import os, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) os.sys.path.insert(0,parentdir) import math import gym from gym import spaces from gym.utils import seeding import numpy as np import time import pybullet from . import bullet_client from . import racecar import random import pybullet_data class RacecarZEDGymEnv(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second' : 50 } def __init__(self, urdfRoot=pybullet_data.getDataPath(), actionRepeat=10, isEnableSelfCollision=True, isDiscrete=False, renders=True): print("init") self._timeStep = 0.01 self._urdfRoot = urdfRoot self._actionRepeat = actionRepeat self._isEnableSelfCollision = isEnableSelfCollision self._ballUniqueId = -1 self._envStepCounter = 0 self._renders = renders self._width = 100 self._height = 10 self._isDiscrete = isDiscrete if self._renders: self._p = bullet_client.BulletClient( connection_mode=pybullet.GUI) else: self._p = bullet_client.BulletClient() self._seed() self.reset() observationDim = len(self.getExtendedObservation()) #print("observationDim") #print(observationDim) observation_high = np.array([np.finfo(np.float32).max] * observationDim) if (isDiscrete): self.action_space = spaces.Discrete(9) else: action_dim = 2 self._action_bound = 1 action_high = np.array([self._action_bound] * action_dim) self.action_space = spaces.Box(-action_high, action_high) self.observation_space = spaces.Box(low=0, high=255, shape=(self._height, self._width, 4)) self.viewer = None def _reset(self): self._p.resetSimulation() #p.setPhysicsEngineParameter(numSolverIterations=300) self._p.setTimeStep(self._timeStep) #self._p.loadURDF(os.path.join(os.path.dirname(__file__),"../data","plane.urdf")) stadiumobjects = self._p.loadSDF(os.path.join(self._urdfRoot,"stadium.sdf")) #move the stadium objects slightly above 0 for i in stadiumobjects: pos,orn = self._p.getBasePositionAndOrientation(i) newpos = [pos[0],pos[1],pos[2]+0.1] self._p.resetBasePositionAndOrientation(i,newpos,orn) dist = 5 +2.*random.random() ang = 2.*3.1415925438*random.random() ballx = dist * math.sin(ang) bally = dist * math.cos(ang) ballz = 1 self._ballUniqueId = self._p.loadURDF(os.path.join(self._urdfRoot,"sphere2red.urdf"),[ballx,bally,ballz]) self._p.setGravity(0,0,-10) self._racecar = racecar.Racecar(self._p,urdfRootPath=self._urdfRoot, timeStep=self._timeStep) self._envStepCounter = 0 for i in range(100): self._p.stepSimulation() self._observation = self.getExtendedObservation() return np.array(self._observation) def __del__(self): self._p = 0 def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def getExtendedObservation(self): carpos,carorn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId) carmat = self._p.getMatrixFromQuaternion(carorn) ballpos,ballorn = self._p.getBasePositionAndOrientation(self._ballUniqueId) invCarPos,invCarOrn = self._p.invertTransform(carpos,carorn) ballPosInCar,ballOrnInCar = self._p.multiplyTransforms(invCarPos,invCarOrn,ballpos,ballorn) dist0 = 0.3 dist1 = 1. eyePos = [carpos[0]+dist0*carmat[0],carpos[1]+dist0*carmat[3],carpos[2]+dist0*carmat[6]+0.3] targetPos = [carpos[0]+dist1*carmat[0],carpos[1]+dist1*carmat[3],carpos[2]+dist1*carmat[6]+0.3] up = [carmat[2],carmat[5],carmat[8]] viewMat = self._p.computeViewMatrix(eyePos,targetPos,up) #viewMat = self._p.computeViewMatrixFromYawPitchRoll(carpos,1,0,0,0,2) #print("projectionMatrix:") #print(self._p.getDebugVisualizerCamera()[3]) projMatrix = [0.7499999403953552, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0] img_arr = self._p.getCameraImage(width=self._width,height=self._height,viewMatrix=viewMat,projectionMatrix=projMatrix) rgb=img_arr[2] np_img_arr = np.reshape(rgb, (self._height, self._width, 4)) self._observation = np_img_arr return self._observation def _step(self, action): if (self._renders): basePos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId) #self._p.resetDebugVisualizerCamera(1, 30, -40, basePos) if (self._isDiscrete): fwd = [-1,-1,-1,0,0,0,1,1,1] steerings = [-0.6,0,0.6,-0.6,0,0.6,-0.6,0,0.6] forward = fwd[action] steer = steerings[action] realaction = [forward,steer] else: realaction = action self._racecar.applyAction(realaction) for i in range(self._actionRepeat): self._p.stepSimulation() if self._renders: time.sleep(self._timeStep) self._observation = self.getExtendedObservation() if self._termination(): break self._envStepCounter += 1 reward = self._reward() done = self._termination() #print("len=%r" % len(self._observation)) return np.array(self._observation), reward, done, {} def _render(self, mode='human', close=False): return def _termination(self): return self._envStepCounter>1000 def _reward(self): closestPoints = self._p.getClosestPoints(self._racecar.racecarUniqueId,self._ballUniqueId,10000) numPt = len(closestPoints) reward=-1000 #print(numPt) if (numPt>0): #print("reward:") reward = -closestPoints[0][8] #print(reward) return reward