

Bullet 2.55 Physics User Manual

Last updated by Erwin Coumans on Monday, 09 July 2007

 2

Index

Introduction... 4
Main Features.. 4
Download and supporting physics Forum.. 4
Quickstart.. 5
Integration overview.. 6

Debugging... 6
Bullet Rigid Body Dynamics ... 7

World Transforms and btMotionState.. 7
Static, Dynamic and Kinematic Objects using btRigidBody............................... 7
Simulation frames and interpolation frames ... 8

Bullet Collision Shapes ... 9
Convex Primitives ... 9
Compound Shapes ... 9
Convex and Concave Meshes .. 10
Convex Decomposition ... 10
Height field ... 10
Scaling of Collision Shapes ... 10
Collision Margin ... 11

Bullet Constraints.. 12
btPoint2PointConstraint ... 12
btHingeConstraint.. 12
btConeTwistConstraint .. 12
btGeneric6DofConstraint ... 12

Bullet Vehicle.. 13
btRaycastVehicle ... 13

Bullet Character Controller.. 13
btCharacterController .. 13

Basic Demos ... 14
CCD Physics Demo... 14
COLLADA Physics Viewer Demo .. 14
BSP Demo... 15
Vehicle Demo.. 15
Fork Lift Demo ... 15

General Tips for Bullet users ... 16
Avoid very small and very large collision shapes... 16
Avoid large mass ratios (differences)... 16
Combine multiple static triangle meshes into one .. 16
Use the default internal fixed timestep ... 16
For ragdolls use btConeTwistConstraint .. 16
Don’t set the collision margin to zero .. 16
Use less then 100 vertices in a convex mesh .. 16
Avoid huge or degenerate triangles in a triangle mesh ... 16

Advanced Topics... 17
Per triangle friction and restitution value ... 17
Custom Constraint Solver .. 17
Custom Friction Model.. 17

 3

Collision Filtering (disabling collisions) .. 18
Collision groups and masks ... 18
Disable collisions between a pair of instances of objects 18

Collision Matrix .. 19
Registering custom collision shapes and algorithms... 19

Advanced Low Level Technical Demos .. 20
Collision Interfacing Demo.. 20
Collision Demo ... 20
User Collision Algorithm... 20
Gjk Convex Cast / Sweep Demo.. 20
Continuous Convex Collision .. 21
Raytracer Demo... 21
Concave Demo .. 21
Simplex Demo... 21

Bullet Collision Detection and Physics Architecture.. 22
Bullet Library Module Overview... 23
Bullet Collision Detection Library Internals... 24

Multi threaded version... 25
Cell SPU / SPURS optimized version .. 25
Unified multi threading.. 25
Win32 Threads .. 25
IBM Cell SDK 2.1, libspe2 SPU optimized version ... 25
Future support for pthreads.. 25

Contributions / people ... 26
Contact.. 26
Further documentation and references ... 27

Links ... 27
Books .. 27

 4

Introduction

Bullet Physics is a professional open source collision detection and physics library,
related tools, demos, applications and a community forum at http://bulletphysics.com
It is free for commercial use under the ZLib license.

Originally started as toy project by Erwin Coumans, ex-Havok employee, and since
then many professional game developers have contributed. Target audience for this
work are professional game developers as well as physics enthusiasts who want to
play with collision detection and rigidbody dynamics.

Bullet is used in several games for Playstation 2 and 3, XBox 360, Nintendo Wii and
PC, either fully or just the multi threaded collision detection parts. It is under active
development and some of the recent new developments are the addition of a universal
multi-threaded C++ version and a C# port that supports Windows and Xbox 360 XNA.

Authoring of physics content can be done using the COLLADA Physics specification.
3D modelers like Maya, Max, XSI, Blender and Ageia’s CreateDynamics tools
support COLLADA physics xml .dae files. Bullet is also integrated in the free
Blender 3D modeler, http://www.blender.org. The integration allows real-time
simulation and also baking the simulation into keyframes for rendering.
See the References for other integrations and links.

Main Features

9 Discrete and Continuous collision detection including ray casting
9 Collision shapes include concave and convex meshes and all basic primitives
9 Rigid body dynamics solver with auto deactivation
9 Generic 6 degree of freedom constraint, hinge etc, for Ragdolls
9 Vehicle simulation with tuning parameters
9 COLLADA physics import/export with tool chain
9 Compiles out-of-the-box for all platforms, including COLLADA support
9 Open source C++ code under Zlib license and free for any commercial use
9 C# port available that runs on XNA for Windows and Xbox 360
9 Cell SPU optimized version available through Sony PS3 Devnet
9 Multi-threaded version for multi core public available

Download and supporting physics Forum

Please visit http://bulletphysics.com for download, support and feedback.

 5

Quickstart

Step 1: Download
Windows developers should download the zipped sources from of Bullet from
http://bulletphysics.com.Mac OS X, Linux and other developers should download the
gzipped tar archive.

Step 2: Building
Bullet should compile out-of-the-box for all platforms, and includes all dependencies.
Visual Studio projectfiles for all versions are available in Bullet/msvc. The main
Workspace/Solution is located in Bullet/msvc/8/wksbullet.sln
CMake adds support for many other build environments and platforms, including
XCode for Mac OSX, KDevelop for Linux and Unix Makefiles. Download and
install Cmake from http://www.cmake.org. Run cmake without arguments to see the
list of build system generators for your platform. For example, run cmake . –G
Xcode to auto-generate projectfiles for Mac OSX Xcode.
Jam: Bullet includes jam-2.5 sources from http://www.perforce.com/jam/jam.html.
Install jam and run ./configure and then run jam, in the Bullet root directory.

Step 3: Testing demos
Try to run and experiment with CcdPhysicsDemo executable as a starting point.
Bullet can be used in several ways, as Full Rigid Body simulation, as Collision
Detector Library or Low Level / Snippets like the GJK Closest Point calculation. The
Dependencies can be seen in the doxygen documentation under ‘Directories’.

Step 4: Integrating Bullet physics in your application
Check out CcdPhysicsDemo how to create a btDynamicsWorld , btCollisionShape,
btMotionState and btRigidBody, Stepping the simulation and synchronizing the
transform for your graphics object. Requirements:
#include “btBulletDynamicsCommon.h” in your source file
Required include path: Bullet /src folder
Required libraries: libbulletdynamics, libbulletcollision, libbulletmath

Step 5 : Integrate only the Collision Detection Library
Bullet Collision Detection can also be used without the Dynamics/Extras. Check out
the low level demo Collision Interface Demo, in particular the class CollisionWorld.
Requirements:
#include “btBulletCollisionCommon.h” at the top of your file
Add include path: Bullet /src folder
Add libraries: libbulletcollision, libbulletmath

Step 6 : Use snippets only, like the GJK Closest Point calculation.
Bullet has been designed in a modular way keeping dependencies to a minimum. The
ConvexHullDistance demo demonstrates direct use of GjkPairDetector.

 6

Integration overview

If you want to use Bullet in your own 3D application, it is best to follow the steps in
the CcdPhysicsDemo. In a nutshell:

9 Create a btDynamicsWorld implementation like btDiscreteDynamicsWorld

This btDynamicsWorld is a high level interface that manages your physics objects and
constraints. It also implements the update of all objects each frame. A
btContinuousDynamicsWorld is under development to make use of Bullet’s
Continuous Collision Detection. This will prevent missing collisions of small and fast
moving objects, also known as tunneling. Another solution based on internal variable
timesteps called btFlexibleStepDynamicsWorld will be added too.

9 Create a btRigidBody and add it to the btDynamicsWorld

To construct a btRigidBody or btCollisionObject, you need to provide:

- Mass, positive for dynamics moving objects and 0 for static objects
- CollisionShape, like a Box, Sphere, Cone, Convex Hull or Triangle Mesh
- btMotionState use to synchronize the World transform to controls the graphics
- Material properties like friction and restitution

9 Update the simulation each frame: stepSimulation

Call the stepSimulation on the btDynamicsWorld. The btDiscreteDynamicsWorld
automatically takes into account variable timestep by performing interpolation instead
of simulation for small timesteps. It uses an internal fixed timestep of 60 Hertz.
stepSimulation will perform collision detection and physics simulation. It updates the
world transform for active objecs by calling the btMotionState’s setWorldTransform.

There is performance functionality like auto deactivation for objects which motion is
below a certain threshold.

A lot of the details are demonstrated in the Demos. If you can’t find certain
functionality, please use the FAQ or the physics Forum on the Bullet website.

Debugging

You can get additional debugging feedback by registering a derived class from
IDebugDrawer. You just need to hook up 3d line drawing with your graphics renderer.
See the CcdPhysicsDemo OpenGLDebugDrawer for an example implementation. It
can visualize collision shapes, contact points and more. This can help to find
problems in the setup. Also the Raytracer demo shows how to visualize a complex
collision shape.

 7

Bullet Rigid Body Dynamics

World Transforms and btMotionState

The main purpose of rigid body simulation is calculating the new world transform,
position and orientation, of dynamic bodies. Usually each rigidbody is connected to a
user object, like graphics object. It is a good idea to derive your own version of
btMotionState class.

Each frame, Bullet dynamics will update the world transform for active bodies, by
calling the btMotionState::setWorldTransform. Also, the initial center of mass
worldtransform is retrieved, using btMotionState::getWorldTransform, to initialize
the btRigidBody. If you want to offset the rigidbody center of mass world transform,
relative to the graphics world transform, it is best to do this only in one place. You
can use btDefaultMotionState as start implementation.

Static, Dynamic and Kinematic Objects using btRigidBody

There are 3 different types of objects in Bullet:

- Dynamic rigidbodies
o positive mass
o User should only use apply impulse, constraints or

setLinearVelocity/setAngularVelocity and let the dynamics calculate
the new world transform

o every simulation frame and interpolation frame, the dynamics world
will write the new world transform using
btMotionState::setWorldTransform

- Static rigidbodies
o cannot move but just collide
o zero mass

- Kinematic rigidbodies
o animated by the user
o only one-way interaction: dynamic objects will be pushed away but

there is no influence from dynamics objects
o every simulation frame, dynamics world will get new world transform

using btMotionState::getWorldTransform

All of them need to be added to the dynamics world. The rigid body can be assigned a
collision shape. This shape can be used to calculate the distribution of mass, also
called inertia tensor.

 8

Simulation frames and interpolation frames

By default, Bullet physics simulation runs at an internal fixed framerate of 60 Hertz
(0.01666). The game or application might have a different or even variable framerate.
To decouple the application framerate from the simulation framerate, an automatic
interpolation method is built into stepSimulation: when the application delta time, is
smaller then the internal fixed timestep, Bullet will interpolate the world transform,
and send the interpolated worldtransform to the btMotionState, without performing
physics simulation. If the application timestep is larger then 60 hertz, more then 1
simulation step can be performed during each ‘stepSimulation’ call. The user can
limit the maximum number of simulation steps by passing a maximum value as
second argument.

When rigidbodies are created, they will retrieve the initial worldtransform from the
btMotionState, using btMotionState::getWorldTransform. When the simulation is
running, using stepSimulation, the new worldtransform is updated for active
rigidbodies using the btMotionState::setWorldTransform.

Dynamic rigidbodies have a positive mass, and their motion is determined by the
simulation. Static and kinematic rigidbodies have zero mass. Static objects should
never be moved by the user.

If you plan to animate or move static objects, you should flag them as kinematic. Also
disable the sleeping/deactivation for them. This means Bullet dynamics world will get
the new worldtransform from the btMotionState every simulation frame.

body->setCollisionFlags(body->getCollisionFlags() |
btCollisionObject::CF_KINEMATIC_OBJECT);
body->setActivationState(DISABLE_DEACTIVATION);

 9

Bullet Collision Shapes

Bullet supports a large variety of different collision shapes, and it is possible to add
your own.

Convex Primitives
Most primitive shapes are centerd around the origin of their local coordinate frame:

btBoxShape : Box defined by the half extents (half length) of its sides
btSphereShape : Sphere defined by its radius
btCapsuleShape: Capsule
btCylinderShape : Cylinder around the Y axis. Also btCylinderShapeX/Z.
btConeShape : Cone around the Y axis. Also btConeShapeX/Z.
btMultiSphereShape : Convex hull of multiple spheres, that can be used to create a
Capsule (by passing 2 spheres) or other convex shapes.

Compound Shapes
Multiple convex shapes can be combined into a composite or compound shape, using
the btCompoundShape. This is a concave shape made out of convex sub parts, called
child shapes. Each child shape has its own local offset transform, relative to the
btCompoundShape.

 10

Convex and Concave Meshes
For moving objects, concave meshes can be passed into btConvexHullShape,. This
automatically collides with the convex hull of the mesh:

General triangle meshes that represent static environment can best be represented in
Bullet by using the btBvhTriangleMeshShape.

Convex Decomposition

Ideally, concave meshes should only be used for static artwork. Otherwise its convex
hull should be used by passing the mesh to btConvexHullShape. If a single convex
shape is not detailed enough, multiple convex parts can be combined into a composite
object called btCompoundShape. Convex decomposition can be used to decompose
the concave mesh into several convex parts. See the ConvexDecompositionDemo for
an automatic way of doing convex decomposition. The implementation is taken from
Ageia CreateDynamics tool, which can do the same with some fancy user interface.
CreateDynamics can export to COLLADA Physics, so Bullet can import that data.

A recent contribution called GIMPACT can handle moving concave meshes. See
Demos/MovingConcaveDemo for its usage.

Height field

Bullet provides support for the special case of a flat 2D concave terrain through the
btHeightfieldTerrainShape. See VehicleDemo for its usage.

Scaling of Collision Shapes
Some collision shapes can have local scaling applied. Use
btCollisionShape::setScaling(vector3). Non uniform scaling with different scaling
values for each axis, can be used for btBoxShape, btMultiSphereShape,
btConvexShape, btTriangleMeshShape. Uniform scaling, using x value for all axis,
can be used for btSphereShape. Note that a non-uniform scaled sphere can be created
by using a btMultiSphereShape with 1 sphere.

 11

Collision Margin
Bullet uses a small collision margin for collision shapes, to improve performance and
reliability of the collision detection. It is best not to modify the default collision
margin, and if you do use a positive value: zero margin might introduce problems. By
default this collision margin is set to 0.04, which is 4 centimeter if your units are in
meters (recommended).

Dependent on which collision shapes, the margin has different meaning. Generally the
collision margin will expand the object. This will create a small gap. To compensate
for this, some shapes will subtract the margin from the actual size. For example, the
btBoxShape subtracts the collision margin from the half extents. For a btSphereShape,
the entire radius is collision margin so no gap will occur. Don’t override the collision
margin for spheres. For convex hulls, cylinders and cones, the margin is added to the
extents of the object, so a gap will occur, unless you adjust the graphics mesh or
collision size. For convex hull objects, there is a method to remove the gap introduced
by the margin, by shrinking the object. See the BspDemo for this advanced use.
The yellow in the following picture described the working of collision margin for
internal contact generation.

 12

Bullet Constraints

There are several constraints implemented in Bullet. See Demos/ConstraintDemo for
an example of each of them. All constraints including the btRaycastVehicle are
derived from btTypedConstraint. Constraint act between two rigidbodies, where at
least one of them needs to be dynamic.

btPoint2PointConstraint
Point to point constraint, also known as ball socket joint limits the translation so that
the local pivot points of 2 rigidbodies match in worldspace. A chain of rigidbodies
can be connected using this constraint.

btHingeConstraint
Hinge constraint, or revolute joint restricts two additional angular degrees of freedom,
so the body can only rotate around one axis, the hinge axis. This can be useful to
represent doors or wheels rotating around one axis. The user can specify limits and
motor for the hinge.

btConeTwistConstraint
To create ragdolls, the conve twist constraint is very useful for limbs like the upper
arm. It is a special point to point constraint that adds cone and twist axis limits.

btGeneric6DofConstraint

The generic D6 constraint. This generic constraint can emulate a variety of standard
constraints, by configuring each of the 6 degrees of freedom (dof). The first 3 dof axis
are linear axis, which represent translation of rigidbodies, and the latter 3 dof axis
represent the angular motion. Each axis can be either locked, free or limited. On
construction of a new btGenericD6Constraint, all axis are locked. Afterwards the axis
can be reconfigured. Note that several combinations that include free and/or limited
angular degrees of freedom are undefined.

Following is convention:

btVector3 lowerSliderLimit = btVector3(-10,0,0);
btVector3 hiSliderLimit = btVector3(10,0,0);

 btGeneric6DofConstraint* slider = new
btGeneric6DofConstraint(*d6body0,*fixedBody1,frameInA,frameInB);
 slider->setLinearLowerLimit(lowerSliderLimit);
 slider->setLinearUpperLimit(hiSliderLimit);

For each axis:

- Lowerlimit == Upperlimit -> axis is locked.
- Lowerlimit > Upperlimit -> axis is free
- Lowerlimit < Upperlimit -> axis it limited in that range

 13

Bullet Vehicle

btRaycastVehicle

For most vehicle simulations, it is recommended to use the simplified Bullet vehicle
model as provided in btRaycastVehicle. Instead of simulation each wheel and chassis
as separate rigid bodies, connected by constraints, it uses a simplified model. This
simplified model has many benefits, and is widely used in commercial driving games.

The entire vehicle is represented as a single rigidbody, the chassis. The collision
detection of the wheels is approximated by ray casts, and the tire friction is a basic
anisotropic friction model.

See Demos/VehicleDemo for more details, or check the Bullet forums.

Changing the up axis of a vehicle., see #define FORCE_ZAXIS_UP in VehiceDemo.

Bullet Character Controller

A basic player or NPC character can be constructed using a capsule shape, sphere or
other shape. To avoid rotation, you can set the ‘angular factor’ to zero, which disables
the angular rotation effect during collisions and other constraints. See
btRigidBody::setAngularFactor. Other options (that are less recommended)
include setting the inverse inertia tensor to zero for the up axis, or using a angular-
only hinge constraint.

btCharacterController

TODO: To get maximum control when moving a player character or NPC through the
world btCharacterController will be provided. btCharacterController is a class derived
from btRigidBody with special properties that make it easier to create a character that
can climb stairs, slide smoothly along walls etc.

 14

Basic Demos

Bullet includes several demos. They are tested on several platforms and use OpenGL
graphics and glut. Some shared functionality like mouse picking and text rendering is
provided in the Demos/OpenGL support folder. This is implemented in the
DemoApplication class. Each demo derives a class from DemoApplication and
implements its own initialization of the physics in the ‘initPhysics’ method.

CCD Physics Demo
This is the main demo that shows how to setup a physics simulation, add some
objects, and step the simulation. It shows stable stacking, and allows mouse
picking and shooting boxes to collapse the wall. The shooting speed of the box
can be changed, and for high velocities, the CCD feature can be enabled to
avoid missing collisions. Try out advanced features using the #defines at the
top of CcdPhysicsDemo.cpp

COLLADA Physics Viewer Demo
Imports and exports COLLADA Physics files. It uses the included libxml and
COLLADA-DOM library.
The COLLADA-DOM imports a .dae xml file that is generated by tools and
plugins for popular 3D modelers. ColladaMaya with Nima from
FeelingSoftware, Blender, Ageia’s free CreateDynamics tool and other
software can export/import this standard physics file format. The
ColladaConverter class can be used as example for other COLLADA physics
integrations.

 15

BSP Demo
Import a Quake .bsp files and convert the brushes into convex objects. This
performs better then using triangles.

Vehicle Demo
This demo shows the use of the build-in vehicle. The wheels are approximated
by ray casts. This approximation works very well for fast moving vehicles. For
slow vehicles where the interaction between wheels and environment needs to
be more precise the Forklift Demo is more recommended. The landscape is
either triangle mesh or a heightfield.

Fork Lift Demo
TODO: A demo that shows how to use constraints like hinge and generic D6
constraint to build a fork lift vehicle. Wheels are approximated by cylinders.

 16

General Tips for Bullet users

Avoid very small and very large collision shapes
The minimum object size for moving objects is about 0.2 units. When using default
gravity of 9.8, those units are in meters so don’t create objects smaller then 20
centimeter. It is recommended to keep the maximum size of moving objects smaller
then about 5 units/meters.

Avoid large mass ratios (differences)
Simulation becomes unstable when a heavy object is resting on a very light object. It
is best to keep the mass around 1. This means accurate interaction between a tank and
a very light object is not realistic.

Combine multiple static triangle meshes into one
Many small btBvhTriangleMeshShape pollute the broadphase. Better combine them.

Use the default internal fixed timestep
Bullet works best with a fixed internal timestep of at least 60 hertz (1/60 second).

For safety and stability, Bullet will automatically subdivide the variable timestep into
fixed internal simulation substeps, up to a maximum number of substeps specified as
second argument to stepSimulation. When the timestep is smaller then the internal
substep, Bullet will interpolate the motion.

This safety mechanism can be disabled by passing 0 as maximum number of substeps
(second argument to stepSimulation): the internal timestep and substeps are disabled,
and the actual timestep is simulated. It is not recommended to disable this safety
mechanism.

For ragdolls use btConeTwistConstraint
It is better to build a ragdoll out of btHingeConstraint and/or btConeTwistLimit for
knees, elbows and arms. Avoid the btGenericD6Constraint, it won’t work well.

Don’t set the collision margin to zero
Collision detection system needs some margin for performance and stability. If the
gap is noticeable, please compensate the graphics representation.

Use less then 100 vertices in a convex mesh
It is best to keep the number of vertices in a btConvexHullShape limited. It is better
for performance, and too many vertices might cause instability.

Avoid huge or degenerate triangles in a triangle mesh
Keep the size of triangles reasonable, say below 10 units/meters. Also degenerate
triangles with large size ratios between each sides or close to zero area can better be
avoided.

 17

Advanced Topics

Per triangle friction and restitution value

By default, there is only one friction value for one rigidbody. You can achieve per
shape or per triangle friction for more detail. See the Demos/ConcaveDemo how to
set the friction per triangle. Basically, add CF_CUSTOM_MATERIAL_CALLBACK
to the collision flags or the rigidbody, and register a global material callback function.
To identify the triangle in the mesh, both triangleID and partId of the mesh is passed
to the material callback. This matches the triangleId/partId of the striding mesh
interface.

Custom Constraint Solver
Bullet uses its btSequentialImpulseConstraintSolver by default. You can use a
different constraint solver, by passing it into the constructor of your
btDynamicsWorld. For comparison you can use the Extras/quickstep solver from
ODE.

Custom Friction Model
If you want to have a different friction model for certain types of objects, you can
register a friction function in the constraint solver for certain body types.

See #define USER_DEFINED_FRICTION_MODEL in Demos/CcdPhysicsDemo.cpp.

 18

Collision Filtering (disabling collisions)

Collision groups and masks

To disable collision detection between certain shapes, collision groups and collision
filter masks are used. By default, when a rigidbody is added to the btDynamicsWorld,
the collision group and mask is chosen to prevent collisions between static objects at a
very early stage. You can specify the group and mask in
‘btDynamicsWorld::addRigidBody’ and
‘btCollisionWorld::addCollisionObject’.

 if (body->getCollisionShape())
 {
 bool isDynamic = !(body->isStaticObject() || body-
>isKinematicObject());
 short collisionFilterGroup = isDynamic?
btBroadphaseProxy::DefaultFilter : btBroadphaseProxy::StaticFilter;
 short collisionFilterMask = isDynamic?
 btBroadphaseProxy::AllFilter :
 btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter;

 addCollisionObject(body,collisionFilterGroup,collisionFilterMas
k);
 }

The broadphase checks those filter flags to determine wether collision detection needs
to be performed using the following code:

 inline bool needsBroadphaseCollision(btBroadphaseProxy*
proxy0,btBroadphaseProxy* proxy1) const
 {
 bool collides = (proxy0->m_collisionFilterGroup & proxy1-
>m_collisionFilterMask) != 0;
 collides = collides && (proxy1->m_collisionFilterGroup &
proxy0->m_collisionFilterMask);

 return collides;
 }

You can override this default filtering behaviour after the rigidbody has been added to
the dynamics world by assigning new values to collisionFilterGroup and
collisionFilterMask.

Disable collisions between a pair of instances of objects
When two bodies share a constraint, you can optionally disable the collision detection
between those instances. Pass true as optional second argument to
btDiscreteDynamicsWorld::addConstraint (this bool
disableCollisionsBetweenLinkedBodies defaults to false).

 19

Collision Matrix
For each pair of shape types, Bullet will dispatch a certain collision algorithm, by
using the dispatcher. By default, the entire matrix is filled with the following
algorithms. Note that Convex represents convex polyhedron, cylinder, cone and
capsule and other GJK compatible primitives. GJK stands for Gilbert Johnson Keethi,
the people behind this convex distance calculation algorithm. EPA stands for
Expanding Polythope Algorithm by Gino van den Bergen. Bullet has its own free
implementation of GJK and EPA.

Bullet Collision Matrix (*= optional)

Collision
Shape: Sphere Box Convex Compound Trianglemesh

Sphere GjkEpa
/*SphereSphere

GjkEpa /
*SphereBox GjkEpa Compound ConcaveConvex

Box GjkEpa
/*SphereBox

GjkEpa /
*BoxBox GjkEpa /*SAT Compound ConcaveConvex

Convex GjkEpa GjkEpa / *SAT GjkEpa /*SAT Compound ConcaveConvex

Compound Compound Compound Compound Compound Compound

Trianglemesh ConcaveConvex ConcaveConvex ConcaveConvex Compound *GIMPACT

Registering custom collision shapes and algorithms

The user can register a custom collision detection algorithm and override any entry in
this Collision Matrix by using the btDispatcher::registerCollisionAlgorithm. See
UserCollisionAlgorithm for an example, that registers SphereSphere collision
algorithm.

 20

Advanced Low Level Technical Demos

Collision Interfacing Demo
This demo shows how to use Bullet collision detection without the dynamics.
It uses the CollisionWorld class, and fills this will CollisionObjects.
performDiscreteCollisionDetection method is called and the demo shows how
to gather the contact points.

Collision Demo
This demo is more low level then previous Collision Interfacing Demo. It
directly uses the GJKPairDetector to query the closest points between two
objects.

User Collision Algorithm
Shows how you can register your own collision detection algorithm that
handles the collision detection for a certain pair of collision types. A simple
sphere-sphere case overides the default GJK detection.

Gjk Convex Cast / Sweep Demo
This demo show how to performs a linear sweep between to collision objects
and returns the time of impact. This can be useful to avoid penetrations in
camera and character control.

 21

Continuous Convex Collision
Shows time of impact query using continuous collision detection, between two
rotating and translating objects. It uses Bullet’s implementation of
Conservative Advancement.

Raytracer Demo
This shows the use of CCD ray casting on collision shapes. It implements a
ray tracer that can accurately visualize the implicit representation of collision
shapes. This includes the collision margin, convex hulls of implicit objects,
minkowski sums and other shapes that are hard to visualize otherwise.

Concave Demo
This advanced demo shows how to implement user defined per-triangle
restitution and friction in a static triangle mesh. A callback can be registered
and triangle identifiers can be used to modify the friction in each reported
contact point.

Simplex Demo
This is a very low level demo testing the inner workings of the GJK sub
distance algorithm. This calculates the distance between a simplex and the
origin, which is drawn with a red line. A simplex contains 1 up to 4 points, the
demo shows the 4 point case, a tegrahedron. The Voronoi simplex solver is
used, as described by Christer Ericson in his collision detection book.

 22

Bullet Collision Detection and Physics Architecture

btCollisionObject
Contains the world transform and a collision

shape

btDiscreteDynamicsWorld

This is the main C++ API for Bullet’s rigidbody simulation ,
it allows to step the simulation , add and remove

constraints and rigidbodies

btCollisionWorld

Main C++ interface to the collision detection . This can be used
independent from the dynamics. It can perform discrete and
continuous collision detection queries and raycasting on all

collision shapes

btCollisionDispatcher
Takes the overlapping

pairs, finds and allocates
collision algorithm and

persistent contact manifolds

btCollisionAlgorithm
(Arbiter)

btConstraintSolver
btSequentialImpulseSolver or

quickstep.

User can register callbacks to
override the friction or contact

response

btRigidBody
This is a single Rigid Body , contains collision object ,
collision shape , world transform, and mass properties

btCollisionShape

Box, Sphere, Capsule, Cylinder,
Cone, Convex Hull, Compound/
Composit and static concave
triangle mesh, or user defined

btOverlappingPair

btPersistentManifold
Managed contact points
with automatic contact

reduction

btCollisionAlgorithm
CreateFunc

OverlappingPairCache
Contains all overlapping

pairs of objects
First quick filtering of
unwanted collisions

happens here

btSimulationIslandManager
Manages object activation/
deactivation and organizing

islands of dependent objects

btBroadphase

Quickly find overlapping pairs of
objects, based on their AABB.

Efficient 3D Sweep and Prune or a
basic brute force version will add and

remove OverlappingPairs to the
OverlappingPairCache

btTypedConstraint
Available constraints are point to

point, hinge and generic D6
(which is programmable)

Bullet 2.x architecture
Friday, October 06, 2006

 23

Bullet Library Module Overview

Bullet provides Collision Detection and Rigid Body dynamics. The C++ software is
divided into several sub modules with clean dependencies. The division of those
modules is reflected in Bullet’s directory structure, and further subdirectories are
provided per module. This means that the Collision Detection module can be used
without using the BulletDynamics module.

 24

Bullet Collision Detection Library Internals

The main queries provided by the Collision Detection:

9 Closest Distance and closest points
9 Penetration depth calculation
9 Ray cast
9 Sweep API for casting shapes to find Time of Impact (TOI) along a linear path
9 Time of Impact for Continuous Collision Detection including rotations

Supported Collision Shapes include Box, Sphere, Cylinder, Capsule, Minkowski Sum,
Convex Hull, (Concave) Triangle Mesh and Compound Shapes and more.

Additional functionality are related to performance and to provide more detail and
information useful for the usage in rigid body dynamics and for AI queries in games.
The collision pipeline includes 3 stages: Broadphase, Midphase and Narrowphase.

9 Broadphase

Broadphase provides all overlapping pairs based on axis aligned bounding box
(AABB). It includes an efficient culling of all potential pairs using the incremental
sweep and prune algorithm.

9 Midphase

The midphase performs additional culling for complex collision shapes like
compound shapes and static concave triangle meshes. Bullet uses an optimized
Bounding Volume Hierarchy, based on a AABB tree and stackless tree traversal. This
traversal provides primitives that need to be tested by the Narrowphase.

9 Narrowphase

The Narrowphase perform the actual distance, penetration or time of impact query.
Contact points are collected and maintained over several frames in a persistent way.
This means that additional information useful for rigid body simulation can be stored
in each contact point. Also this means that algorithms that only provide one contact
point at a time can still be used, by gathering additional contact points and performing
contact point reduction.

 25

Multi threaded version

Cell SPU / SPURS optimized version

Bullet collision detection and other parts have been optimized for Cell SPU. This
means collision code has been refactored to run on multiple parallel SPU processors.
The collision detection code and data have been refactored to make it suitable for
256kb local store SPU memory. The user can activate the parallel optimizations by
using a special collision dispatcher (SpuGatheringCollisionDispatcher)
that dispatches the work to SPU. The shared public implementation is located in
Bullet/Extras/BulletMultiThreaded.

Please contact Sony developer support on PS3 Devnet for a Playstation 3 optimized
version of Bullet.

Unified multi threading

Efforts have been made to make it possible to re-use the SPU parallel version in other
multi threading environments, including multi core processors.

This allows more effective debugging of SPU code under Windows, as well as
utilizing multi core processors. For non-SPU multi threading, the implementation
performs fake DMA transfers using a memcpy, and each thread gets its own 256kb
‘local store’ working memory allocated.

Win32 Threads
Basic Win32 Threads support has been implemented. Some demos show this
preliminary work in action. See #define USE_PARALLEL_DISPATCHER in
Demos/BasicDemo, ConcaveDemo and ConvexDecompositionDemo.

IBM Cell SDK 2.1, libspe2 SPU optimized version

IBM also provides a Cell SDK with access to SPU through libspe2 for Cell Blade and
PS3 Linux platforms. Libspe2 thread support is currently under development. By
providing libspe2 thread support, Bullet can run certain parts on SPU using the same
SpuGatheringCollisionDispatcher . This will all be available under the
ZLib license in Bullet/Extras/BulletMultiThreaded.

Future support for pthreads
If there is interest, pthreads support can be added to support multi threading on
various other platforms.

 26

Contributions / people

Thanks everyone on the Bullet forum for feedback.

Some people that contributed source code to Bullet in random order:

Erwin Coumans, SCEA: main author, project lead
Gino van den Bergen, Dtecta: LinearMath classes, various collision detection ideas
Christer Ericson, SCEA: voronoi simplex solver
Simon Hobbs, SCEE: 3d axis sweep and prune: and Extras/SATCollision
Dirk Gregorius, Factor 5 : discussion and assistance with constraints
Erin Catto, Blizzard: accumulated impulse in sequential impulse
Nathanael Presson, NCSoft : EPA penetration depth calculation
Francisco Leon : GIMPACT Concave Concave collision
Eric Sunshine: jam + msvcgen buildsystem
Steve Baker: GPU physics and general implementation improvements
Jay Lee, TrionWorld: Double precision support
KleMiX, aka Vsevolod Klementjev, managed version, C# port to XNA
Marten Svanfeldt, Starbreeze: several improvements and optimizations
Marcus Hennix, Starbreeze: btConeTwistConstaint etc.

Several people contributed anonymous to Bullet, thanks for that.
(please get in touch if your name should be in this list)

Contact

Use either public message or private message (PM) on the Bullet forum at
http://bulletphysics.com

Or email to bullet <at> erwincoumans.com

 27

Further documentation and references

Bullet Physics website provides most information:
Visit http://bulletphysics.com which points to http://www.continuousphysics.com

On this website there is online doxygen documentation, a wiki with frequently asked
questions and tips, and most important a discussion forum.

A paper describing the Bullet’s Continuous Collision Detection method is available
online at http://continuousphysics.com/BulletContinuousCollisionDetection.pdf

For physics tools and COLLADA physics visit http://www.khronos.org/collada
You can find the latest plugin versions and other information at the COLLADA forum
at https://collada.org/public_forum/

Links

COLLADA-DOM included in Bullet: http://colladamaya.sourceforge.net

ColladaMaya plugin http://www.feelingsoftware.com

Blender 3D modeler includes Bullet and COLLADA physics: http://www.blender.org

Ageia CreateDynamics tool http://www.amillionpixels.us/CreateDynamics.zip

This great tool can perform automatic convex decomposition and create ragdolls from
graphics skeletons. It is also available from Ageia support forums at
http://devsupport.ageia.com

Books

Realtime Collision Detection, Christer Ericson
http://www.realtimecollisiondetection.net/
Bullet uses the discussed voronoi simplex solver for GJK

Collision Detection in Interactive 3D Environments, Gino van den Bergen
http://www.dtecta.com also website for Solid collision detection library
Discusses GJK and other algorithms, very useful to understand Bullet

Physics Based Animation, Kenny Erleben
http://www.diku.dk/~kenny/
Very useful to understand Bullet Dynamics and constraints

