#include "IKTrajectoryHelper.h" #include "BussIK/Node.h" #include "BussIK/Tree.h" #include "BussIK/Jacobian.h" #include "BussIK/VectorRn.h" #include "BussIK/MatrixRmn.h" #include "Bullet3Common/b3AlignedObjectArray.h" #include "BulletDynamics/Featherstone/btMultiBody.h" #define RADIAN(X) ((X)*RadiansToDegrees) //use BussIK and Reflexxes to convert from Cartesian endeffector future target to //joint space positions at each real-time (simulation) step struct IKTrajectoryHelperInternalData { VectorR3 m_endEffectorTargetPosition; VectorRn m_nullSpaceVelocity; VectorRn m_dampingCoeff; b3AlignedObjectArray m_ikNodes; IKTrajectoryHelperInternalData() { m_endEffectorTargetPosition.SetZero(); m_nullSpaceVelocity.SetZero(); m_dampingCoeff.SetZero(); } }; IKTrajectoryHelper::IKTrajectoryHelper() { m_data = new IKTrajectoryHelperInternalData; } IKTrajectoryHelper::~IKTrajectoryHelper() { delete m_data; } bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3], const double endEffectorTargetOrientation[4], const double endEffectorWorldPosition[3], const double endEffectorWorldOrientation[4], const double* q_current, int numQ,int endEffectorIndex, double* q_new, int ikMethod, const double* linear_jacobian, const double* angular_jacobian, int jacobian_size, const double dampIk[6]) { bool useAngularPart = (ikMethod==IK2_VEL_DLS_WITH_ORIENTATION || ikMethod==IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE) ? true : false; Jacobian ikJacobian(useAngularPart,numQ); ikJacobian.Reset(); bool UseJacobianTargets1 = false; if ( UseJacobianTargets1 ) { ikJacobian.SetJtargetActive(); } else { ikJacobian.SetJendActive(); } VectorR3 targets; targets.Set(endEffectorTargetPosition[0],endEffectorTargetPosition[1],endEffectorTargetPosition[2]); ikJacobian.ComputeJacobian(&targets); // Set up Jacobian and deltaS vectors // Set one end effector world position from Bullet VectorRn deltaS(3); for (int i = 0; i < 3; ++i) { deltaS.Set(i,dampIk[i]*(endEffectorTargetPosition[i]-endEffectorWorldPosition[i])); } // Set one end effector world orientation from Bullet VectorRn deltaR(3); if (useAngularPart) { btQuaternion startQ(endEffectorWorldOrientation[0],endEffectorWorldOrientation[1],endEffectorWorldOrientation[2],endEffectorWorldOrientation[3]); btQuaternion endQ(endEffectorTargetOrientation[0],endEffectorTargetOrientation[1],endEffectorTargetOrientation[2],endEffectorTargetOrientation[3]); btQuaternion deltaQ = endQ*startQ.inverse(); float angle = deltaQ.getAngle(); btVector3 axis = deltaQ.getAxis(); if (angle > PI) { angle -= 2.0*PI; } else if (angle < -PI) { angle += 2.0*PI; } float angleDot = angle; btVector3 angularVel = angleDot*axis.normalize(); for (int i = 0; i < 3; ++i) { deltaR.Set(i,dampIk[i+3]*angularVel[i]); } } { if (useAngularPart) { VectorRn deltaC(6); MatrixRmn completeJacobian(6,numQ); for (int i = 0; i < 3; ++i) { deltaC.Set(i,deltaS[i]); deltaC.Set(i+3,deltaR[i]); for (int j = 0; j < numQ; ++j) { completeJacobian.Set(i,j,linear_jacobian[i*numQ+j]); completeJacobian.Set(i+3,j,angular_jacobian[i*numQ+j]); } } ikJacobian.SetDeltaS(deltaC); ikJacobian.SetJendTrans(completeJacobian); } else { VectorRn deltaC(3); MatrixRmn completeJacobian(3,numQ); for (int i = 0; i < 3; ++i) { deltaC.Set(i,deltaS[i]); for (int j = 0; j < numQ; ++j) { completeJacobian.Set(i,j,linear_jacobian[i*numQ+j]); } } ikJacobian.SetDeltaS(deltaC); ikJacobian.SetJendTrans(completeJacobian); } } // Calculate the change in theta values switch (ikMethod) { case IK2_JACOB_TRANS: ikJacobian.CalcDeltaThetasTranspose(); // Jacobian transpose method break; case IK2_DLS: case IK2_VEL_DLS: case IK2_VEL_DLS_WITH_ORIENTATION: //ikJacobian.CalcDeltaThetasDLS(); // Damped least squares method assert(m_data->m_dampingCoeff.GetLength()==numQ); ikJacobian.CalcDeltaThetasDLS2(m_data->m_dampingCoeff); break; case IK2_VEL_DLS_WITH_NULLSPACE: case IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE: assert(m_data->m_nullSpaceVelocity.GetLength()==numQ); ikJacobian.CalcDeltaThetasDLSwithNullspace(m_data->m_nullSpaceVelocity); break; case IK2_DLS_SVD: ikJacobian.CalcDeltaThetasDLSwithSVD(); break; case IK2_PURE_PSEUDO: ikJacobian.CalcDeltaThetasPseudoinverse(); // Pure pseudoinverse method break; case IK2_SDLS: ikJacobian.CalcDeltaThetasSDLS(); // Selectively damped least squares method break; default: ikJacobian.ZeroDeltaThetas(); break; } // Use for velocity IK, update theta dot //ikJacobian.UpdateThetaDot(); // Use for position IK, incrementally update theta //ikJacobian.UpdateThetas(); // Apply the change in the theta values //ikJacobian.UpdatedSClampValue(&targets); for (int i=0;im_ikNodes[i]->GetTheta(); } return true; } bool IKTrajectoryHelper::computeNullspaceVel(int numQ, const double* q_current, const double* lower_limit, const double* upper_limit, const double* joint_range, const double* rest_pose) { m_data->m_nullSpaceVelocity.SetLength(numQ); m_data->m_nullSpaceVelocity.SetZero(); double stayCloseToZeroGain = 0.1; double stayAwayFromLimitsGain = 10.0; // Stay close to zero for (int i = 0; i < numQ; ++i) { m_data->m_nullSpaceVelocity[i] = stayCloseToZeroGain * (rest_pose[i]-q_current[i]); } // Stay away from joint limits for (int i = 0; i < numQ; ++i) { if (q_current[i] > upper_limit[i]) { m_data->m_nullSpaceVelocity[i] += stayAwayFromLimitsGain * (upper_limit[i] - q_current[i]) / joint_range[i]; } if (q_current[i] < lower_limit[i]) { m_data->m_nullSpaceVelocity[i] += stayAwayFromLimitsGain * (lower_limit[i] - q_current[i]) / joint_range[i]; } } return true; } bool IKTrajectoryHelper::setDampingCoeff(int numQ, const double* coeff) { m_data->m_dampingCoeff.SetLength(numQ); m_data->m_dampingCoeff.SetZero(); for (int i = 0; i < numQ; ++i) { m_data->m_dampingCoeff[i] = coeff[i]; } return true; }