bullet3/examples/Collision/CollisionTutorialBullet2.cpp
erwincoumans ab8f16961e Code-style consistency improvement:
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
2018-09-23 14:17:31 -07:00

361 lines
10 KiB
C++

#include "CollisionTutorialBullet2.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/CommonExampleInterface.h"
#include "LinearMath/btTransform.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "../RenderingExamples/TimeSeriesCanvas.h"
#include "stb_image/stb_image.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3Common/b3Matrix3x3.h"
#include "../CommonInterfaces/CommonParameterInterface.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "CollisionSdkC_Api.h"
#include "LinearMath/btQuickprof.h"
///Not Invented Here link reminder http://www.joelonsoftware.com/articles/fog0000000007.html
///todo: use the 'userData' to prevent this use of global variables
static int gTotalPoints = 0;
const int sPointCapacity = 10000;
const int sNumCompounds = 10;
const int sNumSpheres = 10;
lwContactPoint pointsOut[sPointCapacity];
int numNearCallbacks = 0;
static btVector4 sColors[4] =
{
btVector4(1, 0.7, 0.7, 1),
btVector4(1, 1, 0.7, 1),
btVector4(0.7, 1, 0.7, 1),
btVector4(0.7, 1, 1, 1),
};
void myNearCallback(plCollisionSdkHandle sdkHandle, plCollisionWorldHandle worldHandle, void* userData, plCollisionObjectHandle objA, plCollisionObjectHandle objB)
{
numNearCallbacks++;
int remainingCapacity = sPointCapacity - gTotalPoints;
btAssert(remainingCapacity > 0);
if (remainingCapacity > 0)
{
lwContactPoint* pointPtr = &pointsOut[gTotalPoints];
int numNewPoints = plCollide(sdkHandle, worldHandle, objA, objB, pointPtr, remainingCapacity);
btAssert(numNewPoints <= remainingCapacity);
gTotalPoints += numNewPoints;
}
}
class CollisionTutorialBullet2 : public CommonExampleInterface
{
CommonGraphicsApp* m_app;
GUIHelperInterface* m_guiHelper;
int m_tutorialIndex;
TimeSeriesCanvas* m_timeSeriesCanvas0;
plCollisionSdkHandle m_collisionSdkHandle;
plCollisionWorldHandle m_collisionWorldHandle;
// int m_stage;
// int m_counter;
public:
CollisionTutorialBullet2(GUIHelperInterface* guiHelper, int tutorialIndex)
: m_app(guiHelper->getAppInterface()),
m_guiHelper(guiHelper),
m_tutorialIndex(tutorialIndex),
m_timeSeriesCanvas0(0),
m_collisionSdkHandle(0),
m_collisionWorldHandle(0)
// m_stage(0),
// m_counter(0)
{
gTotalPoints = 0;
m_app->setUpAxis(1);
switch (m_tutorialIndex)
{
case TUT_SPHERE_PLANE_RTB3:
case TUT_SPHERE_PLANE_BULLET2:
{
if (m_tutorialIndex == TUT_SPHERE_PLANE_BULLET2)
{
m_collisionSdkHandle = plCreateBullet2CollisionSdk();
}
else
{
#ifndef DISABLE_REAL_TIME_BULLET3_COLLISION_SDK
m_collisionSdkHandle = plCreateRealTimeBullet3CollisionSdk();
#endif //DISABLE_REAL_TIME_BULLET3_COLLISION_SDK
}
if (m_collisionSdkHandle)
{
int maxNumObjsCapacity = 1024;
int maxNumShapesCapacity = 1024;
int maxNumPairsCapacity = 16384;
btAlignedObjectArray<plCollisionObjectHandle> colliders;
m_collisionWorldHandle = plCreateCollisionWorld(m_collisionSdkHandle, maxNumObjsCapacity, maxNumShapesCapacity, maxNumPairsCapacity);
//create objects, do query etc
{
float radius = 1.f;
void* userPointer = 0;
{
for (int j = 0; j < sNumCompounds; j++)
{
plCollisionShapeHandle compoundShape = plCreateCompoundShape(m_collisionSdkHandle, m_collisionWorldHandle);
for (int i = 0; i < sNumSpheres; i++)
{
btVector3 childPos(i * 1.5, 0, 0);
btQuaternion childOrn(0, 0, 0, 1);
btVector3 scaling(radius, radius, radius);
plCollisionShapeHandle childShape = plCreateSphereShape(m_collisionSdkHandle, m_collisionWorldHandle, radius);
plAddChildShape(m_collisionSdkHandle, m_collisionWorldHandle, compoundShape, childShape, childPos, childOrn);
//m_guiHelper->createCollisionObjectGraphicsObject(colObj,color);
}
if (m_tutorialIndex == TUT_SPHERE_PLANE_BULLET2)
{
btCollisionShape* colShape = (btCollisionShape*)compoundShape;
m_guiHelper->createCollisionShapeGraphicsObject(colShape);
}
else
{
}
{
btVector3 pos(j * sNumSpheres * 1.5, -2.4, 0);
btQuaternion orn(0, 0, 0, 1);
plCollisionObjectHandle colObjHandle = plCreateCollisionObject(m_collisionSdkHandle, m_collisionWorldHandle, userPointer, -1, compoundShape, pos, orn);
if (m_tutorialIndex == TUT_SPHERE_PLANE_BULLET2)
{
btCollisionObject* colObj = (btCollisionObject*)colObjHandle;
btVector4 color = sColors[j & 3];
m_guiHelper->createCollisionObjectGraphicsObject(colObj, color);
colliders.push_back(colObjHandle);
plAddCollisionObject(m_collisionSdkHandle, m_collisionWorldHandle, colObjHandle);
}
}
}
}
}
{
plCollisionShapeHandle colShape = plCreatePlaneShape(m_collisionSdkHandle, m_collisionWorldHandle, 0, 1, 0, -3.5);
btVector3 pos(0, 0, 0);
btQuaternion orn(0, 0, 0, 1);
void* userPointer = 0;
plCollisionObjectHandle colObj = plCreateCollisionObject(m_collisionSdkHandle, m_collisionWorldHandle, userPointer, 0, colShape, pos, orn);
colliders.push_back(colObj);
plAddCollisionObject(m_collisionSdkHandle, m_collisionWorldHandle, colObj);
}
int numContacts = plCollide(m_collisionSdkHandle, m_collisionWorldHandle, colliders[0], colliders[1], pointsOut, sPointCapacity);
printf("numContacts = %d\n", numContacts);
void* myUserPtr = 0;
plWorldCollide(m_collisionSdkHandle, m_collisionWorldHandle, myNearCallback, myUserPtr);
printf("total points=%d\n", gTotalPoints);
//plRemoveCollisionObject(m_collisionSdkHandle,m_collisionWorldHandle,colObj);
//plDeleteCollisionObject(m_collisionSdkHandle,colObj);
//plDeleteShape(m_collisionSdkHandle,colShape);
}
/*
m_timeSeriesCanvas0 = new TimeSeriesCanvas(m_app->m_2dCanvasInterface,512,256,"Constant Velocity");
m_timeSeriesCanvas0 ->setupTimeSeries(2,60, 0);
m_timeSeriesCanvas0->addDataSource("X position (m)", 255,0,0);
m_timeSeriesCanvas0->addDataSource("X velocity (m/s)", 0,0,255);
m_timeSeriesCanvas0->addDataSource("dX/dt (m/s)", 0,0,0);
*/
break;
}
default:
{
m_timeSeriesCanvas0 = new TimeSeriesCanvas(m_app->m_2dCanvasInterface, 512, 256, "Unknown");
m_timeSeriesCanvas0->setupTimeSeries(1, 60, 0);
}
};
{
int boxId = m_app->registerCubeShape(100, 0.01, 100);
b3Vector3 pos = b3MakeVector3(0, -3.5, 0);
b3Quaternion orn(0, 0, 0, 1);
b3Vector4 color = b3MakeVector4(1, 1, 1, 1);
b3Vector3 scaling = b3MakeVector3(1, 1, 1);
m_app->m_renderer->registerGraphicsInstance(boxId, pos, orn, color, scaling);
}
{
int textureIndex = -1;
if (1)
{
int width, height, n;
const char* filename = "data/cube.png";
const unsigned char* image = 0;
const char* prefix[] = {"./", "../", "../../", "../../../", "../../../../"};
int numprefix = sizeof(prefix) / sizeof(const char*);
for (int i = 0; !image && i < numprefix; i++)
{
char relativeFileName[1024];
sprintf(relativeFileName, "%s%s", prefix[i], filename);
image = stbi_load(relativeFileName, &width, &height, &n, 3);
}
b3Assert(image);
if (image)
{
textureIndex = m_app->m_renderer->registerTexture(image, width, height);
}
}
}
m_app->m_renderer->writeTransforms();
}
virtual ~CollisionTutorialBullet2()
{
delete m_timeSeriesCanvas0;
plDeleteCollisionWorld(m_collisionSdkHandle, m_collisionWorldHandle);
plDeleteCollisionSdk(m_collisionSdkHandle);
m_timeSeriesCanvas0 = 0;
}
virtual void initPhysics()
{
}
virtual void exitPhysics()
{
}
virtual void stepSimulation(float deltaTime)
{
#ifndef BT_NO_PROFILE
CProfileManager::Reset();
#endif
void* myUserPtr = 0;
gTotalPoints = 0;
numNearCallbacks = 0;
{
BT_PROFILE("plWorldCollide");
if (m_collisionSdkHandle && m_collisionWorldHandle)
{
plWorldCollide(m_collisionSdkHandle, m_collisionWorldHandle, myNearCallback, myUserPtr);
}
}
#if 0
switch (m_tutorialIndex)
{
case TUT_SPHERE_SPHERE:
{
if (m_timeSeriesCanvas0)
{
float xPos = 0.f;
float xVel = 1.f;
m_timeSeriesCanvas0->insertDataAtCurrentTime(xPos,0,true);
m_timeSeriesCanvas0->insertDataAtCurrentTime(xVel,1,true);
}
break;
}
default:
{
}
};
#endif
if (m_timeSeriesCanvas0)
m_timeSeriesCanvas0->nextTick();
// m_app->m_renderer->writeSingleInstanceTransformToCPU(m_bodies[i]->m_worldPose.m_position, m_bodies[i]->m_worldPose.m_orientation, m_bodies[i]->m_graphicsIndex);
m_app->m_renderer->writeTransforms();
#ifndef BT_NO_PROFILE
CProfileManager::Increment_Frame_Counter();
#endif
}
virtual void renderScene()
{
if (m_app && m_app->m_renderer)
{
m_app->m_renderer->renderScene();
m_app->m_renderer->clearZBuffer();
m_app->drawText3D("X", 1, 0, 0, 1);
m_app->drawText3D("Y", 0, 1, 0, 1);
m_app->drawText3D("Z", 0, 0, 1, 1);
for (int i = 0; i < gTotalPoints; i++)
{
const lwContactPoint& contact = pointsOut[i];
btVector3 color(1, 1, 0);
btScalar lineWidth = 3;
if (contact.m_distance < 0)
{
color.setValue(1, 0, 0);
}
m_app->m_renderer->drawLine(contact.m_ptOnAWorld, contact.m_ptOnBWorld, color, lineWidth);
}
}
}
virtual void physicsDebugDraw(int debugDrawFlags)
{
}
virtual bool mouseMoveCallback(float x, float y)
{
return false;
}
virtual bool mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
virtual bool keyboardCallback(int key, int state)
{
return false;
}
virtual void resetCamera()
{
float dist = 10.5;
float pitch = -32;
float yaw = 136;
float targetPos[3] = {0, 0, 0};
if (m_app->m_renderer && m_app->m_renderer->getActiveCamera())
{
m_app->m_renderer->getActiveCamera()->setCameraDistance(dist);
m_app->m_renderer->getActiveCamera()->setCameraPitch(pitch);
m_app->m_renderer->getActiveCamera()->setCameraYaw(yaw);
m_app->m_renderer->getActiveCamera()->setCameraTargetPosition(targetPos[0], targetPos[1], targetPos[2]);
}
}
};
class CommonExampleInterface* CollisionTutorialBullet2CreateFunc(struct CommonExampleOptions& options)
{
return new CollisionTutorialBullet2(options.m_guiHelper, options.m_option);
}