#include "MultiDofDemo.h" #include "../OpenGLWindow/SimpleOpenGL3App.h" #include "btBulletDynamicsCommon.h" #include "BulletDynamics/Featherstone/btMultiBody.h" #include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h" #include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h" #include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h" #include "BulletDynamics/Featherstone/btMultiBodyLink.h" #include "BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h" #include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h" #include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h" #include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h" #include "../OpenGLWindow/GLInstancingRenderer.h" #include "BulletCollision/CollisionShapes/btShapeHull.h" #include "../CommonInterfaces/CommonMultiBodyBase.h" class MultiDofDemo : public CommonMultiBodyBase { public: MultiDofDemo(GUIHelperInterface* helper); virtual ~MultiDofDemo(); virtual void initPhysics(); virtual void stepSimulation(float deltaTime); virtual void resetCamera() { float dist = 1; float pitch = 50; float yaw = 35; float targetPos[3]={-3,2.8,-2.5}; m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]); } btMultiBody* createFeatherstoneMultiBody_testMultiDof(class btMultiBodyDynamicsWorld* world, int numLinks, const btVector3& basePosition, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents, bool spherical = false, bool floating = false); void addColliders_testMultiDof(btMultiBody *pMultiBody, btMultiBodyDynamicsWorld *pWorld, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents); void addBoxes_testMultiDof(); }; static bool g_floatingBase = false; static bool g_firstInit = true; static float scaling = 0.4f; static float friction = 1.; #define ARRAY_SIZE_X 5 #define ARRAY_SIZE_Y 5 #define ARRAY_SIZE_Z 5 //maximum number of objects (and allow user to shoot additional boxes) #define MAX_PROXIES (ARRAY_SIZE_X*ARRAY_SIZE_Y*ARRAY_SIZE_Z + 1024) #define START_POS_X -5 //#define START_POS_Y 12 #define START_POS_Y 2 #define START_POS_Z -3 MultiDofDemo::MultiDofDemo(GUIHelperInterface* helper) :CommonMultiBodyBase(helper) { m_guiHelper->setUpAxis(1); } MultiDofDemo::~MultiDofDemo() { } void MultiDofDemo::stepSimulation(float deltaTime) { //use a smaller internal timestep, there are stability issues float internalTimeStep = 1./240.f; m_dynamicsWorld->stepSimulation(deltaTime,10,internalTimeStep); } void MultiDofDemo::initPhysics() { m_guiHelper->setUpAxis(1); if(g_firstInit) { m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraDistance(btScalar(10.*scaling)); m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraPitch(50); g_firstInit = false; } ///collision configuration contains default setup for memory, collision setup m_collisionConfiguration = new btDefaultCollisionConfiguration(); ///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded) m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration); m_broadphase = new btDbvtBroadphase(); //Use the btMultiBodyConstraintSolver for Featherstone btMultiBody support btMultiBodyConstraintSolver* sol = new btMultiBodyConstraintSolver; m_solver = sol; //use btMultiBodyDynamicsWorld for Featherstone btMultiBody support btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher,m_broadphase,sol,m_collisionConfiguration); m_dynamicsWorld = world; // m_dynamicsWorld->setDebugDrawer(&gDebugDraw); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->setGravity(btVector3(0,-10,0)); ///create a few basic rigid bodies btVector3 groundHalfExtents(50,50,50); btCollisionShape* groundShape = new btBoxShape(groundHalfExtents); //groundShape->initializePolyhedralFeatures(); // btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50); m_collisionShapes.push_back(groundShape); btTransform groundTransform; groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0,-50,00)); ///////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////// bool damping = true; bool gyro = true; int numLinks = 5; bool spherical = true; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals bool multibodyOnly = false; bool canSleep = true; bool selfCollide = false; bool multibodyConstraint = true; btVector3 linkHalfExtents(0.05, 0.37, 0.1); btVector3 baseHalfExtents(0.05, 0.37, 0.1); btMultiBody* mbC = createFeatherstoneMultiBody_testMultiDof(world, numLinks, btVector3(-0.4f, 3.f, 0.f), linkHalfExtents, baseHalfExtents, spherical, g_floatingBase); //mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm g_floatingBase = ! g_floatingBase; mbC->setCanSleep(canSleep); mbC->setHasSelfCollision(selfCollide); mbC->setUseGyroTerm(gyro); // if(!damping) { mbC->setLinearDamping(0.f); mbC->setAngularDamping(0.f); }else { mbC->setLinearDamping(0.1f); mbC->setAngularDamping(0.9f); } // m_dynamicsWorld->setGravity(btVector3(0, -9.81 ,0)); ////////////////////////////////////////////// if(numLinks > 0) { btScalar q0 = 45.f * SIMD_PI/ 180.f; if(!spherical) { mbC->setJointPosMultiDof(0, &q0); } else { btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0); quat0.normalize(); mbC->setJointPosMultiDof(0, quat0); } } /// addColliders_testMultiDof(mbC, world, baseHalfExtents, linkHalfExtents); ///////////////////////////////////////////////////////////////// btScalar groundHeight = -51.55; if (!multibodyOnly) { btScalar mass(0.); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) groundShape->calculateLocalInertia(mass,localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0,groundHeight,0)); btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); //add the body to the dynamics world m_dynamicsWorld->addRigidBody(body,1,1+2);//,1,1+2); } ///////////////////////////////////////////////////////////////// if(!multibodyOnly) { btVector3 halfExtents(.5,.5,.5); btBoxShape* colShape = new btBoxShape(halfExtents); //btCollisionShape* colShape = new btSphereShape(btScalar(1.)); m_collisionShapes.push_back(colShape); /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.f); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) colShape->calculateLocalInertia(mass,localInertia); startTransform.setOrigin(btVector3( btScalar(0.0), -0.95, btScalar(0.0))); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); m_dynamicsWorld->addRigidBody(body);//,1,1+2); if (multibodyConstraint) { btVector3 pointInA = -linkHalfExtents; btVector3 pointInB = halfExtents; btMatrix3x3 frameInA; btMatrix3x3 frameInB; frameInA.setIdentity(); frameInB.setIdentity(); btMultiBodyFixedConstraint* p2p = new btMultiBodyFixedConstraint(mbC,numLinks-1,body,pointInA,pointInB,frameInA,frameInB); //btMultiBodyFixedConstraint* p2p = new btMultiBodyFixedConstraint(mbC,numLinks-1,mbC,numLinks-4,pointInA,pointInA,frameInA,frameInB); p2p->setMaxAppliedImpulse(2.0); m_dynamicsWorld->addMultiBodyConstraint(p2p); } } m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); ///////////////////////////////////////////////////////////////// } btMultiBody* MultiDofDemo::createFeatherstoneMultiBody_testMultiDof(btMultiBodyDynamicsWorld *pWorld, int numLinks, const btVector3 &basePosition, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents, bool spherical, bool floating) { //init the base btVector3 baseInertiaDiag(0.f, 0.f, 0.f); float baseMass = 1.f; if(baseMass) { btCollisionShape *pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag); delete pTempBox; } bool canSleep = false; btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep); btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f); pMultiBody->setBasePos(basePosition); pMultiBody->setWorldToBaseRot(baseOriQuat); btVector3 vel(0, 0, 0); // pMultiBody->setBaseVel(vel); //init the links btVector3 hingeJointAxis(1, 0, 0); float linkMass = 1.f; btVector3 linkInertiaDiag(0.f, 0.f, 0.f); btCollisionShape *pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag); delete pTempBox; //y-axis assumed up btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset ////// btScalar q0 = 0.f * SIMD_PI/ 180.f; btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0); quat0.normalize(); ///// for(int i = 0; i < numLinks; ++i) { if(!spherical) pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false); else //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false); pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false); } pMultiBody->finalizeMultiDof(); /// pWorld->addMultiBody(pMultiBody); /// return pMultiBody; } void MultiDofDemo::addColliders_testMultiDof(btMultiBody *pMultiBody, btMultiBodyDynamicsWorld *pWorld, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents) { btAlignedObjectArray world_to_local; world_to_local.resize(pMultiBody->getNumLinks() + 1); btAlignedObjectArray local_origin; local_origin.resize(pMultiBody->getNumLinks() + 1); world_to_local[0] = pMultiBody->getWorldToBaseRot(); local_origin[0] = pMultiBody->getBasePos(); { // float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1}; btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()}; if (1) { btCollisionShape* box = new btBoxShape(baseHalfExtents); btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1); col->setCollisionShape(box); btTransform tr; tr.setIdentity(); tr.setOrigin(local_origin[0]); tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3])); col->setWorldTransform(tr); pWorld->addCollisionObject(col, 2,1+2); col->setFriction(friction); pMultiBody->setBaseCollider(col); } } for (int i=0; i < pMultiBody->getNumLinks(); ++i) { const int parent = pMultiBody->getParent(i); world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1]; local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i))); } for (int i=0; i < pMultiBody->getNumLinks(); ++i) { btVector3 posr = local_origin[i+1]; // float pos[4]={posr.x(),posr.y(),posr.z(),1}; btScalar quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()}; btCollisionShape* box = new btBoxShape(linkHalfExtents); btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i); col->setCollisionShape(box); btTransform tr; tr.setIdentity(); tr.setOrigin(posr); tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3])); col->setWorldTransform(tr); col->setFriction(friction); pWorld->addCollisionObject(col,2,1+2); pMultiBody->getLink(i).m_collider=col; } } void MultiDofDemo::addBoxes_testMultiDof() { //create a few dynamic rigidbodies // Re-using the same collision is better for memory usage and performance btBoxShape* colShape = new btBoxShape(btVector3(1,1,1)); //btCollisionShape* colShape = new btSphereShape(btScalar(1.)); m_collisionShapes.push_back(colShape); /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.f); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) colShape->calculateLocalInertia(mass,localInertia); float start_x = START_POS_X - ARRAY_SIZE_X/2; float start_y = START_POS_Y; float start_z = START_POS_Z - ARRAY_SIZE_Z/2; for (int k=0;kaddRigidBody(body);//,1,1+2); } } } } class CommonExampleInterface* MultiDofCreateFunc(struct CommonExampleOptions& options) { return new MultiDofDemo(options.m_guiHelper); }