/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2015 Google Inc. http://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "NewtonsRopeCradle.h" #include // TODO: Should I use another data structure? #include #include "btBulletDynamicsCommon.h" #include "LinearMath/btVector3.h" #include "LinearMath/btAlignedObjectArray.h" #include "../CommonInterfaces/CommonRigidBodyBase.h" #include "BulletSoftBody/btSoftRigidDynamicsWorld.h" #include "BulletSoftBody/btSoftBodyHelpers.h" #include "BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h" #include "../CommonInterfaces/CommonParameterInterface.h" static btScalar gPendulaQty = 5; // Number of pendula in newton's cradle //TODO: This would actually be an Integer, but the Slider does not like integers, so I floor it when changed static btScalar gDisplacedPendula = 1; // number of displaced pendula //TODO: This is an int as well static btScalar gPendulaRestitution = 1; // pendula restition when hitting against each other static btScalar gSphereRadius = 1; // pendula radius static btScalar gInitialPendulumWidth = 4; // default pendula width static btScalar gInitialPendulumHeight = 8; // default pendula height static btScalar gRopeResolution = 1; // default rope resolution (number of links as in a chain) static btScalar gDisplacementForce = 30; // default force to displace the pendula static btScalar gForceScalar = 0; // default force scalar to apply a displacement struct NewtonsRopeCradleExample : public CommonRigidBodyBase { NewtonsRopeCradleExample(struct GUIHelperInterface* helper) : CommonRigidBodyBase(helper) { } virtual ~NewtonsRopeCradleExample(){} virtual void initPhysics(); virtual void stepSimulation(float deltaTime); virtual void renderScene(); virtual void applyPendulumForce(btScalar pendulumForce); void createEmptyDynamicsWorld() { m_collisionConfiguration = new btSoftBodyRigidBodyCollisionConfiguration(); m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration); m_broadphase = new btDbvtBroadphase(); m_solver = new btSequentialImpulseConstraintSolver; m_dynamicsWorld = new btSoftRigidDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration); m_dynamicsWorld->setGravity(btVector3(0, -10, 0)); softBodyWorldInfo.m_broadphase = m_broadphase; softBodyWorldInfo.m_dispatcher = m_dispatcher; softBodyWorldInfo.m_gravity = m_dynamicsWorld->getGravity(); softBodyWorldInfo.m_sparsesdf.Initialize(); } virtual void createRopePendulum(btSphereShape* colShape, const btVector3& position, const btQuaternion& pendulumOrientation, btScalar width, btScalar height, btScalar mass); virtual void changePendulaRestitution(btScalar restitution); virtual void connectWithRope(btRigidBody* body1, btRigidBody* body2); virtual bool keyboardCallback(int key, int state); virtual btSoftRigidDynamicsWorld* getSoftDynamicsWorld() { ///just make it a btSoftRigidDynamicsWorld please ///or we will add type checking return (btSoftRigidDynamicsWorld*) m_dynamicsWorld; } void resetCamera() { float dist = 41; float pitch = 52; float yaw = 35; float targetPos[3]={0,0.46,0}; m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]); } std::vector constraints; std::vector pendula; btSoftBodyWorldInfo softBodyWorldInfo; }; static NewtonsRopeCradleExample* nex = NULL; void onRopePendulaRestitutionChanged(float pendulaRestitution); void floorRSliderValue(float notUsed); void applyRForceWithForceScalar(float forceScalar); void NewtonsRopeCradleExample::initPhysics() { { // create a slider to change the number of pendula SliderParams slider("Number of Pendula", &gPendulaQty); slider.m_minVal = 1; slider.m_maxVal = 50; slider.m_callback = floorRSliderValue; // hack to get integer values slider.m_clampToNotches = false; m_guiHelper->getParameterInterface()->registerSliderFloatParameter( slider); } { // create a slider to change the number of displaced pendula SliderParams slider("Number of Displaced Pendula", &gDisplacedPendula); slider.m_minVal = 0; slider.m_maxVal = 49; slider.m_callback = floorRSliderValue; // hack to get integer values slider.m_clampToNotches = false; m_guiHelper->getParameterInterface()->registerSliderFloatParameter( slider); } { // create a slider to change the pendula restitution SliderParams slider("Pendula Restitution", &gPendulaRestitution); slider.m_minVal = 0; slider.m_maxVal = 1; slider.m_clampToNotches = false; slider.m_callback = onRopePendulaRestitutionChanged; m_guiHelper->getParameterInterface()->registerSliderFloatParameter( slider); } { // create a slider to change the rope resolution SliderParams slider("Rope Resolution", &gRopeResolution); slider.m_minVal = 1; slider.m_maxVal = 20; slider.m_clampToNotches = false; slider.m_callback = floorRSliderValue; m_guiHelper->getParameterInterface()->registerSliderFloatParameter( slider); } { // create a slider to change the pendulum width SliderParams slider("Pendulum Width", &gInitialPendulumWidth); slider.m_minVal = 0; slider.m_maxVal = 40; slider.m_clampToNotches = false; m_guiHelper->getParameterInterface()->registerSliderFloatParameter( slider); } { // create a slider to change the pendulum height SliderParams slider("Pendulum Height", &gInitialPendulumHeight); slider.m_minVal = 0; slider.m_maxVal = 40; slider.m_clampToNotches = false; m_guiHelper->getParameterInterface()->registerSliderFloatParameter( slider); } { // create a slider to change the force to displace the lowest pendulum SliderParams slider("Displacement force", &gDisplacementForce); slider.m_minVal = 0.1; slider.m_maxVal = 200; slider.m_clampToNotches = false; m_guiHelper->getParameterInterface()->registerSliderFloatParameter( slider); } { // create a slider to apply the force by slider SliderParams slider("Apply displacement force", &gForceScalar); slider.m_minVal = -1; slider.m_maxVal = 1; slider.m_clampToNotches = false; m_guiHelper->getParameterInterface()->registerSliderFloatParameter( slider); } m_guiHelper->setUpAxis(1); createEmptyDynamicsWorld(); // create a debug drawer m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); if (m_dynamicsWorld->getDebugDrawer()) m_dynamicsWorld->getDebugDrawer()->setDebugMode( btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawConstraints + btIDebugDraw::DBG_DrawConstraintLimits); { // create the pendula starting at the indicated position below and where each pendulum has the following mass btScalar pendulumMass(1.0f); btVector3 position(0.0f,15.0f,0.0f); // initial left-most pendulum position btQuaternion orientation(0,0,0,1); // orientation of the pendula // Re-using the same collision is better for memory usage and performance btSphereShape* pendulumShape = new btSphereShape(gSphereRadius); m_collisionShapes.push_back(pendulumShape); for (int i = 0; i < floor(gPendulaQty); i++) { // create pendulum createRopePendulum(pendulumShape, position, orientation,gInitialPendulumWidth, gInitialPendulumHeight, pendulumMass); // displace the pendula 1.05 sphere size, so that they all nearly touch (small spacings in between) position.setX(position.x()-2.1f * gSphereRadius); } } m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); } void NewtonsRopeCradleExample::connectWithRope(btRigidBody* body1, btRigidBody* body2) { btSoftBody* softBodyRope0 = btSoftBodyHelpers::CreateRope(softBodyWorldInfo,body1->getWorldTransform().getOrigin(),body2->getWorldTransform().getOrigin(),gRopeResolution,0); softBodyRope0->setTotalMass(0.1f); softBodyRope0->appendAnchor(0,body1); softBodyRope0->appendAnchor(softBodyRope0->m_nodes.size()-1,body2); softBodyRope0->m_cfg.piterations = 5; softBodyRope0->m_cfg.kDP = 0.005f; softBodyRope0->m_cfg.kSHR = 1; softBodyRope0->m_cfg.kCHR = 1; softBodyRope0->m_cfg.kKHR = 1; getSoftDynamicsWorld()->addSoftBody(softBodyRope0); } void NewtonsRopeCradleExample::stepSimulation(float deltaTime) { applyRForceWithForceScalar(gForceScalar); // apply force defined by apply force slider if (m_dynamicsWorld) { m_dynamicsWorld->stepSimulation(deltaTime); } } void NewtonsRopeCradleExample::createRopePendulum(btSphereShape* colShape, const btVector3& position, const btQuaternion& pendulumOrientation, btScalar width, btScalar height, btScalar mass) { // The pendulum looks like this (names when built): // O O topSphere1 topSphere2 // \ / // O bottomSphere //create a dynamic pendulum btTransform startTransform; startTransform.setIdentity(); // calculate sphere positions btVector3 topSphere1RelPosition(0,0,width); btVector3 topSphere2RelPosition(0,0,-width); btVector3 bottomSphereRelPosition(0,-height,0); // position the top sphere above ground with appropriate orientation startTransform.setOrigin(btVector3(0,0,0)); // no translation intitially startTransform.setRotation(pendulumOrientation); // pendulum rotation startTransform.setOrigin(startTransform * topSphere1RelPosition); // rotate this position startTransform.setOrigin(position + startTransform.getOrigin()); // add non-rotated position to the relative position btRigidBody* topSphere1 = createRigidBody(0, startTransform, colShape); // make top sphere static // position the top sphere above ground with appropriate orientation startTransform.setOrigin(btVector3(0,0,0)); // no translation intitially startTransform.setRotation(pendulumOrientation); // pendulum rotation startTransform.setOrigin(startTransform * topSphere2RelPosition); // rotate this position startTransform.setOrigin(position + startTransform.getOrigin()); // add non-rotated position to the relative position btRigidBody* topSphere2 = createRigidBody(0, startTransform, colShape); // make top sphere static // position the bottom sphere below the top sphere startTransform.setOrigin(btVector3(0,0,0)); // no translation intitially startTransform.setRotation(pendulumOrientation); // pendulum rotation startTransform.setOrigin(startTransform * bottomSphereRelPosition); // rotate this position startTransform.setOrigin(position + startTransform.getOrigin()); // add non-rotated position to the relative position btRigidBody* bottomSphere = createRigidBody(mass, startTransform, colShape); bottomSphere->setFriction(0); // we do not need friction here pendula.push_back(bottomSphere); // disable the deactivation when objects do not move anymore topSphere1->setActivationState(DISABLE_DEACTIVATION); topSphere2->setActivationState(DISABLE_DEACTIVATION); bottomSphere->setActivationState(DISABLE_DEACTIVATION); bottomSphere->setRestitution(gPendulaRestitution); // set pendula restitution // add ropes between spheres connectWithRope(topSphere1, bottomSphere); connectWithRope(topSphere2, bottomSphere); } void NewtonsRopeCradleExample::renderScene() { CommonRigidBodyBase::renderScene(); btSoftRigidDynamicsWorld* softWorld = getSoftDynamicsWorld(); for ( int i=0;igetSoftBodyArray().size();i++) { btSoftBody* psb=(btSoftBody*)softWorld->getSoftBodyArray()[i]; //if (softWorld->getDebugDrawer() && !(softWorld->getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe))) { btSoftBodyHelpers::DrawFrame(psb,softWorld->getDebugDrawer()); btSoftBodyHelpers::Draw(psb,softWorld->getDebugDrawer(),softWorld->getDrawFlags()); } } } void NewtonsRopeCradleExample::changePendulaRestitution(btScalar restitution) { for (std::vector::iterator rit = pendula.begin(); rit != pendula.end(); rit++) { btAssert((*rit) && "Null constraint"); (*rit)->setRestitution(restitution); } } bool NewtonsRopeCradleExample::keyboardCallback(int key, int state) { //b3Printf("Key pressed: %d in state %d \n",key,state); // key 3 switch (key) { case '3' /*ASCII for 3*/: { applyPendulumForce(gDisplacementForce); return true; } } return false; } void NewtonsRopeCradleExample::applyPendulumForce(btScalar pendulumForce){ if(pendulumForce != 0){ b3Printf("Apply %f to pendulum",pendulumForce); for (int i = 0; i < gDisplacedPendula; i++) { if (gDisplacedPendula >= 0 && gDisplacedPendula <= gPendulaQty) pendula[i]->applyCentralForce(btVector3(pendulumForce, 0, 0)); } } } // GUI parameter modifiers void onRopePendulaRestitutionChanged(float pendulaRestitution) { if (nex){ nex->changePendulaRestitution(pendulaRestitution); } } void floorRSliderValue(float notUsed) { gPendulaQty = floor(gPendulaQty); gDisplacedPendula = floor(gDisplacedPendula); gRopeResolution = floor(gRopeResolution); } void applyRForceWithForceScalar(float forceScalar) { if(nex){ btScalar appliedForce = forceScalar * gDisplacementForce; if(fabs(gForceScalar) < 0.2f) gForceScalar = 0; nex->applyPendulumForce(appliedForce); } } CommonExampleInterface* ET_NewtonsRopeCradleCreateFunc( CommonExampleOptions& options) { nex = new NewtonsRopeCradleExample(options.m_guiHelper); return nex; }