/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ // Collision Radius #define COLLISION_RADIUS 0.0f #include "BenchmarkDemo.h" #ifdef USE_GRAPHICAL_BENCHMARK #include "GlutStuff.h" #endif //USE_GRAPHICAL_BENCHMARK ///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files. #include "btBulletDynamicsCommon.h" #include //printf debugging #include "Taru.mdl" #include "landscape.mdl" #include "BulletCollision/BroadphaseCollision/btDbvtBroadphase.h" #ifdef USE_PARALLEL_DISPATCHER_BENCHMARK #include "BulletMultiThreaded/SpuGatheringCollisionDispatcher.h" #include "BulletMultiThreaded/SequentialThreadSupport.h" #include "BulletMultiThreaded/SpuNarrowPhaseCollisionTask/SpuGatheringCollisionTask.h" #endif #include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h" #ifdef USE_PARALLEL_DISPATCHER_BENCHMARK #ifdef _WIN32 #include "BulletMultiThreaded/Win32ThreadSupport.h" #elif defined (USE_PTHREADS) #include "BulletMultiThreaded/PosixThreadSupport.h" #endif #include "BulletMultiThreaded/SpuGatheringCollisionDispatcher.h" #include "BulletMultiThreaded/btParallelConstraintSolver.h" btThreadSupportInterface* createSolverThreadSupport(int maxNumThreads) { //#define SEQUENTIAL #ifdef SEQUENTIAL SequentialThreadSupport::SequentialThreadConstructionInfo tci("solverThreads",SolverThreadFunc,SolverlsMemoryFunc); SequentialThreadSupport* threadSupport = new SequentialThreadSupport(tci); threadSupport->startSPU(); #else #ifdef _WIN32 Win32ThreadSupport::Win32ThreadConstructionInfo threadConstructionInfo("solverThreads",SolverThreadFunc,SolverlsMemoryFunc,maxNumThreads); Win32ThreadSupport* threadSupport = new Win32ThreadSupport(threadConstructionInfo); threadSupport->startSPU(); #elif defined (USE_PTHREADS) PosixThreadSupport::ThreadConstructionInfo solverConstructionInfo("solver", SolverThreadFunc, SolverlsMemoryFunc, maxNumThreads); PosixThreadSupport* threadSupport = new PosixThreadSupport(solverConstructionInfo); #else SequentialThreadSupport::SequentialThreadConstructionInfo tci("solverThreads",SolverThreadFunc,SolverlsMemoryFunc); SequentialThreadSupport* threadSupport = new SequentialThreadSupport(tci); threadSupport->startSPU(); #endif #endif return threadSupport; } #endif class btRaycastBar2 { public: btVector3 source[NUMRAYS]; btVector3 dest[NUMRAYS]; btVector3 direction[NUMRAYS]; btVector3 hit[NUMRAYS]; btVector3 normal[NUMRAYS]; int frame_counter; int ms; int sum_ms; int sum_ms_samples; int min_ms; int max_ms; #ifdef USE_BT_CLOCK btClock frame_timer; #endif //USE_BT_CLOCK btScalar dx; btScalar min_x; btScalar max_x; btScalar max_y; btScalar sign; btRaycastBar2 () { ms = 0; max_ms = 0; min_ms = 9999; sum_ms_samples = 0; sum_ms = 0; } btRaycastBar2 (btScalar ray_length, btScalar z,btScalar max_y) { frame_counter = 0; ms = 0; max_ms = 0; min_ms = 9999; sum_ms_samples = 0; sum_ms = 0; dx = 10.0; min_x = 0; max_x = 0; this->max_y = max_y; sign = 1.0; btScalar dalpha = 2*SIMD_2_PI/NUMRAYS; for (int i = 0; i < NUMRAYS; i++) { btScalar alpha = dalpha * i; // rotate around by alpha degrees y btQuaternion q(btVector3(0.0, 1.0, 0.0), alpha); direction[i] = btVector3(1.0, 0.0, 0.0); direction[i] = quatRotate(q , direction[i]); direction[i] = direction[i] * ray_length; source[i] = btVector3(min_x, max_y, z); dest[i] = source[i] + direction[i]; dest[i][1]=-1000; normal[i] = btVector3(1.0, 0.0, 0.0); } } void move (btScalar dt) { if (dt > btScalar(1.0/60.0)) dt = btScalar(1.0/60.0); for (int i = 0; i < NUMRAYS; i++) { source[i][0] += dx * dt * sign; dest[i][0] += dx * dt * sign; } if (source[0][0] < min_x) sign = 1.0; else if (source[0][0] > max_x) sign = -1.0; } void cast (btCollisionWorld* cw) { #ifdef USE_BT_CLOCK frame_timer.reset (); #endif //USE_BT_CLOCK #ifdef BATCH_RAYCASTER if (!gBatchRaycaster) return; gBatchRaycaster->clearRays (); for (int i = 0; i < NUMRAYS; i++) { gBatchRaycaster->addRay (source[i], dest[i]); } gBatchRaycaster->performBatchRaycast (); for (int i = 0; i < gBatchRaycaster->getNumRays (); i++) { const SpuRaycastTaskWorkUnitOut& out = (*gBatchRaycaster)[i]; hit[i].setInterpolate3(source[i],dest[i],out.hitFraction); normal[i] = out.hitNormal; normal[i].normalize (); } #else for (int i = 0; i < NUMRAYS; i++) { btCollisionWorld::ClosestRayResultCallback cb(source[i], dest[i]); cw->rayTest (source[i], dest[i], cb); if (cb.hasHit ()) { hit[i] = cb.m_hitPointWorld; normal[i] = cb.m_hitNormalWorld; normal[i].normalize (); } else { hit[i] = dest[i]; normal[i] = btVector3(1.0, 0.0, 0.0); } } #ifdef USE_BT_CLOCK ms += frame_timer.getTimeMilliseconds (); #endif //USE_BT_CLOCK frame_counter++; if (frame_counter > 50) { min_ms = ms < min_ms ? ms : min_ms; max_ms = ms > max_ms ? ms : max_ms; sum_ms += ms; sum_ms_samples++; btScalar mean_ms = (btScalar)sum_ms/(btScalar)sum_ms_samples; printf("%d rays in %d ms %d %d %f\n", NUMRAYS * frame_counter, ms, min_ms, max_ms, mean_ms); ms = 0; frame_counter = 0; } #endif } void draw () { #ifdef USE_GRAPHICAL_BENCHMARK glDisable (GL_LIGHTING); glColor3f (0.0, 1.0, 0.0); glBegin (GL_LINES); int i; for (i = 0; i < NUMRAYS; i++) { glVertex3f (source[i][0], source[i][1], source[i][2]); glVertex3f (hit[i][0], hit[i][1], hit[i][2]); } glEnd (); glColor3f (1.0, 1.0, 1.0); glBegin (GL_LINES); for (i = 0; i < NUMRAYS; i++) { glVertex3f (hit[i][0], hit[i][1], hit[i][2]); glVertex3f (hit[i][0] + normal[i][0], hit[i][1] + normal[i][1], hit[i][2] + normal[i][2]); } glEnd (); glColor3f (0.0, 1.0, 1.0); glBegin (GL_POINTS); for ( i = 0; i < NUMRAYS; i++) { glVertex3f (hit[i][0], hit[i][1], hit[i][2]); } glEnd (); glEnable (GL_LIGHTING); #endif //USE_GRAPHICAL_BENCHMARK } }; static btRaycastBar2 raycastBar; void BenchmarkDemo::clientMoveAndDisplay() { #ifdef USE_GRAPHICAL_BENCHMARK glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); #endif //USE_GRAPHICAL_BENCHMARK //simple dynamics world doesn't handle fixed-time-stepping //float ms = getDeltaTimeMicroseconds(); ///step the simulation if (m_dynamicsWorld) { m_dynamicsWorld->stepSimulation(btScalar(1./60.)); //optional but useful: debug drawing m_dynamicsWorld->debugDrawWorld(); } if (m_benchmark==7) { castRays(); raycastBar.draw(); } renderme(); #ifdef USE_GRAPHICAL_BENCHMARK glFlush(); swapBuffers(); #endif //USE_GRAPHICAL_BENCHMARK } void BenchmarkDemo::displayCallback(void) { #ifdef USE_GRAPHICAL_BENCHMARK glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderme(); //optional but useful: debug drawing to detect problems if (m_dynamicsWorld) m_dynamicsWorld->debugDrawWorld(); glFlush(); swapBuffers(); #endif //USE_GRAPHICAL_BENCHMARK } void BenchmarkDemo::initPhysics() { setCameraDistance(btScalar(100.)); ///collision configuration contains default setup for memory, collision setup btDefaultCollisionConstructionInfo cci; cci.m_defaultMaxPersistentManifoldPoolSize = 32768; m_collisionConfiguration = new btDefaultCollisionConfiguration(cci); ///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded) m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration); m_dispatcher->setDispatcherFlags(btCollisionDispatcher::CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION); #if USE_PARALLEL_DISPATCHER_BENCHMARK int maxNumOutstandingTasks = 4; #ifdef _WIN32 Win32ThreadSupport* threadSupportCollision = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo( "collision",processCollisionTask, createCollisionLocalStoreMemory,maxNumOutstandingTasks)); #elif defined (USE_PTHREADS) PosixThreadSupport::ThreadConstructionInfo collisionConstructionInfo( "collision",processCollisionTask, createCollisionLocalStoreMemory,maxNumOutstandingTasks); PosixThreadSupport* threadSupportCollision = new PosixThreadSupport(collisionConstructionInfo); #endif //SequentialThreadSupport::SequentialThreadConstructionInfo sci("spuCD", processCollisionTask, createCollisionLocalStoreMemory); //SequentialThreadSupport* seq = new SequentialThreadSupport(sci); m_dispatcher = new SpuGatheringCollisionDispatcher(threadSupportCollision,1,m_collisionConfiguration); #endif ///the maximum size of the collision world. Make sure objects stay within these boundaries ///Don't make the world AABB size too large, it will harm simulation quality and performance btVector3 worldAabbMin(-1000,-1000,-1000); btVector3 worldAabbMax(1000,1000,1000); btHashedOverlappingPairCache* pairCache = new btHashedOverlappingPairCache(); m_overlappingPairCache = new btAxisSweep3(worldAabbMin,worldAabbMax,3500,pairCache); // m_overlappingPairCache = new btSimpleBroadphase(); // m_overlappingPairCache = new btDbvtBroadphase(); ///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded) #ifdef USE_PARALLEL_DISPATCHER_BENCHMARK btThreadSupportInterface* thread = createSolverThreadSupport(4); btConstraintSolver* sol = new btParallelConstraintSolver(thread); #else btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver; #endif //USE_PARALLEL_DISPATCHER_BENCHMARK m_solver = sol; btDiscreteDynamicsWorld* dynamicsWorld; m_dynamicsWorld = dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_overlappingPairCache,m_solver,m_collisionConfiguration); #ifdef USE_PARALLEL_DISPATCHER_BENCHMARK dynamicsWorld->getSimulationIslandManager()->setSplitIslands(false); #endif //USE_PARALLEL_DISPATCHER_BENCHMARK ///the following 3 lines increase the performance dramatically, with a little bit of loss of quality m_dynamicsWorld->getSolverInfo().m_solverMode |=SOLVER_ENABLE_FRICTION_DIRECTION_CACHING; //don't recalculate friction values each frame dynamicsWorld->getSolverInfo().m_numIterations = 5; //few solver iterations //m_defaultContactProcessingThreshold = 0.f;//used when creating bodies: body->setContactProcessingThreshold(...); m_dynamicsWorld->setGravity(btVector3(0,-10,0)); if (m_benchmark<5) { ///create a few basic rigid bodies btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(250.),btScalar(50.),btScalar(250.))); // btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),0); m_collisionShapes.push_back(groundShape); btTransform groundTransform; groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0,-50,0)); //We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here: { btScalar mass(0.); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) groundShape->calculateLocalInertia(mass,localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); //add the body to the dynamics world m_dynamicsWorld->addRigidBody(body); } } switch (m_benchmark) { case 1: { createTest1(); break; } case 2: { createTest2(); break; } case 3: { createTest3(); break; } case 4: { createTest4(); break; } case 5: { createTest5(); break; } case 6: { createTest6(); break; } case 7: { createTest7(); break; } default: { } } clientResetScene(); } void BenchmarkDemo::createTest1() { // 3000 int size = 8; const float cubeSize = 1.0f; float spacing = cubeSize; btVector3 pos(0.0f, cubeSize * 2,0.f); float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f; btBoxShape* blockShape = new btBoxShape(btVector3(cubeSize-COLLISION_RADIUS,cubeSize-COLLISION_RADIUS,cubeSize-COLLISION_RADIUS)); btVector3 localInertia(0,0,0); float mass = 2.f; blockShape->calculateLocalInertia(mass,localInertia); btTransform trans; trans.setIdentity(); for(int k=0;k<47;k++) { for(int j=0;jcalculateLocalInertia(mass,localInertia); // btScalar diffX = boxSize[0] * 1.0f; btScalar diffY = boxSize[1] * 1.0f; btScalar diffZ = boxSize[2] * 1.0f; btScalar offset = -stackSize * (diffZ * 2.0f) * 0.5f; btVector3 pos(0.0f, diffY, 0.0f); btTransform trans; trans.setIdentity(); while(stackSize) { for(int i=0;icalculateLocalInertia(mass,localInertia); btScalar diffX = boxSize[0]*1.02f; btScalar diffY = boxSize[1]*1.02f; btScalar diffZ = boxSize[2]*1.02f; btScalar offsetX = -stackSize * (diffX * 2.0f + space) * 0.5f; btScalar offsetZ = -stackSize * (diffZ * 2.0f + space) * 0.5f; while(stackSize) { for(int j=0;jlocalCreateRigidBody(mass,trans,blockShape); } } offsetX += diffX; offsetZ += diffZ; pos[1] += (diffY * 2.0f + space); stackSize--; } } const btVector3 rotate( const btQuaternion& quat, const btVector3 & vec ) { float tmpX, tmpY, tmpZ, tmpW; tmpX = ( ( ( quat.getW() * vec.getX() ) + ( quat.getY() * vec.getZ() ) ) - ( quat.getZ() * vec.getY() ) ); tmpY = ( ( ( quat.getW() * vec.getY() ) + ( quat.getZ() * vec.getX() ) ) - ( quat.getX() * vec.getZ() ) ); tmpZ = ( ( ( quat.getW() * vec.getZ() ) + ( quat.getX() * vec.getY() ) ) - ( quat.getY() * vec.getX() ) ); tmpW = ( ( ( quat.getX() * vec.getX() ) + ( quat.getY() * vec.getY() ) ) + ( quat.getZ() * vec.getZ() ) ); return btVector3( ( ( ( ( tmpW * quat.getX() ) + ( tmpX * quat.getW() ) ) - ( tmpY * quat.getZ() ) ) + ( tmpZ * quat.getY() ) ), ( ( ( ( tmpW * quat.getY() ) + ( tmpY * quat.getW() ) ) - ( tmpZ * quat.getX() ) ) + ( tmpX * quat.getZ() ) ), ( ( ( ( tmpW * quat.getZ() ) + ( tmpZ * quat.getW() ) ) - ( tmpX * quat.getY() ) ) + ( tmpY * quat.getX() ) ) ); } void BenchmarkDemo::createTowerCircle(const btVector3& offsetPosition,int stackSize,int rotSize,const btVector3& boxSize) { btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0]-COLLISION_RADIUS,boxSize[1]-COLLISION_RADIUS,boxSize[2]-COLLISION_RADIUS)); btTransform trans; trans.setIdentity(); float mass = 1.f; btVector3 localInertia(0,0,0); blockShape->calculateLocalInertia(mass,localInertia); float radius = 1.3f * rotSize * boxSize[0] / SIMD_PI; // create active boxes btQuaternion rotY(0,1,0,0); float posY = boxSize[1]; for(int i=0;icalculateLocalInertia(mass,localInertia); btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,shape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); m_ownerWorld->addRigidBody(body); return body; } public: RagDoll (btDynamicsWorld* ownerWorld, const btVector3& positionOffset,btScalar scale) : m_ownerWorld (ownerWorld) { // Setup the geometry m_shapes[BODYPART_PELVIS] = new btCapsuleShape(btScalar(0.15)*scale, btScalar(0.20)*scale); m_shapes[BODYPART_SPINE] = new btCapsuleShape(btScalar(0.15)*scale, btScalar(0.28)*scale); m_shapes[BODYPART_HEAD] = new btCapsuleShape(btScalar(0.10)*scale, btScalar(0.05)*scale); m_shapes[BODYPART_LEFT_UPPER_LEG] = new btCapsuleShape(btScalar(0.07)*scale, btScalar(0.45)*scale); m_shapes[BODYPART_LEFT_LOWER_LEG] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.37)*scale); m_shapes[BODYPART_RIGHT_UPPER_LEG] = new btCapsuleShape(btScalar(0.07)*scale, btScalar(0.45)*scale); m_shapes[BODYPART_RIGHT_LOWER_LEG] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.37)*scale); m_shapes[BODYPART_LEFT_UPPER_ARM] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.33)*scale); m_shapes[BODYPART_LEFT_LOWER_ARM] = new btCapsuleShape(btScalar(0.04)*scale, btScalar(0.25)*scale); m_shapes[BODYPART_RIGHT_UPPER_ARM] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.33)*scale); m_shapes[BODYPART_RIGHT_LOWER_ARM] = new btCapsuleShape(btScalar(0.04)*scale, btScalar(0.25)*scale); // Setup all the rigid bodies btTransform offset; offset.setIdentity(); offset.setOrigin(positionOffset); btTransform transform; transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.), btScalar(0.))); m_bodies[BODYPART_PELVIS] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_PELVIS]); transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.2), btScalar(0.))); m_bodies[BODYPART_SPINE] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_SPINE]); transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.6), btScalar(0.))); m_bodies[BODYPART_HEAD] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_HEAD]); transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(0.65), btScalar(0.))); m_bodies[BODYPART_LEFT_UPPER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_UPPER_LEG]); transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(0.2), btScalar(0.))); m_bodies[BODYPART_LEFT_LOWER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_LOWER_LEG]); transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(0.18), btScalar(0.65), btScalar(0.))); m_bodies[BODYPART_RIGHT_UPPER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_UPPER_LEG]); transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(0.18), btScalar(0.2), btScalar(0.))); m_bodies[BODYPART_RIGHT_LOWER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_LOWER_LEG]); transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(-0.35), btScalar(1.45), btScalar(0.))); transform.getBasis().setEulerZYX(0,0,M_PI_2); m_bodies[BODYPART_LEFT_UPPER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_UPPER_ARM]); transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(-0.7), btScalar(1.45), btScalar(0.))); transform.getBasis().setEulerZYX(0,0,M_PI_2); m_bodies[BODYPART_LEFT_LOWER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_LOWER_ARM]); transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(0.35), btScalar(1.45), btScalar(0.))); transform.getBasis().setEulerZYX(0,0,-M_PI_2); m_bodies[BODYPART_RIGHT_UPPER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_UPPER_ARM]); transform.setIdentity(); transform.setOrigin(scale*btVector3(btScalar(0.7), btScalar(1.45), btScalar(0.))); transform.getBasis().setEulerZYX(0,0,-M_PI_2); m_bodies[BODYPART_RIGHT_LOWER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_LOWER_ARM]); // Setup some damping on the m_bodies for (int i = 0; i < BODYPART_COUNT; ++i) { m_bodies[i]->setDamping(btScalar(0.05), btScalar(0.85)); m_bodies[i]->setDeactivationTime(btScalar(0.8)); m_bodies[i]->setSleepingThresholds(btScalar(1.6), btScalar(2.5)); } // Now setup the constraints btHingeConstraint* hingeC; btConeTwistConstraint* coneC; btTransform localA, localB; localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.15), btScalar(0.))); localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.15), btScalar(0.))); hingeC = new btHingeConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_SPINE], localA, localB); hingeC->setLimit(btScalar(-M_PI_4), btScalar(M_PI_2)); m_joints[JOINT_PELVIS_SPINE] = hingeC; m_ownerWorld->addConstraint(m_joints[JOINT_PELVIS_SPINE], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0,0,M_PI_2); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.30), btScalar(0.))); localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.))); coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_HEAD], localA, localB); coneC->setLimit(M_PI_4, M_PI_4, M_PI_2); m_joints[JOINT_SPINE_HEAD] = coneC; m_ownerWorld->addConstraint(m_joints[JOINT_SPINE_HEAD], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0,0,-M_PI_4*5); localA.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(-0.10), btScalar(0.))); localB.getBasis().setEulerZYX(0,0,-M_PI_4*5); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.225), btScalar(0.))); coneC = new btConeTwistConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_LEFT_UPPER_LEG], localA, localB); coneC->setLimit(M_PI_4, M_PI_4, 0); m_joints[JOINT_LEFT_HIP] = coneC; m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_HIP], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.225), btScalar(0.))); localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.185), btScalar(0.))); hingeC = new btHingeConstraint(*m_bodies[BODYPART_LEFT_UPPER_LEG], *m_bodies[BODYPART_LEFT_LOWER_LEG], localA, localB); hingeC->setLimit(btScalar(0), btScalar(M_PI_2)); m_joints[JOINT_LEFT_KNEE] = hingeC; m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_KNEE], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0,0,M_PI_4); localA.setOrigin(scale*btVector3(btScalar(0.18), btScalar(-0.10), btScalar(0.))); localB.getBasis().setEulerZYX(0,0,M_PI_4); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.225), btScalar(0.))); coneC = new btConeTwistConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_RIGHT_UPPER_LEG], localA, localB); coneC->setLimit(M_PI_4, M_PI_4, 0); m_joints[JOINT_RIGHT_HIP] = coneC; m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_HIP], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.225), btScalar(0.))); localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.185), btScalar(0.))); hingeC = new btHingeConstraint(*m_bodies[BODYPART_RIGHT_UPPER_LEG], *m_bodies[BODYPART_RIGHT_LOWER_LEG], localA, localB); hingeC->setLimit(btScalar(0), btScalar(M_PI_2)); m_joints[JOINT_RIGHT_KNEE] = hingeC; m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_KNEE], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0,0,M_PI); localA.setOrigin(scale*btVector3(btScalar(-0.2), btScalar(0.15), btScalar(0.))); localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.18), btScalar(0.))); coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_LEFT_UPPER_ARM], localA, localB); coneC->setLimit(M_PI_2, M_PI_2, 0); m_joints[JOINT_LEFT_SHOULDER] = coneC; m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_SHOULDER], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.18), btScalar(0.))); localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.))); hingeC = new btHingeConstraint(*m_bodies[BODYPART_LEFT_UPPER_ARM], *m_bodies[BODYPART_LEFT_LOWER_ARM], localA, localB); hingeC->setLimit(btScalar(-M_PI_2), btScalar(0)); m_joints[JOINT_LEFT_ELBOW] = hingeC; m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_ELBOW], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0,0,0); localA.setOrigin(scale*btVector3(btScalar(0.2), btScalar(0.15), btScalar(0.))); localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.18), btScalar(0.))); coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_RIGHT_UPPER_ARM], localA, localB); coneC->setLimit(M_PI_2, M_PI_2, 0); m_joints[JOINT_RIGHT_SHOULDER] = coneC; m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_SHOULDER], true); localA.setIdentity(); localB.setIdentity(); localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.18), btScalar(0.))); localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.))); hingeC = new btHingeConstraint(*m_bodies[BODYPART_RIGHT_UPPER_ARM], *m_bodies[BODYPART_RIGHT_LOWER_ARM], localA, localB); hingeC->setLimit(btScalar(-M_PI_2), btScalar(0)); m_joints[JOINT_RIGHT_ELBOW] = hingeC; m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_ELBOW], true); } virtual ~RagDoll () { int i; // Remove all constraints for ( i = 0; i < JOINT_COUNT; ++i) { m_ownerWorld->removeConstraint(m_joints[i]); delete m_joints[i]; m_joints[i] = 0; } // Remove all bodies and shapes for ( i = 0; i < BODYPART_COUNT; ++i) { m_ownerWorld->removeRigidBody(m_bodies[i]); delete m_bodies[i]->getMotionState(); delete m_bodies[i]; m_bodies[i] = 0; delete m_shapes[i]; m_shapes[i] = 0; } } }; void BenchmarkDemo::createTest3() { setCameraDistance(btScalar(50.)); int size = 16; float sizeX = 1.f; float sizeY = 1.f; //int rc=0; btScalar scale(3.5); btVector3 pos(0.0f, sizeY, 0.0f); while(size) { float offset = -size * (sizeX * 6.0f) * 0.5f; for(int i=0;isetLocalScaling(btVector3(scaling,scaling,scaling)); for (int i=0;iaddPoint(vtx*btScalar(1./scaling)); } //this will enable polyhedral contact clipping, better quality, slightly slower //convexHullShape->initializePolyhedralFeatures(); btTransform trans; trans.setIdentity(); float mass = 1.f; btVector3 localInertia(0,0,0); convexHullShape->calculateLocalInertia(mass,localInertia); for(int k=0;k<15;k++) { for(int j=0;jaddIndexedMesh(part,PHY_SHORT); bool useQuantizedAabbCompression = true; btBvhTriangleMeshShape* trimeshShape = new btBvhTriangleMeshShape(meshInterface,useQuantizedAabbCompression); btVector3 localInertia(0,0,0); trans.setOrigin(btVector3(0,-25,0)); btRigidBody* body = localCreateRigidBody(0,trans,trimeshShape); body->setFriction (btScalar(0.9)); } } void BenchmarkDemo::createTest5() { setCameraDistance(btScalar(250.)); btVector3 boxSize(1.5f,1.5f,1.5f); float boxMass = 1.0f; float sphereRadius = 1.5f; float sphereMass = 1.0f; float capsuleHalf = 2.0f; float capsuleRadius = 1.0f; float capsuleMass = 1.0f; { int size = 10; int height = 10; const float cubeSize = boxSize[0]; float spacing = 2.0f; btVector3 pos(0.0f, 20.0f, 0.0f); float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f; int numBodies = 0; for(int k=0;kaddPoint(vtx); } btTransform trans; trans.setIdentity(); float mass = 1.f; btVector3 localInertia(0,0,0); convexHullShape->calculateLocalInertia(mass,localInertia); { int size = 10; int height = 10; const float cubeSize = boxSize[0]; float spacing = 2.0f; btVector3 pos(0.0f, 20.0f, 0.0f); float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f; for(int k=0;kgetNumCollisionObjects()-1; i>=0 ;i--) { btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(obj); if (body && body->getMotionState()) { delete body->getMotionState(); } m_dynamicsWorld->removeCollisionObject( obj ); delete obj; } } //delete collision shapes for (int j=0;jgetShapeType() != INVALID_SHAPE_PROXYTYPE)); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) shape->calculateLocalInertia(mass,localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btRigidBody* body = new btRigidBody(mass,0,shape,localInertia); body->setWorldTransform(startTransform); body->setContactProcessingThreshold(m_defaultContactProcessingThreshold); m_dynamicsWorld->addRigidBody(body); return body; } #endif //USE_GRAPHICAL_BENCHMARK