pybullet quickstart

guide

Erwin Coumans, 2017

Check most up-to-date Google Docs version

online ,comments are welcome.

Introduction
Hello pybullet World
connect, disconnect
setGravity
loadURDF
loadBullet, loadSDF, loadMJCF
createCollisionShape
createMultiBody
saveWorld
stepSimulation
setRealTimeSimulation
getBasePositionAndOrientation
resetBasePositionAndOrientation
Transforms: Position and Orientation
getAPIVersion

Controlling a robot
Base, Joints, Links
getNumdJoints, getJointinfo
setJointMotorControl2/Array
getJointState(s), resetJointState
enableJointForceTorqueSensor
getLinkState
getBaseVelocity, resetBaseVelocity
applyExternalForce/Torque

getNumBodies, getBodylnfo,
getBodyUniqueld, removeBody

createConstraint, removeConstraint,
changeConstraint

getNumConstraints,
getConstraintUniqueld

getConstraintinfo
getDynamicsInfo/changeDynamics

O N OO W WwWN

11
11
11
12
13
13
15

15
15
16
17
19
20
21
22
23

24

25
26
26

setTimeStep 27
setPhysicsEngineParameter 28
resetSimulation 29
startStateLogging/stopStateLogging 29

Synthetic Camera Rendering 31
computeViewMatrix 31

computeViewMatrixFromYawPitchRoll
31

computeProjectionMatrix 32
computeProjectionMatrixFOV 32
getCameralmage 33
getVisualShapeData 34
changeVisualShape 35
loadTexture 35
Collision Detection Queries 35

getOverlappingObjects, getAABB 35
getContactPoints, getClosestPoints 36

rayTest, rayTestBatch 38
Inverse Dynamics, Kinematics 39
calculatelnverseDynamics 39
calculatelnverseKinematics 39

Reinforcement Learning Gym Envs 41

Environments and Data 41
Train and Enjoy 44
Virtual Reality 45

getVREvents,setVRCameraState 45

Debug GUI, Lines, Text, Parameters 47

addUserDebuglLine, Text 47
addUserDebugParameter 48
setDebugObjectColor 49
configureDebugVisualizer 49

get/resetDebugVisualizerCamera 50
getKeyboardEvents, getMouseEvents 51

Build and install pybullet 52
FAQ and Tips 55

https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit?usp=sharing
https://twitter.com/erwincoumans
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit?usp=sharing

Introduction

pybullet is an easy to use Python module for physics simulation, games, robotics and machine
learning. With pybullet you can load articulated bodies from URDF, SDF, MJCF and other file
formats. pybullet provides forward dynamics simulation, inverse dynamics computation, forward
and inverse kinematics, collision detection and ray intersection queries. The Bullet Physics SDK
includes pybullet robotic examples such as a simulated Minitaur quadruped, humanoids running
using TensorFlow inference and KUKA arms grasping objects.

_ == 7 8
g

N T

Aside from physics simulation, there are bindings to rendering, with a CPU renderer
(TinyRenderer) and OpenGL visualization and support for Virtual Reality headsets such as HTC
Vive and Oculus Rift. pybullet also has functionality to perform collision detection queries
(closest points, overlapping pairs, ray intersection test etc) and to add debug rendering (debug
lines and text). pybullet has cross-platform built-in client-server support for shared memory,
UDP and TCP networking. So you can run pybullet on Linux connecting to a Windows VR
server.

pybullet wraps the new Bullet C-API, which is designed to be independent from the underlying
physics engine and render engine, so we can easily migrate to newer versions of Bullet, or use
a different physics engine or render engine. By default, pybullet uses the Bullet 2.x APl on the
CPU. We will expose Bullet 3.x running on GPU using OpenCL as well. There is also a C++ API
similar to pybullet, see b3RobotSimulatorClientAPI.

pybullet can be easily used with TensorFlow and frameworks such as OpenAl Gym. Gym
environments are being developed and will be part of pybullet, similar to Gym and Roboschool.

https://github.com/bulletphysics/bullet3/blob/master/examples/SharedMemory/PhysicsClientC_API.h
https://www.youtube.com/watch?v=__ilQzkPDNI
http://github.com/bulletphysics/bullet3
https://www.youtube.com/watch?v=lv7lybtOzeo
https://www.youtube.com/watch?v=VMJyZtHQL50
https://github.com/bulletphysics/bullet3/blob/master/examples/RobotSimulator/b3RobotSimulatorClientAPI.h

The installation of pybullet is as simple as (sudo) pip install pybullet (Python 2.x), pip3 install
pybullet. This will expose the pybullet module as well as pybullet_envs Gym environments.

Hello pybullet World

Here is a pybullet introduction script that we discuss step by step:

import pybullet as p

import pybullet data

physicsClient = p.connect (p.GUI) #or p.DIRECT for non-graphical version
p.setAdditionalSearchPath (pybullet data.getDataPath()) #use by loadURDF
p.setGravity(0,0,-10)

planelId = p.loadURDF ("plane.urdf")

cubeStartPos = [0,0,1]

cubeStartOrientation = p.getQuaternionFromEuler ([0,0,01])

boxId = p.loadURDF ("r2d2.urdf", cubeStartPos, cubeStartOrientation)
p.stepSimulation ()

cubePos, cubeOrn = p.getBasePositionAndOrientation (boxId)

print (cubePos, cubeOrn)

p.disconnect ()

connect, disconnect

After importing the pybullet module, the first thing to do is 'connecting' to the physics simulation.
pybullet is designed around a client-server driven API, with a client sending commands and a
physics server returning the status. pybullet has some build-in physics servers: DIRECT and
GUI. Both GUI and DIRECT connections will execute the physics simulation and rendering in
the same process as pybullet.

Note that in DIRECT mode you cannot access the OpenGL and VR hardware features, as
described in the "Virtual Reality" and "Debug GUI, Lines, Text, Parameters" chapters. DIRECT
mode does allow rendering of images using the build-in software renderer through the
'‘getCameralmage' API. This can be useful for running simulations in the cloud on servers
without GPU.

You can provide your own data files, or you can use the pybullet_data package that ships with
pybullet. For this, import pybullet_data and register the directory using
pybullet.setAdditionalSearchPath(pybullet_data.getDataPath()).

Physics Client DIRECT

(o (o DIRECT' merges client and server and

'directly’ execules commands, without transport

App_PhysicsServer_SharedMemory

Physics Client SHARED_MEMORY <Shamd TR B
b3ConnectSharedMemory App_PhysicsServer_SharedMemory_GUI

{OpenGL visualizer)

App_PhysicsServer_SharedMemory_VR
{OpenVR + OpenGL visualizer)

Olal paieys

PhysicsServerSharedMemoryBridgeUDP
Physics Client UDP App_Phy L
b3ConnectPhysicsUDP
App_PhysicsServerUDP
— ;
Physics Client TCP App_PhysicsServerSharedMemoryBridge TCP
b3ConnectPhysicsTCP
{—>
App_PhysicsServerTCP

Physics Client GUI 'GUI' merges client and serve, uses separate
b3CreatelnProcessPhysicsServerAndConnect threads for physics. On Windows and Linux, uses
b3CreatelnProcessPhysicsServerAndConnectMainThread te thread for graphics. Mac runs graphics

on main thread due to OS limitations, (OpenGL)

Diagram with various physics client (blue) and physics server (green) options. Dark green
servers provide OpenGL debug visualization.

connect using DIRECT, GUI

The DIRECT connection sends the commands directly to the physics engine, without using any
transport layer and no graphics visualization window, and directly returns the status after
executing the command.

The GUI connection will create a new graphical user interface (GUI) with 3D OpenGL rendering,
within the same process space as pybullet. On Linux and Windows this GUI runs in a separate
thread, while on OSX it runs in the same thread due to operating system limitations. On Mac
OSX you may see a spinning wheel in the OpenGL Window, until you run a 'stepSimulation' or
other pybullet command.

The commands and status messages are sent between pybullet client and the GUI physics
simulation server using an ordinary memory buffer.

It is also possible to connect to a physics server in a different process on the same machine or
on a remote machine using SHARED_MEMORY, UDP or TCP networking. See the section
about Shared Memory, UDP and TCP for details.

Unlike almost all other methods, this method doesn't parse keyword arguments, due to
backward compatibility.

The connect input arguments are:

required connection mode integer: DIRECT mode create a new physics engine and directly
DIRECT, communicates with it. GUI will create a physics engine with
GUI, graphical GUI frontend and communicates with it.

SHARED_ | SHARED_MEMORY will connect to an existing physics engine
MEMORY, process on the same machine, and communicates with it over
UDP, TCP | shared memory. TCP or UDP will connect to an existing
physics server over TCP or UDP networking.

optional key int in SHARED_MEMORY mode, optional shared memory key.
When starting ExampleBrowser or SharedMemoryPhysics_*
you can use optional command-line --shared_memory_key to
set the key. This allows to run multiple servers on the same

machine.
optional UdpNetworkAddress | string IP address or host name, for example "127.0.0.1" or "localhost"
(UDP and TCP) or "mymachine.domain.com"”
optional UdpNetworkPort integer UDP port number. Default UDP port is 1234, default TCP port
(UDP and TCP) is 6667 (matching the defaults in the server)
optional options string command-line option passed into the GUI server. At the

moment, only the --opengl2 flag is enabled: by default, Bullet
uses OpenGL3, but some environments such as virtual
machines or remote desktop clients only support OpenGL2.
Only one command-line argument can be passed on at the
moment.

connect returns a physics client id or -1 if not connected. The physics client Id is an optional
argument to most of the other pybullet commands. If you don't provide it, it will assume physics
client id = 0. You can connect to multiple different physics servers, except for GUI.

For example:

pybullet.connect(pybullet.DIRECT)
pybullet.connect(pybullet.GUI, options="--openg|2")
pybullet.connect(pybullet. SHARED MEMORY,1234)
pybullet.connect(pybullet.UDP,"192.168.0.1")
pybullet.connect(pybullet.UDP,"localhost", 1234)
pybullet.connect(pybullet. TCP,"localhost", 6667)

connect using Shared Memory

There are a few physics servers that allow shared memory connection: the
App_SharedMemoryPhysics, App_SharedMemoryPhysics GUI and the Bullet Example
Browser has one example under Experimental/Physics Server that allows shared memory
connection. This will let you execute the physics simulation and rendering in a separate
process.

You can also connect over shared memory to the App_SharedMemoryPhysics_VR, the Virtual
Reality application with support for head-mounted display and 6-dof tracked controllers such as
HTC Vive and Oculus Rift with Touch controllers. Since the Valve OpenVR SDK only works
properly under Windows, the App_SharedMemoryPhysics_VR can only be build under Windows
using premake (preferably) or cmake.

connect using UDP or TCP networking

For UDP networking, there is a App_PhysicsServerUDP that listens to a certain UDP port. It
uses the open source enet library for reliable UDP networking. This allows you to execute the
physics simulation and rendering on a separate machine. For TCP pybullet uses the clsocket
library. This can be useful when using SSH tunneling from a machine behind a firewall to a
robot simulation. For example you can run a control stack or machine learning using pybullet on
Linux, while running the physics server on Windows in Virtual Reality using HTC Vive or Rift.

One more UDP application is the App_PhysicsServerSharedMemoryBridgeUDP application that
acts as a bridge to an existing physics server: you can connect over UDP to this bridge, and the
bridge connects to a physics server using shared memory: the bridge passes messages
between client and server. In a similar way there is a TCP version (replace UDP by TCP).

disconnect

You can disconnect from a physics server, using the physics client Id returned by the connect
call (if non-negative). A 'DIRECT" or 'GUI' physics server will shutdown. A separate
(out-of-process) physics server will keep on running. See also 'resetSimulation' to remove all
items.

Parameters of disconnect:

optional physicsClientld nt if you connect to multiple physics servers, you can pick which one.

setGravity

By default, there is no gravitational force enabled. setGravity lets you set the default gravity
force for all objects.
The setGravity input parameters are: (no return value)

required gravityX float gravity force along the X world axis

required gravityY float gravity force along the Y world axis

http://enet.bespin.org/
https://github.com/DFHack/clsocket

required gravityZ float gravity force along the Z world axis
optional physicsClientld int if you connect to multiple physics servers, you can pick which one.
loadURDF

The loadURDF will send a command to the physics server to load a physics model from a
Universal Robot Description File (URDF). The URDF file is used by the ROS project (Robot
Operating System) to describe robots and other objects, it was created by the WillowGarage
and the Open Source Robotics Foundation (OSRF). Many robots have public URDF files, you
can find a description and tutorial here: http://wiki.ros.org/urdf/Tutorials

Important note: most joints (slider, revolute, continuous) have motors enabled by default that
prevent free motion. This is similar to a robot joint with a very high-friction harmonic drive. You
should set the joint motor control mode and target settings using pybullet.setJointMotorControl2.
See the setJointMotorControl2 API for more information.

Warning: by default, pybullet will cache some files to speed up loading. You can disable file
caching using setPhysicsEngineParameter(enableFileCaching=0).

The loadURDF arguments are:

required fileName string a relative or absolute path to the URDF file on the file
system of the physics server.

optional basePosition vec3 create the base of the object at the specified position in
world space coordinates [X,Y,Z]

optional baseOrientation vec4 create the base of the object at the specified orientation
as world space quaternion [X,Y,Z,W]

optional useMaximalCoordinates int Experimental. By default, the joints in the URDF file are
created using the reduced coordinate method: the joints
are simulated using the Featherstone Articulated Body
algorithm (btMultiBody in Bullet 2.x). The
useMaximalCoordinates option will create a 6 degree of
freedom rigid body for each link, and constraints
between those rigid bodies are used to model joints.

optional useFixedBase int force the base of the loaded object to be static

optional flags int URDF_USE_INERTIA_FROM_FILE: by default, Bullet
recomputed the inertia tensor based on mass and
volume of the collision shape. If you can provide more
accurate inertia tensor, use this flag.

URDF_USE_SELF_COLLISION: by default, Bullet
disables self-collision. This flag let's you enable it. You

http://wiki.ros.org/urdf/Tutorials

can customize the self-collision behavior using the
following flags:
URDF_USE_SELF_COLLISION_EXCLUDE_PARENT
will discard self-collision between links that are directly
connected (parent and child).
URDF_USE_SELF_COLLISION_EXCLUDE_ALL_PAR
ENTS will discard self-collisions between a child link
and any of its ancestors (parents, parents of parents,
up to the base).

optional globalScaling float globalScaling will apply a scale factor to the URDF
model.

optional physicsClientld int if you are connected to multiple servers, you can pick
one.

loadURDF returns a body unique id, a non-negative integer value. If the URDF file cannot be
loaded, this integer will be negative and not a valid body unique id.

loadBullet, loadSDF, loadMJCF

You can also load objects from other file formats, such as .bullet, .sdf and .mjcf. Those file
formats support multiple objects, so the return value is a list of object unique ids. The SDF
format is explained in detail at http://sdformat.org. The loadSDF command only extracts some
essential parts of the SDF related to the robot models and geometry, and ignores many
elements related to cameras, lights and so on. The loadMJCF command performs basic import
of MudJoCo MJCF xml files, used in OpenAl Gym. See also the Important note under loadURDF
related to default joint motor settings, and make sure to use setJointMotorControl2.

required fileName string a relative or absolute path to the URDF file on the file
system of the physics server.

optional useMaximalCoordinates int Experimental. See loadURDF for more details.

optional physicsClientld int if you are connected to multiple servers, you can pick one.

loadBullet, loadSDF and loadMJCF will return an array of object unique ids:

objectUniquelds

list of int

the list includes the object unique id for each object loaded.

http://sdformat.org/

createCollisionShape

Although the easiest way to create stuff in the world is using the loading functions
(loadURDF/SDF/MJCF/Bullet), you can create collision shapes programmatically and use them
to create a multi body using createMultiBody. See the createMultiBodyLinks.py example in the
Bullet Physics SDK.

The input parameters are

required | shapeType int GEOM_SPHERE, GEOM_BOX, GEOM_CAPSULE,
GEOM_CYLINDER, GEOM_PLANE, GEOM_MESH
optional | radius float default 0.5: GEOM_SPHERE, GEOM_CAPSULE, GEOM_CYLINDER
optional | halfExtents vec3 list default [1,1,1]: for GEOM_BOX
of 3 floats
optional | height float default: 1: for GEOM_CAPSULE, GEOM_CYLINDER
optional | fileName string Filename for GEOM_MESH, currently only Wavefront .obj. Will create

convex hulls for each object (marked as '0') in the .obj file.

optional | meshScale vec3 list default: [1,1,1], for GEOM_MESH
of 3 floats
optional | planeNormal vec3 list default: [0,0,1] for GEOM_PLANE
of 3 floats
optional | flags int GEOM_FORCE_CONCAVE_TRIMESH: for GEOM_MESH, this will

create a concave static triangle mesh. This should not be used with
dynamic / moving objects, only for static (mass = 0) terrain.

optional | physicsClientld int If you are connected to multiple servers, you can pick one.

The return value is a non-negative int unique id for the collision shape or -1 if the call failed.

createVisualShape

When using createCollisionShape and createMultiBody, you need to provide -1 for the visual
shape. A visual shape will be auto-generated from the collision shape. If you want to specify a
visual shape you need to use URDF, SDF or other files. In the future we will provide a
‘createVisualShape' API.

https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/examples/createMultiBodyLinks.py

10

createMultiBody

Although the easiest way to create stuff in the world is using the loading functions
(loadURDF/SDF/MJCF/Bullet), you can create a multi body using createMultiBody.

See the createMultiBodyLinks.py example in the Bullet Physics SDK. The parameters of
createMultiBody are very similar to URDF and SDF parameters.

You can create a multi body with only a single base without joints/child links or you can create a
multi body with joints/child links. If you provide links, make sure the size of every list is the same
(len(linkMasses) == len(linkCollisionShapelndices) etc). The input parameters for createMultiBody are:

optional | baseMass float mass of the base, in kg (if using SI units)
optional | baseCollisionShapelndex int unique id from createCollisionShape or -1
optional | baseVisualShapelndex int -1 (until createVisualShape is implemented)
optional | basePosition vec3, list of 3 floats | Cartesian world position of the base
optional | baseOrientation vecd, list of 4 floats | Orientation of base as quaternion [x,y,z,w]
optional | baselnertialFramePosition vec3, list of 3 floats | Local position of inertial frame

optional | baselnertialFrameOrientation | vec4, list of 4 floats | Local orientation of inertial frame, [x,y,z,w]

optional | linkMasses list of float List of the mass values, one for each link.
optional | linkCollisionShapelndices list of int List of the unique id, one for each link.

optional | linkVisualShapelndices list of int list of the visual shape unique id for each link
optional | linkPositions list of vec3 list of local link positions, with respect to parent
optional | linkOrientations list of vec4 list of local link orientations, w.r.t. parent
optional | linkinertialFramePositions list of vec3 list of local inertial frame pos. in link frame
optional | linkinertialFrameOrientations | list of vec4 list of local inertial frame orn. in link frame
optional | linkParentindices list of int Link index of the parent link or O for the base.
optional | linkJointTypes list of int list of joint types, one for each link.

optional | linkJointAxis list of vec3 Joint axis in local frame

optional | useMaximalCoordinates int experimental, best to leave it O/false.

optional | physicsClientld int If you are connected to multiple servers, you can

pick one.

https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/examples/createMultiBodyLinks.py

11

The return value of createMultiBody is a non-negative unique id or -1 for failure. Example:

cuid = pybullet.createCollisionShape(pybullet. GEOM_BOX, halfExtents = [1, 1, 1])
mass= 0 #static box
pybullet.createMultiBody(mass,cuid)

saveWorld

You can create a snapshot of the current world as a pybullet Python file, stored on the server.
saveWorld can be useful as a basic editing feature, setting up the robot, joint angles, object
positions and environment for example in VR. Later you can just load the pybullet Python file to
re-create the world. Note that not all settings are stored in the world file at the moment.

The input arguments are:

required fileName string filename of the pybullet file.

optional clientServerld int if you are connected to multiple servers, you can pick one

stepSimulation

stepSimulation will perform all the actions in a single forward dynamics simulation step such as
collision detection, constraint solving and integration.

stepSimulation input arguments are optional:

optional physicsClientld int if you are connected to multiple servers, you can pick one.

stepSimulation has no return values.

See also setRealTimeSimulation to automatically let the physics server run forward dynamics
simulation based on its real-time clock.

setRealTimeSimulation

By default, the physics server will not step the simulation, unless you explicitly send a
'stepSimulation’ command. This way you can maintain control determinism of the simulation. It
is possible to run the simulation in real-time by letting the physics server automatically step the

12

simulation according to its real-time-clock (RTC) using the setRealTimeSimulation command. If
you enable the real-time simulation, you don't need to call 'stepSimulation'.

Note that setRealTimeSimulation has no effect in DIRECT mode: in DIRECT mode the physics
server and client happen in the same thread and you trigger every command. In GUI mode and
in Virtual Reality mode, and TCP/UDP mode, the physics server runs in a separate thread from
the client (pybullet), and setRealTimeSimulation allows the physicsserver thread to add
additional calls to stepSimulation.

The input parameters are:

nt 0 to disable real-time simulation, 1 to enable

required enableRealTimeSimulation

optional physicsClientld int if you are connected to multiple servers, you can pick one.

getBasePositionAndOrientation

getBasePositionAndOrientation reports the current position and orientation of the base (or root
link) of the body in Cartesian world coordinates. The orientation is a quaternion in [x,y,z,w]
format.

The getBasePositionAndOrientation input parameters are:

required objectUniqueld int object unique id, as returned from loadURDF.
optional physicsClientld int if you are connected to multiple servers, you can pick
one.

getBasePositionAndOrientation returns the position list of 3 floats and orientation as list of 4
floats in [x,y,z,w] order. Use getEulerFromQuaternion to convert the quaternion to Euler if
needed.

See also resetBasePositionAndOrientation to reset the position and orientation of the object.

This completes the first pybullet script. Bullet ships with several URDF files in the Bullet/data
folder.

13

resetBasePositionAndOrientation

You can reset the position and orientation of the base (root) of each object. It is best only to do
this at the start, and not during a running simulation, since the command will override the effect
of all physics simulation.

The input arguments to resetBasePositionAndOrientation are:

required objectUniqueld int object unique id, as returned from loadURDF.

required posObj vec3 reset the base of the object at the specified position in world
space coordinates [X,Y,Z]

required ornObj vecd reset the base of the object at the specified orientation as world
space quaternion [X,Y,Z,W]

optional physicsClientld int if you are connected to multiple servers, you can pick one.

There are no return arguments.

Transforms: Position and Orientation

The position of objects can be expressed in Cartesian world space coordinates [x,y,z]. The
orientation (or rotation) of objects can be expressed using quaternions [x,y,z,w], euler angles
[yaw, pitch, roll] or 3x3 matrices. pybullet provides a few helper functions to convert between
quaternions, euler angles and 3x3 matrices. In additions there are some functions to multiply
and invert transforms.

getQuaternionFromEuler and getEulerFromQuaternion

The pybullet API uses quaternions to represent orientations. Since quaternions are not very
intuitive for people, there are two APIs to convert between quaternions and Euler angles.
The getQuaternionFromEuler input arguments are:

required | eulerAngle vec3: list of 3 The X,Y,Z Euler angles are in radians, accumulating 3 rotations
floats expressing the roll around the X, pitch around Y and yaw around
the Z axis.

optional | physicsClientld | int unused, added for API consistency.

getQuaternionFromEuler returns a quaternion, vec4 list of 4 floating point values [X,Y,Z,W].

getEulerFromQuaternion

14

The getEulerFromQuaternion input arguments are:

required

quaternion

vecd: list of 4 floats

The quaternion format is [x,y,z,w]

optional

physicsClientld

int

unused, added for API consistency.

getEulerFromQuaternion returns alist of 3 floating point values, a vec3.

getMatrixFromQuaternion

getMatrixFromQuaternion is a utility API to create a 3x3 matrix from a quaternion. The input is a
quaternion and output a list of 9 floats, representing the matrix.

multiplyTransforms, invertTransform

pybullet provides a few helper functions to multiply and inverse transforms. This can be helpful
to transform coordinates from one to the other coordinate system.

The input parameters of multiplyTransforms are:

required positionA vec3, list of 3 floats

required orientationA vec4, list of 4 floats | quaternion [x,y,z,w]

required positionB vec3, list of 3 floats

required orientationB vec4, list of 4 floats | quaternion [x,y,z,w]

optional physicsClientld int unused, added for API consistency.

The return value is a list of position (vec3) and orientation (vec4, quaternion x,y,x,w).

The input and output parameters of invertTransform are:

required

position

vec3, list of 3 floats

required

orientation

vecd, list of 4 floats

quaternion [x,y,z,w]

The output of invertTransform is a position (vec3) and orientation (vec4, quaternion x,y,x,w).

15

getAPIVersion

You can query for the API version in a year-month-0-day format. You can only connect between
physics client/server of the same API version, with the same number of bits (32-bit / 64bit).
There is a optional unused argument physicsClientld, added for API consistency.

optional physicsClientld int unused, added for API consistency.

Controlling a robot

In the Introduction we already showed how to initialize pybullet and load some obijects. If you
replace the file name in the loadURDF command with "r2d2.urdf" you can simulate a R2D2
robot from the ROS tutorial. Let's control this R2D2 robot to move, look around and control the
gripper. For this we need to know how to access its joint motors.

Base, Joints, Links

Ioemerofmasa
aint 1 |is inertial frarme
frame ||ﬂ|'('1

}EEI‘HE'[of masg
inertial frame

joint 0 §a
frame mk

.
—
1=
.
Imnter of mass
inarlial frama

base

A simulated robot as described in a URDF file has a base, and optionally links connected by
joints. Each joint connects one parent link to a child link. At the root of the hierarchy there is a
single root parent that we call base. The base can be either fully fixed, 0 degrees of freedom, or
fully free, with 6 degrees of freedom. Since each link is connected to a parent with a single joint,
the number of joints is equal to the number of links. Regular links have link indices in the range
[0..getNumJoints()] Since the base is not a regular 'link', we use the convention of -1 as its link

16

index. We use the convention that joint frames are expressed relative to the parents center of
mass inertial frame, which is aligned with the principle axis of inertia.

getNumdJoints, getJointinfo

After you load a robot you can query the number of joints using the getNumJoints API. For the
r2d2.urdf this should return 15.

getNumdJoints input parameters:

required bodyUniqueld

int the body unique id, as returned by loadURDF etc.

optional physicsClientld

int if you are connected to multiple servers, you can pick one.

getNumdJoints returns an integer value representing the number of joints.

getdointinfo
For each joint we can query some information, such as its name and type.

getJointinfo input parameters

required bodyUniqueld int the body unique id, as returned by loadURDF etc.
required jointindex int an index in the range [0 .. getNumJoints(bodyUniqueld)]
optional physicsClientld int if you are connected to multiple servers, you can pick one.

getJointinfo returns a list of information:

jointIndex int the same joint index as the input parameter

jointName string the name of the joint, as specified in the URDF (or SDF etc) file

jointType int type of the joint, this also implies the number of position and velocity variables.
JOINT_REVOLUTE, JOINT_PRISMATIC, JOINT_SPHERICAL, JOINT_PLANAR,
JOINT_FIXED. See the section on Base, Joint and Links for more details.

glndex int the first position index in the positional state variables for this body

ulndex int the first velocity index in the velocity state variables for this body

flags int reserved

jointDamping float the joint damping value, as specified in the URDF file

jointFriction float the joint friction value, as specified in the URDF file

jointLowerLimit float Positional lower limit for slider and revolute (hinge) joints.

jointUpperLimit float Positional upper limit for slider and revolute joints. Values ignored in case upper

17

limit <lower limit.

jointMaxForce float Maximum force specified in URDF (possibly other file formats) Note that this value
is not automatically used. You can use maxForce in 'setJointMotorControl2'.

jointMaxVelocity float Maximum velocity specified in URDF. Note that the maximum velocity is not used
in actual motor control commands at the moment.

linkName string the name of the link, as specified in the URDF (or SDF etc.) file

setJointMotorControl2/Array

Note: setJointMotorControl is obsolete and replaced by setJointMotorControl2 API. (Or even
better use setJointMotorControlArray).

We can control a robot by setting a desired control mode for one or more joint motors. During
the stepSimulation the physics engine will simulate the motors to reach the given target value
that can be reached within the maximum motor forces and other constraints. Each revolute joint
and prismatic joint is motorized by default. There are 3 different motor control modes: position
control, velocity control and torque control.

You can effectively disable the motor by using a force of 0. You need to disable motor in order
to use direct torque control. For example:

maxForce = 0

mode =

p.VELOCITY CONTROL

p.setJointMotorControl2 (objUid, jointIndex,

controlMode=mode, force=maxForce)

If you want a wheel to maintain a constant velocity, with a max force you can use:

maxForce = 500

p.setdJointMotorControl?2 (bodyUniqueId=objUid,

jointIndex=0,
controlMode=p.VELOCITY CONTROL,
targetVelocity = targetvVel,
force = maxForce)

The input arguments to setJointMotorControl2 are:

required

bodyUniqueld

int body unique id as returned from loadURDF etc.

required

jointindex

int link index in range [0..getNumJoints(bodyUniqueld) (note that
link index == joint index)

18

required

controlMode

int

POSITION_CONTROL (which is in fact
CONTROL_MODE_POSITION_VELOCITY_PD),
VELOCITY_CONTROL, TORQUE_CONTROL

optional

targetPosition

float

in POSITION_CONTROL the targetValue is target position of
the joint

optional

targetVelocity

float

in VELOCITY_CONTROL and POSITION_CONTROL the
targetVelocity is the desired velocity of the joint, see
implementation note below. Note that the targetVelocity is not
the maximum joint velocity. In
POSITION_CONTROL/CONTROL_MODE_POSITION_VELOC
ITY_PD, the final target velocity is computed using:
kp*(erp*(desiredPosition-currentPosition)/dt)+currentVelocity+kd
*(m_desiredVelocity - currentVelocity)

optional

force

float

in POSITION_CONTROL and VELOCITY_CONTROL this is the
maximum motor force used to reach the target value. In
TORQUE_CONTROL this is the force/torque to be applied each
simulation step.

optional

positionGain

float

See implementation note below

optional

velocityGain

float

See implementation note below

optional

physicsClientld

int

if you are connected to multiple servers, you can pick one.

Note: the actual implementation of the joint motor controller is as a constraint for
POSITION_CONTROL and VELOCITY_CONTROL, and as an external force for
TORQUE_CONTROL:

method implementation component constraint error to be minimized
POSITION_CONTROL constraint velocity and position error =
constraint position_gain*(desired_position-a
ctual_position)+velocity _gain*(de
sired_velocity-actual_velocity)
VELOCITY_CONTROL constraint pure velocity constraint error = desired_velocity -

actual_velocity

TORQUE_CONTROL

external force

Generally it is best to start with VELOCITY_CONTROL or POSITION_CONTROL. Itis much
harder to do TORQUE_CONTROL (force control) since simulating the correct forces relies on
very accurate URDF/SDF file parameters and system identification (correct masses, inertias,

center of mass location, joint friction etc).

setJointMotorControlArray

19

Instead of making individual calls for each joint, you can pass arrays for all inputs to reduce

calling overhead dramatically.

setJointMotorControlArray takes the same parameters as setJointMotorControl2, except
replacing integers with lists of integers.

The input arguments to setJointMotorControlArray are:

required bodyUniqueld int body unique id as returned from loadURDF etc.

required linkIndices list of int link index in range [0..getNumJoints(bodyUniqueld) (note that
link index == joint index)

required controlMode int POSITION_CONTROL, VELOCITY_CONTROL,
TORQUE_CONTROL

optional targetPositions list of float | in POSITION_CONTROL the targetValue is target position of
the joint

optional targetVelocities list of float | in VELOCITY_CONTROL and POSITION_CONTROL the
targetValue is target velocity of the joint, see implementation
note below.

optional forces list of float | in POSITION_CONTROL and VELOCITY_CONTROL this is the
maximum motor force used to reach the target value. In
TORQUE_CONTROL this is the force/torque to be applied each
simulation step.

optional positionGains list of float | See implementation note below

optional velocityGains list of float | See implementation note below

optional physicsClientld int if you are connected to multiple servers, you can pick one.

See bullet3/examples/pybullet/tensorflow/humanoid_running.py for an example of using

setJointMotorControlArray.

getJointState(s), resetJointState

We can query several state variables from the joint using getJointState, such as the joint
position, velocity, joint reaction forces and joint motor torque.

getJointState input parameters

required bodyUniqueld int body unique id as returned by loadURDF etc
required jointIndex int link index in range [0..getNumJoints(bodyUniqueld)]
optional physicsClientld int if you are connected to multiple servers, you can pick one.

20

getJointState output

jointPosition float The position value of this joint.

jointVelocity float The velocity value of this joint.

jointReactionForces list of 6 floats These are the joint reaction forces, if a torque sensor is enabled for
this joint it is [Fx, Fy, Fz, Mx, My, Mz]. Without torque sensor, it is
[0,0,0,0,0,0].

appliedJointMotorTorque float This is the motor torque applied during the last stepSimulation

getJointStates is the array version of getJointState. Instead of passing in a single jointindex, you
pass in a list of jointindices.

resetdointState

You can reset the state of the joint. It is best only to do this at the start, while not running the
simulation: resetJointState overrides all physics simulation. Note that we only support 1-DOF
motorized joints at the moment, sliding joint or revolute joints.

required bodyUniqueld int body unique id as returned by loadURDF etc

required jointindex int joint index in range [0..getNumJoints(bodyUniqueld)]
required targetValue float the joint position (angle in radians or position)

optional targetVelocity float the joint velocity (angular or linear velocity)

optional physicsClientld int if you are connected to multiple servers, you can pick one.

enabledJointForceTorqueSensor

You can enable or disable a joint force/torque sensor in each joint. Once enabled, if you perform
a stepSimulation, the 'getJointState' will report the joint reaction forces in the fixed degrees of
freedom: a fixed joint will measure all 6DOF joint forces/torques. A revolute/hinge joint
force/torque sensor will measure 5DOF reaction forces along all axis except the hinge axis. The
applied force by a joint motor is available in the appliedJointMotorTorque of getJointState.

The input arguments to enableJointForceTorqueSensor are:

required bodyUniqueld int body unique id as returned by loadURDF etc

required jointindex int joint index in range [0..getNumJoints(bodyUniqueld)]

21

optional enableSensor int 1/True to enable, O/False to disable the force/torque sensor
optional physicsClientld int if you are connected to multiple servers, you can pick one.
getLinkState

You can also query the Cartesian world position and orientation for the center of mass of each
link using getLinkState. It will also report the local inertial frame of the center of mass to the
URDF link frame, to make it easier to compute the graphics/visualization frame.

getLinkState input parameters

required bodyUniqueld int

required linkIndex int

optional computeLinkVelocity int If set to 1, the Cartesian world velocity will be computed and

returned.
optional physicsClientld int if you are connected to multiple servers, you can pick one.
getLinkState return values

linkWorldPosition vecd, list of 3 floats Cartesian position of center of mass

linkWorldOrientation vecd, list of 4 floats Cartesian orientation of center of mass, in
quaternion [X,y,z,w]

locallnertialFramePosition vec3, list of 3 floats local position offset of inertial frame (center of
mass) expressed in the URDF link frame

locallnertialFrameOrientation vec4, list of 4 floats local orientation (quaternion [x,y,z,w]) offset of
the inertial frame expressed in URDF link
frame.

worldLinkFramePosition vec3, list of 3 floats world position of the URDF link frame

worldLinkFrameOrientation vecd, list of 4 floats world orientation of the URDF link frame

worldLinkLinearVelocity vec3, list of 3 floats Cartesian world velocity. Only returned if
computeLinkVelocity non-zero.

worldLinkAngularVelocity vec3, list of 3 floats Cartesian world velocity. Only returned if
computeLinkVelocity non-zero.

The relationship between URDF link frame and the center of mass frame (both in world space)
is: urdfLinkFrame = comLinkFrame * locallnertialFrame.inverse(). For more information about
the link and inertial frame, see the ROS URDF tutorial.

http://wiki.ros.org/urdf/Tutorials/Adding%20Physical%20and%20Collision%20Properties%20to%20a%20URDF%20Model

frame (COM,
orld space)

locallnertialFrame

URDF link frame

center of mass

22

(world space)

Example scripts (could be out-of-date, check actual Bullet/examples/pybullet/examples folder.)

examples/pybullet/tensorflow/humanoid_runnin
g.py

load a humanoid and use a trained neural network to control the
running using TensorFlow, trained by OpenAl

examples/pybullet/gym

Minitaur environment for OpenAl GYM and TensorFlow

examples/pybullet/examples/quadruped.py

load a quadruped from URDF file, step the simulation, control
the motors for a simple hopping gait based on sine waves.Will
also log the state to file using p.startStateLogging. See video.

examples/quadruped_playback.py

Create a quadruped (Minitaur), read log file and set positions as
motor control targets.

examples/pybullet/examples/testrender.py

load a URDF file and render an image, get the pixels (RGB,
depth, segmentation mask) and display the image using
MatPlotLib.

examples/pybullet/examples/testrender_np.py

Similar to testrender.py, but speed up the pixel transfer using
NumPy arrays. Also includes simple benchmark/timings.

examples/pybullet/examples/saveWorld.py

Save the state (position, orientation) of objects into a pybullet
Python scripts. This is mainly useful to setup a scene in VR and
save the initial state. Not all state is serialized.

examples/pybullet/examples/inverse_kinematic
S.py

Show how to use the calculatelnverseKinematics command,
creating a Kuka ARM clock

examples/pybullet/examples/rolIPitchYaw.py

Show how to use slider GUI widgets

examples/pybullet/examples/constraint.py

Programmatically create a constraint between links.

examples/pybullet/examples/vrhand.py

Control a hand using a VR glove, tracked by a VR controller.
See video.

getBaseVelocity, resetBaseVelocity

You get access to the linear and angular velocity of the base of a body using getBaseVelocity.

The input parameters are:

https://www.youtube.com/watch?v=lv7lybtOzeo
https://www.youtube.com/watch?v=0JC-yukK-jo

23

required

bodyUniqueld

int body unique id, as returned from the load* methods.

optional

physicsClientld

int if you are connected to multiple servers, you can pick one.

This returns a list of two vector3 values (3 floats in a list) representing the linear velocity [x,y,z]
and angular velocity [wx,wy,wz] in Cartesian worldspace coordinates.

You can reset the linear and/or angular velocity of the base of a body using resetBaseVelocity.
The input parameters are:

required | objectUniqueld int body unique id, as returned from the load* methods.
optional linearVelocity vec3, list of 3 floats linear velocity [x,y,z] in Cartesian world coordinates.
optional | angularVelocity | vec3, list of 3 floats angular velocity [wx,wy,wz] in Cartesian world coordinates.
optional | physicsClientld int if you are connected to multiple servers, you can pick one.

applyExternalForce/Torque

You can apply a force or torque to a body using applyExternalForce and applyExternalTorque.
Note that this method will only work when explicitly stepping the simulation using
stepSimulation, in other words: setRealTimeSimulation(0). After each simulation step, the
external forces are cleared to zero. If you are using 'setRealTimeSimulation(1),
applyExternalForce/Torque will have undefined behavior (either 0, 1 or multiple force/torque
applications).

The input parameters are:

required objectUniqueld int object unique id as returned by load methods.

required linkindex int link index or -1 for the base.

required forceObj vec3, list of 3 floats force/torque vector to be applied [x,y,z]. See flags for
coordinate system.

required posObj vec3, list of 3 floats position on the link where the force is applied. Only for
applyExternalForce. See flags for coordinate system.

required flags int Specify the coordinate system of force/position: either
WORLD_FRAME for Cartesian world coordinates or
LINK_FRAME for local link coordinates.

optional physicsClientld int

24

getNumBodies, getBodylnfo, getBodyUniqueld, removeBody

getNumBodies will return the total number of bodies in the physics server.

If you used 'getNumBodies' you can query the body unique ids using 'getBodyUniqueld’. Note
that all APIs already return body unique ids, so you typically never need to use
getBodyUniqueld if you keep track of them.

getBodyInfo will return the base name, as extracted from the URDF, SDF, MJCF or other
file.

removeBody will remove a body by its body unique id (from loadURDF, loadSDF etc).

createConstraint, removeConstraint, changeConstraint

URDF, SDF and MJCF specify articulated bodies as a tree-structures without loops. The
‘createConstraint' allows you to connect specific links of bodies to close those loops. See
Bullet/examples/pybullet/examples/quadruped.py how to connect the legs of a quadruped 5-bar
closed loop linkage. In addition, you can create arbitrary constraints between objects, and
between an object and a specific world frame. See
Bullet/examples/pybullet/examples/constraint.py for an example.

It can also be used to control the motion of physics objects, driven by animated frames, such as
a VR controller. It is better to use constraints, instead of setting the position or velocity directly
for such purpose, since those constraints are solved together with other dynamics constraints.

createConstraint has the following input parameters:

required parentBodyUniqueld int parent body unique id

required parentLinklndex int parent link index (or -1 for the base)

required childBodyUniqueld int child body unique id, or -1 for no body (specify a
non-dynamic child frame in world coordinates)

required childLinkindex int child link index, or -1 for the base

required jointType int joint type: JOINT_PRISMATIC, JOINT_FIXED,
JOINT_POINT2POINT

required jointAxis vec3, list of 3 floats joint axis, in child link frame

required parentFramePosition vec3, list of 3 floats position of the joint frame relative to parent center

of mass frame.

25

required

childFramePosition

vec3, list of 3 floats

position of the joint frame relative to a given child
center of mass frame (or world origin if no child
specified)

optional

parentFrameOQOrientation

vecd, list of 4 floats

the orientation of the joint frame relative to parent
center of mass coordinate frame

optional

childFrameOrientation

vecd, list of 4 floats

the orientation of the joint frame relative to the
child center of mass coordinate frame (or world
origin frame if no child specified)

optional

physicsClientld

int

if you are connected to multiple servers, you can
pick one.

createConstraint will return an integer unique id, that can be used to change or remove the

constraint.

changeConstraint

changeConstraint allows you to change parameters of an existing constraint. The input
parameters are:

required userConstraintUniqueld int unique id returned by createConstraint

optional jointChildPivot vec3, list of 3 floats updated child pivot, see 'createConstraint’

optional jointChildFrameOrientation | vec4, list of 4 floats updated child frame orientation as
quaternion

optional maxForce float maximum force that constraint can apply

optional physicsClientld int if you are connected to multiple servers, you

can pick one.

See also Bullet/examples/pybullet/examples/constraint.py

removeConstraint will remove a constraint, given by its unique id. Its input parameters are:

required

userConstraintUniqueld

int unique id as returned by createConstraint

optional

physicsClientld

int unique id as returned by 'connect'

getNumConstraints, getConstraintUniqueld

You can query for the total number of constraints, created using 'createConstraint’. Optional
parameter is the int physicsClientld.

getConstraintUniqueld

getConstraintUniqueld will take a serial index in range 0..getNumConstraints, and reports the

26

constraint unique id. Note that the constraint unique ids may not be contiguous, since you may

remove constraints. The input is the integer serial index and optionally a physicsClientld.

getConstraintinfo

You can query the constraint info give a constraint unique id.

The input parameters are

required constraintUniqueld

int unique id as returned by createConstraint

optional physicsClientld

int unique id as returned by 'connect'

The output list is:

parentBodyUniqueld int See createConstraint
parentJointindex int See createConstraint
childBodyUniqueld int See createConstraint
childLinkindex int See createConstraint
constraintType int See createConstraint

jointAxis

vec3, list of 3 floats

See createConstraint

jointPivotinParent

vec3, list of 3 floats

See createConstraint

jointPivotInChild

vec3, list of 3 floats

See createConstraint

jointFrameOrientationParent

vecd, list of 4 floats

See createConstraint

jointFrameOrientationChild

vecd, list of 4 floats

See createConstraint

maxAppliedForce

float

See createConstraint

getDynamicsinfo/changeDynamics

You can get information about the mass, center of mass, friction and other properties of the

base and links.

27

The input parameters to getDynamicsinfo are:

required bodyUniqueld int object unique id, as returned by loadURDF etc.
required linkIndex int link (joint) index or -1 for the base.
optional physicsClientld int if you are connected to multiple servers, you can pick one.

The return information is limited, we will expose more information when we need it:

mass

double

mass in kg

lateral_friction

double

friction coefficient

changeDynamics
You can change the properties such as mass, friction and restitution coefficients using
changeDynamics.

The input parameters are:

required bodyUniqueld int object unique id, as returned by loadURDF etc.
required linkindex int link index or -1 for the base
optional mass double change the mass of the link (or base for linkindex -1)
optional lateralFriction double lateral (linear) contact friction
optional spinningFriction double torsional friction around the contact normal
optional rollingFriction double torsional friction orthogonal to contact normal
optional restitution double bouncyness of contact. Keep it a bit less than 1.
optional physicsClientld int if you are connected to multiple servers, you can pick
one.
setTimeStep

You can set the physics engine timestep that is used when calling 'stepSimulation'. It is best to
only call this method at the start of a simulation. Don't change this time step regularly.
setTimeStep can also be achieved using the new setPhysicsEngineParameter API.

The input parameters are:

28

required | timeStep float Each time you call 'stepSimulation' the timeStep will proceed with
'timeStep’'.
optional physicsClientld int if you are connected to multiple servers, you can pick one.

setPhysicsEngineParameter

You can set physics engine parameters using the setPhysicsEngineParameter API. The
following input parameters are exposed:

optional

fixedTimeStep

float

physics engine timestep in fraction of
seconds, each time you call 'stepSimulation’'.
Same as 'setTimeStep'

optional

numSolverlterations

int

Choose the number of constraint solver
iterations.

optional

useSplitimpulse

int

Advanced feature, only when using maximal
coordinates: split the positional constraint
solving and velocity constraint solving in two
stages, to prevent huge penetration
recovery forces.

optional

splitimpulsePenetrationThreshold float

Related to 'useSplitimpulse': if the
penetration for a particular contact constraint
is less than this specified threshold, no split
impulse will happen for that contact.

optional

numSubSteps

int

Subdivide the physics simulation step further
by 'numSubSteps'. This will trade
performance over accuracy.

optional

collisionFilterMode

int

Use 0 for default collision filter: (group
A&maskB) AND (groupB&maskA). Use 1 to
switch to the OR collision filter: (group
A&maskB) OR (groupB&maskA)

optional

contactBreakingThreshold float

Contact points with distance exceeding this
threshold are not processed by the LCP
solver. In addition, AABBs are extended by
this number. Defaults to 0.02 in Bullet 2.x.

optional

maxNumCmdPer1ms

int

Experimental: add 1ms sleep if the number
of commands executed exceed this
threshold.

optional

enableFileCaching

int

Set to 0 to disable file caching, such as .obj
wavefront file loading

29

optional physicsClientld int if you are connected to multiple servers, you
can pick one.

setDefaultContactERP is an API to set the default contact parameter setting. It will be rolled into
the setPhysicsEngineParameter API.

resetSimulation

resetSimulation will remove all objects from the world and reset the world to initial conditions. It
takes one optional parameter: the physics client Id (in case you created multiple physics server
connections).

startStateLogging/stopStatelLogging

State logging lets you log the state of the simulation, such as the state of one or more objects
after each simulation step (after each call to stepSimulation or automatically after each
simulation step when setRealTimeSimulation is enabled). This allows you to record trajectories
of objects. There is also the option to log the common state of bodies such as base position and
orientation, joint positions (angles) and joint motor forces.

All log files generated using startStateLogging can be read using C++ or Python scripts. See
quadruped_playback.py and kuka_with_cube_playback.py for Python scripts reading the log
files. You can use bullet3/examples/Utils/RobotLoggingUtil.cpp/h to read the log files in C++.

For MP4 video recording you can use the logging option STATE_LOGGING_VIDEO_MP4. We
plan to implement various other types of logging, including logging the state of VR controllers.

As a special case, we implemented the logging of the Minitaur robot. The log file from pybullet
simulation is identical to the real Minitaur quadruped log file. See
Bullet/examples/pybullet/examples/logMinitaur.py for an example.

required loggingType int There are various types of logging implemented.

STATE_LOGGING_MINITAUR: This will require to load the
quadruped/quadruped.urdf and object unique id from the
quadruped. It logs the timestamp, IMU roll/pitch/yaw, 8 leg motor
positions (q0-q7), 8 leg motor torques (u0-u7), the forward speed
of the torso and mode (unused in simulation).

STATE_LOGGING_GENERIC_ROBOT_DATA: This will log a log
of the data of either all objects or selected ones (if objectUniquelds

30

is provided).

STATE_LOGGING_VIDEO_MP4: this will open an MP4 file and
start streaming the OpenGL 3D visualizer pixels to the file using an
ffmpeg pipe. It will require ffmpeg installed. You can also use
avconv (default on Ubuntu), just create a symbolic link so that
ffmpeg points to avconv. On Windows, ffmpeg has some issues
that cause tearing/color artifacts in some cases.

STATE_LOGGING_CONTACT_POINTS
STATE_LOGGING_VR_CONTROLLERS.
STATE_LOGGING_PROFILE_TIMINGS

This will dump a timings file in JSON format that can be opened
using Google Chrome about://tracing LOAD.

required

fileName

string

file name (absolute or relative path) to store the log file data.

optional

objectUniquelds

list of int

If left empty, the logger may log every object, otherwise the logger
just logs the objects in the objectUniquelds list.

optional

maxLogDof

int

Maximum number of joint degrees of freedom to log (excluding the
base dofs). This applies to
STATE_LOGGING_GENERIC_ROBOT_DATA. Default value is
12.

optional

bodyUniqueldA

int

Applies to STATE_LOGGING_CONTACT_POINTS. If
provided,only log contact points involving bodyUniqueldA.

optional

bodyUniqueldB

int

Applies to STATE_LOGGING_CONTACT_POINTS. If
provided,only log contact points involving bodyUniqueldB.

optional

linkIndexA

int

Applies to STATE_LOGGING_CONTACT_POINTS. If
provided,only log contact points involving linklndexA for
bodyUniqueldA.

optional

linkIndexB

int

Applies to STATE_LOGGING_CONTACT_POINTS. If
provided,only log contact points involving linkindexB for
bodyUniqueldA.

optional

deviceTypeFilter

int

deviceTypeFilter allows you to select what VR devices to log:
VR_DEVICE_CONTROLLER, VR_DEVICE_HMD
,VR_DEVICE_GENERIC_TRACKER or any combination of them.
Applies to STATE_LOGGING_VR_CONTROLLERS. Default
values is VR_DEVICE_CONTROLLER.

optional

physicsClientld

int

if you are connected to multiple servers, you can pick one.

The command will return a non-negative int loggingUniqueld, that can be used with
stopStateLogging.

Todo: document the data that is logged for each logging type. For now, use the log reading
utilities to find out, or check out the C++ source code of the logging or Python dumpLog.py

script.

https://github.com/bulletphysics/bullet3/blob/master/examples/SharedMemory/PhysicsServerCommandProcessor.cpp#L467
https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/examples/dumpLog.py

stopStateLogging

You can stop a logger using its loggingUniqueld.

submitProfileTiming
pybullet and Bullet have instrumented many functions so you can see where the time is spend.
You can dump those profile timings in a file, that can be viewed with Google Chrome in the
about://tracing window using the LOAD feature. In the GUI, you can press 'p' to start/stop the
profile dump. In some cases you may want to instrument the timings of your client code. You
can submit profile timings using pybullet. Here is an example output:

Synthetic Camera Rendering

pybullet has both a build-in OpenGL GPU visualizer and a build-in CPU renderer based on
TinyRenderer. This makes it very easy to render images from an arbitrary camera position.

The synthetic camera is specified by two 4 by 4 matrices: the view matrix and the projection
matrix. Since those are not very intuitive, there are some helper methods to compute the view

and projection matrix from understandable parameters.

computeViewMatrix

The computeViewMatrix input p