/* Copyright (c) 2011 Khaled Mamou (kmamou at gmail dot com) All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "hacdManifoldMesh.h" using namespace std; namespace HACD { Material::Material(void) { m_diffuseColor.X() = 0.5; m_diffuseColor.Y() = 0.5; m_diffuseColor.Z() = 0.5; m_specularColor.X() = 0.5; m_specularColor.Y() = 0.5; m_specularColor.Z() = 0.5; m_ambientIntensity = 0.4; m_emissiveColor.X() = 0.0; m_emissiveColor.Y() = 0.0; m_emissiveColor.Z() = 0.0; m_shininess = 0.4; m_transparency = 0.0; } TMMVertex::TMMVertex(void) { m_name = 0; m_id = 0; m_duplicate = 0; m_onHull = false; m_tag = false; } TMMVertex::~TMMVertex(void) { } TMMEdge::TMMEdge(void) { m_id = 0; m_triangles[0] = m_triangles[1] = m_newFace = 0; m_vertices[0] = m_vertices[1] = 0; } TMMEdge::~TMMEdge(void) { } TMMTriangle::TMMTriangle(void) { m_id = 0; for(int i = 0; i < 3; i++) { m_edges[i] = 0; m_vertices[0] = 0; } m_visible = false; } TMMTriangle::~TMMTriangle(void) { } TMMesh::TMMesh(void) { m_barycenter = Vec3(0,0,0); m_diag = 1; } TMMesh::~TMMesh(void) { } void TMMesh::Print() { size_t nV = m_vertices.GetSize(); std::cout << "-----------------------------" << std::endl; std::cout << "vertices (" << nV << ")" << std::endl; for(size_t v = 0; v < nV; v++) { const TMMVertex & currentVertex = m_vertices.GetData(); std::cout << currentVertex.m_id << ", " << currentVertex.m_pos.X() << ", " << currentVertex.m_pos.Y() << ", " << currentVertex.m_pos.Z() << std::endl; m_vertices.Next(); } size_t nE = m_edges.GetSize(); std::cout << "edges (" << nE << ")" << std::endl; for(size_t e = 0; e < nE; e++) { const TMMEdge & currentEdge = m_edges.GetData(); const CircularListElement * v0 = currentEdge.m_vertices[0]; const CircularListElement * v1 = currentEdge.m_vertices[1]; const CircularListElement * f0 = currentEdge.m_triangles[0]; const CircularListElement * f1 = currentEdge.m_triangles[1]; std::cout << "-> (" << v0->GetData().m_name << ", " << v1->GetData().m_name << ")" << std::endl; std::cout << "-> F0 (" << f0->GetData().m_vertices[0]->GetData().m_name << ", " << f0->GetData().m_vertices[1]->GetData().m_name << ", " << f0->GetData().m_vertices[2]->GetData().m_name <<")" << std::endl; std::cout << "-> F1 (" << f1->GetData().m_vertices[0]->GetData().m_name << ", " << f1->GetData().m_vertices[1]->GetData().m_name << ", " << f1->GetData().m_vertices[2]->GetData().m_name << ")" << std::endl; m_edges.Next(); } size_t nT = m_triangles.GetSize(); std::cout << "triangles (" << nT << ")" << std::endl; for(size_t t = 0; t < nT; t++) { const TMMTriangle & currentTriangle = m_triangles.GetData(); const CircularListElement * v0 = currentTriangle.m_vertices[0]; const CircularListElement * v1 = currentTriangle.m_vertices[1]; const CircularListElement * v2 = currentTriangle.m_vertices[2]; const CircularListElement * e0 = currentTriangle.m_edges[0]; const CircularListElement * e1 = currentTriangle.m_edges[1]; const CircularListElement * e2 = currentTriangle.m_edges[2]; std::cout << "-> (" << v0->GetData().m_name << ", " << v1->GetData().m_name << ", "<< v2->GetData().m_name << ")" << std::endl; std::cout << "-> E0 (" << e0->GetData().m_vertices[0]->GetData().m_name << ", " << e0->GetData().m_vertices[1]->GetData().m_name << ")" << std::endl; std::cout << "-> E1 (" << e1->GetData().m_vertices[0]->GetData().m_name << ", " << e1->GetData().m_vertices[1]->GetData().m_name << ")" << std::endl; std::cout << "-> E2 (" << e2->GetData().m_vertices[0]->GetData().m_name << ", " << e2->GetData().m_vertices[1]->GetData().m_name << ")" << std::endl; m_triangles.Next(); } } bool TMMesh::Save(const char *fileName) { std::ofstream fout(fileName); std::cout << "Saving " << fileName << std::endl; if (SaveVRML2(fout)) { fout.close(); return true; } return false; } bool TMMesh::SaveVRML2(std::ofstream &fout) { return SaveVRML2(fout, Material()); } bool TMMesh::SaveVRML2(std::ofstream &fout, const Material & material) { if (fout.is_open()) { size_t nV = m_vertices.GetSize(); size_t nT = m_triangles.GetSize(); fout <<"#VRML V2.0 utf8" << std::endl; fout <<"" << std::endl; fout <<"# Vertices: " << nV << std::endl; fout <<"# Triangles: " << nT << std::endl; fout <<"" << std::endl; fout <<"Group {" << std::endl; fout <<" children [" << std::endl; fout <<" Shape {" << std::endl; fout <<" appearance Appearance {" << std::endl; fout <<" material Material {" << std::endl; fout <<" diffuseColor " << material.m_diffuseColor.X() << " " << material.m_diffuseColor.Y() << " " << material.m_diffuseColor.Z() << std::endl; fout <<" ambientIntensity " << material.m_ambientIntensity << std::endl; fout <<" specularColor " << material.m_specularColor.X() << " " << material.m_specularColor.Y() << " " << material.m_specularColor.Z() << std::endl; fout <<" emissiveColor " << material.m_emissiveColor.X() << " " << material.m_emissiveColor.Y() << " " << material.m_emissiveColor.Z() << std::endl; fout <<" shininess " << material.m_shininess << std::endl; fout <<" transparency " << material.m_transparency << std::endl; fout <<" }" << std::endl; fout <<" }" << std::endl; fout <<" geometry IndexedFaceSet {" << std::endl; fout <<" ccw TRUE" << std::endl; fout <<" solid TRUE" << std::endl; fout <<" convex TRUE" << std::endl; if (GetNVertices() > 0) { fout <<" coord DEF co Coordinate {" << std::endl; fout <<" point [" << std::endl; for(size_t v = 0; v < nV; v++) { TMMVertex & currentVertex = m_vertices.GetData(); fout <<" " << currentVertex.m_pos.X() << " " << currentVertex.m_pos.Y() << " " << currentVertex.m_pos.Z() << "," << std::endl; currentVertex.m_id = v; m_vertices.Next(); } fout <<" ]" << std::endl; fout <<" }" << std::endl; } if (GetNTriangles() > 0) { fout <<" coordIndex [ " << std::endl; for(size_t f = 0; f < nT; f++) { TMMTriangle & currentTriangle = m_triangles.GetData(); fout <<" " << currentTriangle.m_vertices[0]->GetData().m_id << ", " << currentTriangle.m_vertices[1]->GetData().m_id << ", " << currentTriangle.m_vertices[2]->GetData().m_id << ", -1," << std::endl; m_triangles.Next(); } fout <<" ]" << std::endl; } fout <<" }" << std::endl; fout <<" }" << std::endl; fout <<" ]" << std::endl; fout <<"}" << std::endl; } return true; } void TMMesh::GetIFS(Vec3 * const points, Vec3 * const triangles) { size_t nV = m_vertices.GetSize(); size_t nT = m_triangles.GetSize(); for(size_t v = 0; v < nV; v++) { points[v] = m_vertices.GetData().m_pos; m_vertices.GetData().m_id = v; m_vertices.Next(); } for(size_t f = 0; f < nT; f++) { TMMTriangle & currentTriangle = m_triangles.GetData(); triangles[f].X() = static_cast(currentTriangle.m_vertices[0]->GetData().m_id); triangles[f].Y() = static_cast(currentTriangle.m_vertices[1]->GetData().m_id); triangles[f].Z() = static_cast(currentTriangle.m_vertices[2]->GetData().m_id); m_triangles.Next(); } } void TMMesh::Clear() { m_vertices.Clear(); m_edges.Clear(); m_triangles.Clear(); } void TMMesh::Copy(TMMesh & mesh) { Clear(); // updating the id's size_t nV = mesh.m_vertices.GetSize(); size_t nE = mesh. m_edges.GetSize(); size_t nT = mesh.m_triangles.GetSize(); for(size_t v = 0; v < nV; v++) { mesh.m_vertices.GetData().m_id = v; mesh.m_vertices.Next(); } for(size_t e = 0; e < nE; e++) { mesh.m_edges.GetData().m_id = e; mesh.m_edges.Next(); } for(size_t f = 0; f < nT; f++) { mesh.m_triangles.GetData().m_id = f; mesh.m_triangles.Next(); } // copying data m_vertices = mesh.m_vertices; m_edges = mesh.m_edges; m_triangles = mesh.m_triangles; // generating mapping CircularListElement ** vertexMap = new CircularListElement * [nV]; CircularListElement ** edgeMap = new CircularListElement * [nE]; CircularListElement ** triangleMap = new CircularListElement * [nT]; for(size_t v = 0; v < nV; v++) { vertexMap[v] = m_vertices.GetHead(); m_vertices.Next(); } for(size_t e = 0; e < nE; e++) { edgeMap[e] = m_edges.GetHead(); m_edges.Next(); } for(size_t f = 0; f < nT; f++) { triangleMap[f] = m_triangles.GetHead(); m_triangles.Next(); } // updating pointers for(size_t v = 0; v < nV; v++) { if (vertexMap[v]->GetData().m_duplicate) { vertexMap[v]->GetData().m_duplicate = edgeMap[vertexMap[v]->GetData().m_duplicate->GetData().m_id]; } } for(size_t e = 0; e < nE; e++) { if (edgeMap[e]->GetData().m_newFace) { edgeMap[e]->GetData().m_newFace = triangleMap[edgeMap[e]->GetData().m_newFace->GetData().m_id]; } if (nT > 0) { for(int f = 0; f < 2; f++) { if (edgeMap[e]->GetData().m_triangles[f]) { edgeMap[e]->GetData().m_triangles[f] = triangleMap[edgeMap[e]->GetData().m_triangles[f]->GetData().m_id]; } } } for(int v = 0; v < 2; v++) { if (edgeMap[e]->GetData().m_vertices[v]) { edgeMap[e]->GetData().m_vertices[v] = vertexMap[edgeMap[e]->GetData().m_vertices[v]->GetData().m_id]; } } } for(size_t f = 0; f < nT; f++) { if (nE > 0) { for(int e = 0; e < 3; e++) { if (triangleMap[f]->GetData().m_edges[e]) { triangleMap[f]->GetData().m_edges[e] = edgeMap[triangleMap[f]->GetData().m_edges[e]->GetData().m_id]; } } } for(int v = 0; v < 3; v++) { if (triangleMap[f]->GetData().m_vertices[v]) { triangleMap[f]->GetData().m_vertices[v] = vertexMap[triangleMap[f]->GetData().m_vertices[v]->GetData().m_id]; } } } delete [] vertexMap; delete [] edgeMap; delete [] triangleMap; } long IntersectRayTriangle(const Vec3 & P0, const Vec3 & dir, const Vec3 & V0, const Vec3 & V1, const Vec3 & V2, double &t) { Vec3 edge1, edge2, edge3; double det, invDet; edge1 = V1 - V2; edge2 = V2 - V0; Vec3 pvec = dir ^ edge2; det = edge1 * pvec; if (det == 0.0) return 0; invDet = 1.0/det; Vec3 tvec = P0 - V0; Vec3 qvec = tvec ^ edge1; t = (edge2 * qvec) * invDet; if (t < 0.0) { return 0; } edge3 = V0 - V1; Vec3 I(P0 + t * dir); Vec3 s0 = (I-V0) ^ edge3; Vec3 s1 = (I-V1) ^ edge1; Vec3 s2 = (I-V2) ^ edge2; if (s0*s1 > -1e-9 && s2*s1 > -1e-9) { return 1; } return 0; } bool IntersectLineLine(const Vec3 & p1, const Vec3 & p2, const Vec3 & p3, const Vec3 & p4, Vec3 & pa, Vec3 & pb, double & mua, double & mub) { Vec3 p13,p43,p21; double d1343,d4321,d1321,d4343,d2121; double numer,denom; p13.X() = p1.X() - p3.X(); p13.Y() = p1.Y() - p3.Y(); p13.Z() = p1.Z() - p3.Z(); p43.X() = p4.X() - p3.X(); p43.Y() = p4.Y() - p3.Y(); p43.Z() = p4.Z() - p3.Z(); if (p43.X()==0.0 && p43.Y()==0.0 && p43.Z()==0.0) return false; p21.X() = p2.X() - p1.X(); p21.Y() = p2.Y() - p1.Y(); p21.Z() = p2.Z() - p1.Z(); if (p21.X()==0.0 && p21.Y()==0.0 && p21.Z()==0.0) return false; d1343 = p13.X() * p43.X() + p13.Y() * p43.Y() + p13.Z() * p43.Z(); d4321 = p43.X() * p21.X() + p43.Y() * p21.Y() + p43.Z() * p21.Z(); d1321 = p13.X() * p21.X() + p13.Y() * p21.Y() + p13.Z() * p21.Z(); d4343 = p43.X() * p43.X() + p43.Y() * p43.Y() + p43.Z() * p43.Z(); d2121 = p21.X() * p21.X() + p21.Y() * p21.Y() + p21.Z() * p21.Z(); denom = d2121 * d4343 - d4321 * d4321; if (denom==0.0) return false; numer = d1343 * d4321 - d1321 * d4343; mua = numer / denom; mub = (d1343 + d4321 * (mua)) / d4343; pa.X() = p1.X() + mua * p21.X(); pa.Y() = p1.Y() + mua * p21.Y(); pa.Z() = p1.Z() + mua * p21.Z(); pb.X() = p3.X() + mub * p43.X(); pb.Y() = p3.Y() + mub * p43.Y(); pb.Z() = p3.Z() + mub * p43.Z(); return true; } long IntersectRayTriangle2(const Vec3 & P0, const Vec3 & dir, const Vec3 & V0, const Vec3 & V1, const Vec3 & V2, double &r) { Vec3 u, v, n; // triangle vectors Vec3 w0, w; // ray vectors double a, b; // params to calc ray-plane intersect // get triangle edge vectors and plane normal u = V1 - V0; v = V2 - V0; n = u ^ v; // cross product if (n.GetNorm() == 0.0) // triangle is degenerate return -1; // do not deal with this case w0 = P0 - V0; a = - n * w0; b = n * dir; if (fabs(b) <= 0.0) { // ray is parallel to triangle plane if (a == 0.0) // ray lies in triangle plane return 2; else return 0; // ray disjoint from plane } // get intersect point of ray with triangle plane r = a / b; if (r < 0.0) // ray goes away from triangle return 0; // => no intersect // for a segment, also test if (r > 1.0) => no intersect Vec3 I = P0 + r * dir; // intersect point of ray and plane // is I inside T? double uu, uv, vv, wu, wv, D; uu = u * u; uv = u * v; vv = v * v; w = I - V0; wu = w * u; wv = w * v; D = uv * uv - uu * vv; // get and test parametric coords double s, t; s = (uv * wv - vv * wu) / D; if (s < 0.0 || s > 1.0) // I is outside T return 0; t = (uv * wu - uu * wv) / D; if (t < 0.0 || (s + t) > 1.0) // I is outside T return 0; return 1; // I is in T } bool TMMesh::CheckConsistancy() { size_t nE = m_edges.GetSize(); size_t nT = m_triangles.GetSize(); for(size_t e = 0; e < nE; e++) { for(int f = 0; f < 2; f++) { if (!m_edges.GetHead()->GetData().m_triangles[f]) { return false; } } m_edges.Next(); } for(size_t f = 0; f < nT; f++) { for(int e = 0; e < 3; e++) { int found = 0; for(int k = 0; k < 2; k++) { if (m_triangles.GetHead()->GetData().m_edges[e]->GetData().m_triangles[k] == m_triangles.GetHead()) { found++; } } if (found != 1) { return false; } } m_triangles.Next(); } return true; } bool TMMesh::Normalize() { size_t nV = m_vertices.GetSize(); if (nV == 0) { return false; } m_barycenter = m_vertices.GetHead()->GetData().m_pos; Vec3 min = m_barycenter; Vec3 max = m_barycenter; Real x, y, z; for(size_t v = 1; v < nV; v++) { m_barycenter += m_vertices.GetHead()->GetData().m_pos; x = m_vertices.GetHead()->GetData().m_pos.X(); y = m_vertices.GetHead()->GetData().m_pos.Y(); z = m_vertices.GetHead()->GetData().m_pos.Z(); if ( x < min.X()) min.X() = x; else if ( x > max.X()) max.X() = x; if ( y < min.Y()) min.Y() = y; else if ( y > max.Y()) max.Y() = y; if ( z < min.Z()) min.Z() = z; else if ( z > max.Z()) max.Z() = z; m_vertices.Next(); } m_barycenter /= static_cast(nV); m_diag = static_cast(0.001 * (max-min).GetNorm()); const Real invDiag = static_cast(1.0 / m_diag); if (m_diag != 0.0) { for(size_t v = 0; v < nV; v++) { m_vertices.GetHead()->GetData().m_pos = (m_vertices.GetHead()->GetData().m_pos - m_barycenter) * invDiag; m_vertices.Next(); } } return true; } bool TMMesh::Denormalize() { size_t nV = m_vertices.GetSize(); if (nV == 0) { return false; } if (m_diag != 0.0) { for(size_t v = 0; v < nV; v++) { m_vertices.GetHead()->GetData().m_pos = m_vertices.GetHead()->GetData().m_pos * m_diag + m_barycenter; m_vertices.Next(); } } return false; } }