bodyAUniqueId) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type = CMD_STATE_LOGGING); if (command->m_type == CMD_STATE_LOGGING) { command->m_updateFlags |= STATE_LOGGING_FILTER_BODY_UNIQUE_ID_A; command->m_stateLoggingArguments.m_bodyUniqueIdA = bodyAUniqueId; } return 0; } int b3StateLoggingSetBodyBUniqueId(b3SharedMemoryCommandHandle commandHandle, int bodyBUniqueId) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type = CMD_STATE_LOGGING); if (command->m_type == CMD_STATE_LOGGING) { command->m_updateFlags |= STATE_LOGGING_FILTER_BODY_UNIQUE_ID_B; command->m_stateLoggingArguments.m_bodyUniqueIdB = bodyBUniqueId; } return 0; } int b3StateLoggingSetMaxLogDof(b3SharedMemoryCommandHandle commandHandle, int maxLogDof) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_STATE_LOGGING); if (command->m_type == CMD_STATE_LOGGING) { command->m_updateFlags |= STATE_LOGGING_MAX_LOG_DOF; command->m_stateLoggingArguments.m_maxLogDof = maxLogDof; } return 0; } int b3StateLoggingSetDeviceTypeFilter(b3SharedMemoryCommandHandle commandHandle, int deviceTypeFilter) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_STATE_LOGGING); if (command->m_type == CMD_STATE_LOGGING) { command->m_updateFlags |= STATE_LOGGING_FILTER_DEVICE_TYPE; command->m_stateLoggingArguments.m_deviceFilterType = deviceTypeFilter; } return 0; } int b3StateLoggingStop(b3SharedMemoryCommandHandle commandHandle, int loggingUid) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_STATE_LOGGING); if (command->m_type == CMD_STATE_LOGGING) { command->m_updateFlags |= STATE_LOGGING_STOP_LOG; command->m_stateLoggingArguments.m_loggingUniqueId = loggingUid; } return 0; } ///configure the 3D OpenGL debug visualizer (enable/disable GUI widgets, shadows, position camera etc) b3SharedMemoryCommandHandle b3InitConfigureOpenGLVisualizer(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_CONFIGURE_OPENGL_VISUALIZER; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle)command; } void b3ConfigureOpenGLVisualizerSetVisualizationFlags(b3SharedMemoryCommandHandle commandHandle, int flag, int enabled) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CONFIGURE_OPENGL_VISUALIZER); if (command->m_type == CMD_CONFIGURE_OPENGL_VISUALIZER) { command->m_updateFlags |= COV_SET_FLAGS; command->m_configureOpenGLVisualizerArguments.m_setFlag = flag; command->m_configureOpenGLVisualizerArguments.m_setEnabled = enabled; } } void b3ConfigureOpenGLVisualizerSetViewMatrix(b3SharedMemoryCommandHandle commandHandle, float cameraDistance, float cameraPitch, float cameraYaw, const float cameraTargetPosition[3]) { struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle; b3Assert(command); b3Assert(command->m_type == CMD_CONFIGURE_OPENGL_VISUALIZER); if (command->m_type == CMD_CONFIGURE_OPENGL_VISUALIZER) { command->m_updateFlags |= COV_SET_CAMERA_VIEW_MATRIX; command->m_configureOpenGLVisualizerArguments.m_cameraDistance = cameraDistance; command->m_configureOpenGLVisualizerArguments.m_cameraPitch = cameraPitch; command->m_configureOpenGLVisualizerArguments.m_cameraYaw = cameraYaw; command->m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[0] = cameraTargetPosition[0]; command->m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[1] = cameraTargetPosition[1]; command->m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[2] = cameraTargetPosition[2]; } } b3SharedMemoryCommandHandle b3InitRequestOpenGLVisualizerCameraCommand(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); b3Assert(cl->canSubmitCommand()); struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand(); b3Assert(command); command->m_type = CMD_REQUEST_OPENGL_VISUALIZER_CAMERA; command->m_updateFlags = 0; return (b3SharedMemoryCommandHandle)command; } int b3GetStatusOpenGLVisualizerCamera(b3SharedMemoryStatusHandle statusHandle, b3OpenGLVisualizerCameraInfo* camera) { const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle; //b3Assert(status); if (status && status->m_type == CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_COMPLETED) { *camera = status->m_visualizerCameraResultArgs; return 1; } return 0; } void b3SetTimeOut(b3PhysicsClientHandle physClient, double timeOutInSeconds) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); if (cl) { cl->setTimeOut(timeOutInSeconds); } } double b3GetTimeOut(b3PhysicsClientHandle physClient) { PhysicsClient* cl = (PhysicsClient*)physClient; b3Assert(cl); if (cl) { return cl->getTimeOut(); } return -1; } void b3MultiplyTransforms(const double posA[3], const double ornA[4], const double posB[3], const double ornB[4], double outPos[3], double outOrn[4]) { b3Transform trA; b3Transform trB; trA.setOrigin(b3MakeVector3(posA[0],posA[1],posA[2])); trA.setRotation(b3Quaternion(ornA[0],ornA[1],ornA[2],ornA[3])); trB.setOrigin(b3MakeVector3(posB[0],posB[1],posB[2])); trB.setRotation(b3Quaternion(ornB[0],ornB[1],ornB[2],ornB[3])); b3Transform res = trA*trB; outPos[0] = res.getOrigin()[0]; outPos[1] = res.getOrigin()[1]; outPos[2] = res.getOrigin()[2]; b3Quaternion orn = res.getRotation(); outOrn[0] = orn[0]; outOrn[1] = orn[1]; outOrn[2] = orn[2]; outOrn[3] = orn[3]; } void b3InvertTransform(const double pos[3], const double orn[4], double outPos[3], double outOrn[4]) { b3Transform tr; tr.setOrigin(b3MakeVector3(pos[0],pos[1],pos[2])); tr.setRotation(b3Quaternion(orn[0],orn[1],orn[2],orn[3])); b3Transform trInv = tr.inverse(); outPos[0] = trInv.getOrigin()[0]; outPos[1] = trInv.getOrigin()[1]; outPos[2] = trInv.getOrigin()[2]; b3Quaternion invOrn = trInv.getRotation(); outOrn[0] = invOrn[0]; outOrn[1] = invOrn[1]; outOrn[2] = invOrn[2]; outOrn[3] = invOrn[3]; }