bullet3/examples/pybullet/notebooks/HelloPyBullet.ipynb
2018-02-11 06:58:45 -08:00

255 lines
18 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pybullet as p"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p.connect(p.DIRECT)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p.loadURDF(\"plane.urdf\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"r2d2=p.loadURDF(\"r2d2.urdf\",[0,0,0.5])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p.getNumBodies()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"joint 0 name= base_to_right_leg\n",
"joint 1 name= right_base_joint\n",
"joint 2 name= right_front_wheel_joint\n",
"joint 3 name= right_back_wheel_joint\n",
"joint 4 name= base_to_left_leg\n",
"joint 5 name= left_base_joint\n",
"joint 6 name= left_front_wheel_joint\n",
"joint 7 name= left_back_wheel_joint\n",
"joint 8 name= gripper_extension\n",
"joint 9 name= left_gripper_joint\n",
"joint 10 name= left_tip_joint\n",
"joint 11 name= right_gripper_joint\n",
"joint 12 name= right_tip_joint\n",
"joint 13 name= head_swivel\n",
"joint 14 name= tobox\n"
]
}
],
"source": [
"for i in range (p.getNumJoints(r2d2)):\n",
" jointInfo=p.getJointInfo(r2d2,i)\n",
" print(\"joint\",jointInfo[0],\"name=\",jointInfo[1].decode('ascii'))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"pos = 0.00000,0.00000,0.50000 \n",
"pos = 0.00000,-0.00000,0.49983 \n",
"pos = 0.00000,-0.00000,0.49948 \n",
"pos = 0.00000,-0.00000,0.49896 \n",
"pos = 0.00000,-0.00000,0.49826 \n",
"pos = 0.00000,-0.00000,0.49740 \n",
"pos = 0.00000,-0.00000,0.49636 \n",
"pos = 0.00000,-0.00000,0.49514 \n",
"pos = 0.00000,-0.00000,0.49375 \n",
"pos = 0.00000,-0.00000,0.49219 \n"
]
}
],
"source": [
"p.setGravity(0,0,-10)\n",
"precision=5\n",
"for i in range (10):\n",
" pos,orn = p.getBasePositionAndOrientation(r2d2)\n",
" posmsg='pos = {posx:.{prec}f},{posy:.{prec}f},{posz:.{prec}f} '.format(posx=pos[0],posy=pos[1],posz=pos[2], prec=precision)\n",
" print(posmsg)\n",
" p.stepSimulation()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"p.stepSimulation()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"import matplotlib\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"camTargetPos = [0,0,0]\n",
"cameraUp = [0,0,1]\n",
"cameraPos = [1,1,1]\n",
"\n",
"pitch = -10.0\n",
"yaw = 60\n",
"roll=0\n",
"upAxisIndex = 2\n",
"camDistance = 4\n",
"pixelWidth = 320\n",
"pixelHeight = 200\n",
"nearPlane = 0.01\n",
"farPlane = 100\n",
"fov = 60\n",
"viewMatrix = p.computeViewMatrixFromYawPitchRoll(camTargetPos, camDistance, yaw, pitch, roll, upAxisIndex)\n",
"aspect = pixelWidth / pixelHeight;\n",
"projectionMatrix = p.computeProjectionMatrixFOV(fov, aspect, nearPlane, farPlane);\n",
"img_arr = p.getCameraImage(pixelWidth, pixelHeight, viewMatrix,projectionMatrix, shadow=1,lightDirection=[1,1,1])\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD0CAYAAACVbe2MAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX+sJWWZ5z/PvX1v/7j38qOh7W0FBjAwxDbYjh1wMyyw\nw+g4xA3jZJeFZB1HZRqzrONEd0dQM7qzYxxnFbNZEkMTiD9WfmUZhDXsOkBYHFcBm1lAGkRBIQPb\n3kZBobvp27f7PvvHqbqnTp2qc+pU1Tmnqs73k5ycqreq3nre+vF9n3ret94yd0cIIURzmRq3AUII\nIYaLhF4IIRqOhF4IIRqOhF4IIRqOhF4IIRqOhF4IIRrO0ITezN5lZk+Z2dNmduWw9iOEEKI3Nox+\n9GY2DfwYeAfwPPAD4FJ3f6L0nQkhhOjJsDz6s4Cn3f2n7n4IuBm4aEj7EkII0YNhCf0bgH+MzD8f\npAkhhBgxa8a1YzPbAewAmJube9sZZ5wxLlOEEKKWPPzww79w90391huW0L8AnBiZPyFIW8XddwI7\nAbZv3+67du0akilCCNFMzOy5LOsNK3TzA+A0MzvFzGaBS4A7h7QvIYQQPRiKR+/uh83s3wHfBqaB\nG9x99zD2JYQQojdDi9G7+13AXcPKXwghRDb0ZqwQQjQcCb0QQjQcCb0QQjQcCb0QQjQcCb0QQjQc\nCb0QQjQcCb0QQjQcCb0QQjQcCb0QQjQcCb0QQjQcCb0QQjQcCb0QQjQcCb0QQjQcCb0QQjQcCb0Q\nQjQcCb0QQjQcCb0QQjSc3EJvZiea2X1m9oSZ7TazjwTpnzGzF8zskeB3YXnmCiGEGJQinxI8DHzM\n3f/BzBaAh83s7mDZl9z9C8XNE0IIUZTcQu/ue4A9wfSrZvYk8IayDBNCCFEOpcTozexk4K3Ag0HS\nh83sMTO7wcyOLWMfQggh8lFY6M1sHrgN+DN3fwX4MnAqsI2Wx//FlO12mNkuM9v14osvFjVDCCFE\nCoWE3sxmaIn8N9z9bwHcfdHdj7j7CnAdcFbStu6+0923u/v2TZs2FTFDCCFED4r0ujHgeuBJd786\nkr4lstp7gMfzmyeEEKIoRXrd/DbwXuCHZvZIkPYJ4FIz2wY48CxweSELhRBCFKJIr5vvApaw6K78\n5gghhCgbvRkrhBANR0IvhBANR0IvhBANR0IvhBANR0IvhBANR0IvhBANR0IvhBANR0IvhBANR0Iv\nhBANR0IvhBANR0IvhBANR0IvhBANR0IvhBANR0IvhBANR0IvhBANR0IvhBANR0IvhBANR0IvhBAN\np8g3YzGzZ4FXgSPAYXffbmYbgVuAk2l9M/Zid3+5mJlCCCHyUoZH/8/dfZu7bw/mrwTudffTgHuD\neSGEEGNiGKGbi4CvBtNfBf5gCPsQQgiRkaJC78A9Zvawme0I0ja7+55g+ufA5qQNzWyHme0ys10v\nvvhiQTOEEEKkUShGD5zj7i+Y2euAu83sR9GF7u5m5kkbuvtOYCfA9u3bE9cRQghRnEIevbu/EPzv\nBW4HzgIWzWwLQPC/t6iRQggh8pNb6M1szswWwmngncDjwJ3A+4LV3gfcUdRIIYQQ+SkSutkM3G5m\nYT43uvv/MrMfALea2QeB54CLi5sphBAiL7mF3t1/CrwlIf2XwAVFjBKiKpjdDID7JWO2RIj86M1Y\nIVIw+zpggGF227jNESI3RXvdCNFIzL4MHEVL6KEl9ncADwHHA/8E2ALM4P7b4zFSiIxI6IWIccst\nt/Dtb7+R+fl55ufnAZifn2fDhg0cddQ7mJv7AnA0cBBYGaepQmRCoRshIlx//fVMTU1x+PBhlpeX\nOXToEIcOHWJpaYmlpSUOHDjAgQP/AfgF8BLwypgtFqI/8uiFCNi5cycABw8eZHZ2lkOHDrFmTesW\nWbNmDdPT05gZZsarr/5bFhaupeXZC1FtJPRC0BZ5YNWbD38Ahw4dWhX6qanWg/Arr+xgYWFhLPYK\nMQgSeiGAyy//NTBN65aYAvYDS7RG4SZInwn+2z/3c0dvrBADohi9mHjMPhdOAbPBtGf6mX13tMYK\nkQMJvZhozP6KdhfKkDRhX0n4OWbfG5m9QuRBQi8mnLZgt35LwW8wzL5frllClIiEXkw4cY+9V6gm\nTvtlKvd/OnxThciJGmPFxHL77bfTGYaZoi3qB2k3zsIdd2ziqKOOYnZ2ltnZWdauXbv6PzMzw969\ne5menua4444bT2GE6IGEXkws7k7ru/ZRgY8Lvq+uu7KyEmzTIuxTH/7Cbpch3/rSej5+/2cBOPY3\nzua7/0VDJYjxIKEXE8vKShiqSfPq20Ifinz4AzoEfmpqCjPjox/9KCeddBIAS4c+07G/cz7yfyT2\nYixI6MXEcuTIkXCKlsBPkSz6bY8+yasPhX5qaoqrr766Yx8fH3ophOiPGmOFEKLhyKMXE0vbo4+H\nb7pDN0eOHOkI30C3Nx98bU2IypFb6M3sN4FbIkmnAn8BHAP8CfBikP4Jd78rt4VCDIm20ENn+Cac\nDoWf1bBNVOzjMfp4Y6wQVaHIpwSfArYBmNk08AJwO/B+4Evu/oVSLBRiSBw+fDgyF+2BE4/VtyqF\nqFcPLY9+enpaHr2oPGWFbi4AnnH353Sxi7oQjkzZJir0UcFvVQqHDx/uEPvQmw/FPs7nrvs71q7b\nAMDb3zjF3Nwc+/fvZ25uLtWmex97tWP+gjO7R8eMr5NGuG2v9T/63nMy5SXqTVlCfwlwU2T+w2b2\nR8Au4GPu/nJJ+xEN47LLLuMDH/gAAPfv3gfA2nUbWDp4oGs65Lyt86vToXiG03c9tNi1j+j68W26\nCcV+OjLdKfRHjhxZFfrp6elVoXd3rv56a5CzpYMHVkV+6eABHnhmA0sHF4O0/kKdJPDRZaF491ov\nKa+46F/99e+m5pG1Qonvp992qlxGj0W7iuXKwGwW+H/AVndfNLPNtD6/48B/Ara4+wcSttsB7AA4\n6aST3vbcc88VsqOpXHbZZbzx7ItX5+OilUZUzEIBTeK8rfNdwpckuFmI2pa0z6jwhfNvf+NUl729\nhbhN3EOObhNdtn//fh54ZqWrLMf5s1x+edJ1Fw5JHP7g2mvnWVhYYG5ujoWFBY455hg2btzI0Ucf\nzfr16zEzjhw5wo9//OMur72f8GUR6yiDiHxWG5JsGnSbcLtB7Ri0/Hnzectb3jLwfqqOmT3s7tv7\nrleC0F8EXOHu70xYdjLwLXd/c688tm/f7rt27SpkB8D3vpdvFMFeQhgnLrSDbNsvL0j3SrNsFxfH\npLTQ3jSvuNf2cbHsVRGEy87bOp8oskl5JOV34VmbU0U/KuLQ9qLDPMIyxkU/THvwwQdThN7oFvqj\nmZ2dZWFhgYWFBTZu3MimTZvYuHEja9euxd1ZXl5m5+2PJNqahWGJa5zoPvKIbFI+SZT1pNArz0Hy\nKlLWvAy7cskq9GWEbi4lErYxsy3uvieYfQ/weL8M9u3bl0ukk0Q2q8ebV6Cj22XdV0gWD3n//v09\nRfj+3fsSbUjyhpPSkiuqfYm2rV23sirW0LpR9u+fim3fXbbodFTkkzz6aP4tWzd3VHR3PbS4ul73\nfyvvC8/aHJQ3jIOnPyUkef/dxBtmWxw6dIiDBw+ydu1alpeXgzdrWy9ThaGdrCQJVl4BvPexVzOJ\nWFL+RUQ/r+j22k+/PIpUElm2LVJpJuXx6KOPFs4vLe9BKCT0ZjYHvAO4PJL8N2a2jdbd8mxsWSL7\nDq70XD6IKPcLUyRN9/I4Q5I8xXC6V6ihW1i6wxu9YsjxcMR5W5P30RbHpLBL8jFZu25D7Dh0in04\n3Q7l9D9O0FkhRIW3TfuY3b87HipaTDnWoXceevid6f2497FXVyuHthW9OELLs+/sXPDaa68xOzvL\n0tISy8vLq+J+5MiRhMbdZPJ67ml55Vk3S6NvHlui+eYJr2SN8w9qVy+boqQtT7N70PBZ1vJnyWsQ\nCoduyuCEk0/3Kz55DTC4l9wvnnv/7n09H/+z5BHPL0qW8EVIkqeeJb+0NCA1//h+ovNRjzmed1xk\nk7ZPelLoF2NPC/uE56ZX6Ckp9BLmF3+SCI9Jr/SQ+deeSAndhIQhHLj22i2rqWvWrOF1r3sdJ5xw\nAps2bWJmZoaVlRUOHz7Mrfc9C+QXzkGFJi/DajcogyLhmSz55SXrk9OgeQ5K1IZt27aNLHRTKoMI\naYtuD/a8rfMd+UQf/5PI4qmGIprsfXd3rWuLUneoJPRco/l1Cl3WtOT09j4O0H18OudbjaHxMoWh\nkP0dAtvKNxqKyTK9oUtggdTj3dl4uhjz8jvDOPG8o+mt7oybV/NtlaNz/vG+QUUHusMxhw8f5qWX\nXmLdunVMTU2xfv361trupTUsZl1nGHHwtO379QTKs+9Bew1lJenJogyRLrtCy/N0l8eGSgj90XMz\nfTz53uGR+3fv6/Di4pVFW0x7Ney1xS2eN6SHd9IqifT07gonFLXu9bKmdQo4sBr7jlcWvebD6aT5\neINnu7fM5sj6Ue+8M3QTrxD7nc94xRAta1zso7YAqzZEp8P5sNIHWMj0zkdyWPHgwYMsLi6ysrLC\n/Pw8MzMzTE1NsWZN9y017jDNqBnEIy8a1x/k2ObtLtrPhjz5R/MaxbmqhND/ev9yhi59neIdDcd0\nVhLplUJaiCBskIzv/7yt8zGPO81zz5+eJmpxkkIqYZm6vfr2fHeYZjGWX7L3DySs255ux/PbobGk\nMEsYGw/308q33ZCa9J9EeDNEK40sDavxRtiw4RZg164pWuGZfOHLcL9LS0usW7eOmZkZjj322FTb\nobzGxDJFJw+DVjrD6k1UVCTL6u7Za7t+jeCjoBJCH9Ld8JbeFzwUsOSKoVel0btCicaNo6RVEpDs\n7Wf19Nted5K3my7gcdJi6eExjfd+6fb4k+Lx3d56dDruQXfGz7t7yxQhvDFa56floXffLO359stJ\nyfMAx66+zZou9tdddwpAx2BmUfbv37/atXLt2rWJQh8vQz/KahjtxyjtyUPRyqFIL6Y8+yuyTj8b\nip6DSgj9/LqpSBe5ttD0ajQMSerSl9XDTwrl3L97X4+YflI3xGweeRppr8NHK7Z45ZBUiXTHxZOP\nXbsSSw7bRG3q1dDaK611US5w10OLkcbW5Ioi7b9FpxffmbZ/IA8q6Ry1hi3o7dGHQxu4e2wQtDYH\nDhxY7WJZhqdW5YbSvBS1OY/QDfOFsjzbFWlkLnoOKyH0+w6ucNdDix1hEiChK2G/l3ziIQ06puPb\nxHtwRIk38oWEjXzdPUSypnV671FPNSQtfNFalh67Tls/WgGEoZSwYm2Hjl6NeN+9wj2LPdOir/iv\nXbchUmkudlTmST1qwuOTtE40Lbpe1uOUdNM/+mi8+2S34IdCv7KygpklevXQ6nbp7lzwlnJ7jEB5\nb47mpUwPd1iCWtTjHcdTyzBfVotTCaE/em6mI1wSD0HE06Lz0eXxWDvEe3fs60o/b+t8Rw+NJGGG\nha4KIuubqHHi2yb1SEkiXgl2h3qmEpcnv0DUyiv6xJRkR3Q+qfdMUuNoNK/4f2e4bTFoSA0beqNh\nlwMdFUa0EsoyTkwSSTfG8UA/jz4cpC8ckjgkSfCXlpYy2zNsYSkzdFN0P0nrl/2UUbShtWh+gzLq\niqkSQv/r/cs9wjT7OtJD0paH6Wl9w6MhDCC1comnJz0NxNebm5uLPR10Vywte9o9WNoNqwuxfWXr\nodKLqNebNB3uO3pR93qyiaZFQzKt8kdHZ+wdkulMm+OCM1v5hnakVSrDIfTqnSTRTxL6cECzuNi7\ne2aBGLaHmoV+8exh2jCKsEqR/Zbdlz9O3vzG8mbssEgLQ/Rr0Et71T6a/vY3Tq3G4ZPWbZEk0Olp\n8fmkiiWeFhWuaEgiJK1xNWndrMTfDo32doH2G63R/OMCHqZF6RWCSQq1RNOi23QKT64idtHrxmi/\nnZ4u9knDbvcK4ZRFLyEoMoRAWTZksaUssnrfVamYYHhPBHnLWkmhDxn0Ldluul9WCsdmCUl7CzWp\n0ugn2uE6cbGPrpcm9tAt5u2ng84KJalxtp1n7+k0wvh92Cc9alOULHHytBh8PNwWn46LflmDbyXx\n4IMPBlPZu1dGPfpRUBVxKbLPUcahqzTAWdlj5hRF3z4TQoiGUwmPfn7dVAneezqDDIqWFKMeZJ14\n185u0oY5jtvYOZ/0dJBmS9rYLlkIhzmA7B5FUpim7aHE/+PTcZKXleHdt734JLI1ysans3j3o+rR\nMe4Gxiz7TLKxCnalMcxzV2SkzkaFbsqgn8gPs4IZJnHh77csraKA/g2d0dh+PCRUhLwNrHlF/+yz\nz+4S+2uv3cLll++hPVplcqMsZIvN/5vfO331K1ThAGdVYVjj4vTKu6xtx/UuwCiHaBiEWnavzENW\nAa+rkBclW7l7P3GEMfVWA3Zy43YSWSqAsnrRlBHbjIr9tdee2LHstdde65hfs2ZNT7FfXl5eFfoy\nbRwmvUSqKnZW8WklJOtgbzA+Oysh9PsOrhT6UlOUpgh71coR2hM9T4N49MPrHjlYL5S0o9oW+2Is\nLS2tfkC8F6MajniQfedZty4VAYy+S2PRvMqsFCo3Hn0RqiKORT5NWBfKqpjjpI2pXwbhjXPfrZ9f\nHdFy/fr1nHr2JavrzL/2RKa81q9fz+tf/3qOP/54ZmdnMTNWVlZw99X/ex59pRS7qxzaSKMqFUBW\nRtFFcxjUbjz6tMbFLJQtlsMSsSYRH/M/aXlZ5HlZLCRaSYRdR++j9VnAcEjhPI3Wr732Gj//+c9Z\nXl5mw4YNzMzMMD09DST3vc/LqGO/ZVFmQ2JZFBn3P6RuFUFIX6E3sxuAdwN7w498m9lG4BbgZFqf\nC7zY3V8Oll0FfJBW69afuvu3++9jKrE/O3S/4RqSPmRv59C/RRsMRYtRiXrZJFUSV111FZ/73OdW\n4+/RSmvJTuY4f7ZvvvvWv4l9K7D4YusJAeDoo49efVI44a1/mLrtsEanrLr4hwyjEhhV2avyEtmg\n9A3dmNm5tPr6fS0i9H8DvOTuf21mVwLHuvvHzexNtD4UfhbweuAe4HR3Tx72LyAaukkaxTLppZ34\nOO5pb8UmpWWtRLJsV5RRi+Qwn1aqLPiDcP/ufXzvzv/KmjVrVocd3rBhA+vXr2fLmRd1rR8K/ezs\n7Op6V1xxxUht7kVdKoBJocyKoLTQjbt/x8xOjiVfBJwfTH8V+N/Ax4P0m919CfiZmT1NS/S/32sf\nYT/6pAHMktLSPPZBBL3IOmUK/v279+USyCqGl/KWpWqct3We793Z+mRg6PWH4Zjom8Ptt3j/CoBP\nfepTXYOfVYGq9PzIwrhH6hwF43gqyNQYGwj9tyIe/a/c/Zhg2oCX3f0YM7sGeMDd/1uw7Hrgf7r7\nf++V/9atW/3GG28EukelDNOSvsRUhlgPsl18m6zrJq3fbzqNXnZkWT+tvPH0otRB8PtVlt//H9es\nivaGDRs483feD/QuW1kNx6NmVGI5jrBG3SqCrFxw5sLoGmPd3c1s4K47ZrYD2AGwZcuWVC8++onB\nkCzCnJQ2iOgP4tWH061Bwbq/vNQieoEvRJZvjryQNHhF0KtCSVqeltYrPQ/hN2bHdWOXUWmd/6/+\nPDE9LBtUMx6bhzJj/lU7JqMaBG7UDGJ7XqFfNLMt7r7HzLYAe4P0F4DoGycnBGlduPtOYCfAGWec\nsVpR9BL5vDH1LOvE8w5FO/4xk/bXj+gS9bj9aQN2xcsatzXLdLRcoxnONx9ldVsb9IYc1XEY5sBr\n46YOL1IVpa69mgYlr9DfCbwP+Ovg/45I+o1mdjWtxtjTgIeyZhoKX3xseigm8tEPiwCJAh7/Hms/\noU778lHSsl75FqVqwp5Gmjg06YYq+zuf42TQcVjqXNYkqvoUMLTx6M3sJloNr8eb2fPAp2kJ/K1m\n9kHgOeBiAHffbWa3Ak8Ah4Er+vW4Ccki8mGPnJA0wc4q0Enzg27Ty1MfdLte5OnrPS7q+ILPMKiy\ntz+KD2lUrcxlMcpKoKxjWIk3Y0885Qz/1jdvAZI94Oh8SFqj7bBFvte6WfOJL+t3cVRF5Idx406C\n4McZlQBW8dg2VfyzMIyXsWr1ZuxRG1pvFKaJepysIp+0Tb/1i3jyaevF8x00dDOucWJGQfwDI5NA\nWd5vHY/bJHn+cXp1cx32MaiE0EO60MbTQrKIer+nguj6g3j2g3jy4+puV6ebZ1gfjK4TaTf9JByT\ncQ7wNipGOfZ8EpUR+jR6CXo0rVePlqR8eglwv/BN1mVl06QLP4lJFfymn9e81Nn7H/W3e/tRCaEP\nx+7uJ+ohg4h4njh9r/0NQ9jrcvGOiqaFc8r8KEeTjkseqir+VT8vlRD6NAYV5KL76LefQZZV6UPF\ndaRu3v04PhdYl2MzbEYp/nU95vo4uBBCNJzKePRZwzZRioZp+r2tmhSmCWv05C6P9aztq0xVPPsq\nPnXJu0+nrAbephzXygh9nFH0Vgn3ER0bJat4V6Ff+yQx7Lh9FYV8EJr+1nFZ9AvzNPWYVVboo6TF\nxvtVBq3Bp+InLtkjl3BXn6Lefd3FfFAmQcCKkHQ9VOUJsmxqIfRx4qM9dpJ8ggZ9u7Qqb6OKbnrd\njJMm5lmR6A92bTTtCakSQj89Pd1xEFsiu5I6n8Sg47T3E3GJfDWRuBdnErpsDuOaqPNIl5UQ+lcO\nZBr3rBCDfpxDjI9Bb5yyhkKeVJrg7Y/z3NfB+6+E0I8bifzoGcaNIMEvTh1Evw7nt2ri31ihl3iP\nj3ELhAS/HKoS4mnKeRyn+FdC6N17x9+TaJKQ1/GLPeMW8yzU8bhWmVEJ/ySds1HF/Ssh9HH6fRc1\nyzaiOHUQ837Iux8eRcM8OifplO39V0LozTQSwzhogpBnRYI/XLJ4+zr2xShy/LJ8SvAG4N3AXnd/\nc5D2n4F/ARwCngHe7+6/MrOTgSeBp4LNH3D3D+W2ThRmksQ8CwrnjIbom8w63uMni0f/FeAa4GuR\ntLuBq9z9sJl9HrgK+Hiw7Bl33zaoIerimB+J+WBIgMqn1zVY5W/nTgp9hd7dvxN46tG0v4vMPgD8\ny6KGSOTTkZAPBwl+fvJek/HtdOxHQxkx+g8At0TmTzGzR4BfA59y978vYR+Npmkf2qgbCuf0ZpjX\npoR/NBQSejP7JHAY+EaQtAc4yd1/aWZvA75pZlvd/ZWEbXcAOwCOPW5zETNqgS7gaiPvvs04nQ6F\neYZDbqE3sz+m1Uh7gbs7gLsvAUvB9MNm9gxwOrArvr277wR2Apx4yhme146qoIuyGUya4Ff5SVLe\nfnnkEnozexfw58B57n4gkr4JeMndj5jZqcBpwE9LsbQC6EKbHJoazqmysPdD3n5+snSvvAk4Hzje\nzJ4HPk2rl81a4G4zg3Y3ynOBvzSzZWAF+JC7vzQk24eCLiAR0gRhqbOw96IJ52aUZOl1c2lC8vUp\n694G3FbUqGGii0LkoeohnaYKehYU4umPXkkVQoiGU4khEMpGNboYFlXx7CfZg++HPPxuaiv0Onli\nnIy6sVbCnh/F8ysq9JN6MkS9GJZ3L1EfHpPq7VdC6I/aMD0xB1w0j6KCL2EfH5Pi7VdC6IVoAlnC\nORL16tJk0ZfQC1EiUe9eol5fmhbikdALURJxMZDYN4e6e/sSeiFykuWGl9g3jzp6+xL6iiBBqD55\nb+hwO53fZlIHb19CL0SMYd2sEvzmU1VvX0IvJp5R34x6epscquLtS+jFxFEFLytqg0R/Mhin6Evo\nRaOpgqj3QyGdyWPUIR4JvWgUdRD2NBTSmVyGLfwSelFb6izqaci7F1B+mEdCL2pBE0W9FxJ8EVKG\nt5/lU4I30PoI+F53f3OQ9hngT4AXg9U+4e53BcuuAj4IHAH+1N2/PbBVYuKZNGFPQ4Iv4uS5FrJ4\n9F8BrgG+Fkv/krt/IZpgZm8CLgG2Aq8H7jGz0939yMCWiYlCwt4bxe9FEbJ8M/Y7ZnZyxvwuAm52\n9yXgZ2b2NHAW8P3cFopGImEfHHn3Ii9FYvQfNrM/AnYBH3P3l4E3AA9E1nk+SBMTigS9fCT4YlDy\nfhz8y8CpwDZgD/DFQTMwsx1mtsvMdr388ss5zRBCCNGPXB69uy+G02Z2HfCtYPYF4MTIqicEaUl5\n7AR2AmzdutXz2CGqhzz40aG4vchKLqE3sy3uvieYfQ/weDB9J3CjmV1NqzH2NOChwlaKyiJhHy8K\n44gsZOleeRNwPnC8mT0PfBo438y2AQ48C1wO4O67zexW4AngMHCFetw0B4l6dZHgi15k6XVzaULy\n9T3W/yzw2SJGiWogYa8fEnyRhN6MFYBEvWlI8EUUCf0EIlGfHCT4AiT0E4GEXaiHzmQjoW8gEnaR\nhLz7yUVCXyHyel0SdjEIEvzJQ0JfIyTookwUzpkcJPQVRsIuho28+8lAQl8h7n3sVYm7GAsS/GYj\noR8TuqFEFZHgNxMJ/YjQjSPqhOL3zUJCPwR0g4gmIO++OUjoC6KbQDQdCX79kdAPiC52MalI8OuL\nhL4PuqiF6ESCXw0G6aEnoQ8YxkX70feew9Vf/27p+QpRBST442PQbtgTK/SjuDgl8mISUA+d0ZH3\nPZu8HwcXQghRE7J8SvAG4N3AXnd/c5B2C/CbwSrHAL9y921mdjLwJPBUsOwBd/9Q2UbnQR6HEMND\nYZzhU+St+Syhm68A1wBfCxPc/V+H02b2ReDXkfWfcfdtuS0qCV1wQoweCX75lDEsSpZvxn4n8NS7\nMDMDLgZ+p7AlBdBFJUS1UNy+HMoa+6poY+w/Axbd/SeRtFPM7BFaXv6n3P3vC+6jC11AQlQfeff5\nKXtww6JCfylwU2R+D3CSu//SzN4GfNPMtrr7K/ENzWwHsANgy5YtqTvQRSJEvZHgZ2dYo9fmFnoz\nWwP8IfC2MM3dl4ClYPphM3sGOB3YFd/e3XcCOwG2bt3qoAtBiCajcE46wx6evEj3yt8FfuTuz4cJ\nZrbJzKaD6VOB04Cf9svolQNHdAEIMQFccOaCvrkQYxTHI0v3ypuA84Hjzex54NPufj1wCZ1hG4Bz\ngb80s2XdnWcZAAAE9klEQVRgBfiQu79UrslCiLqjcM5ovyCXpdfNpSnpf5yQdhtwW3GzJhd9ZUpM\nEtFrfZJEf9T3uN6MFUJUgklwcMYVupLQCyEqQ5Nj+OMs18QOaiaEqC5NiuFXoeKSRy+EqCxVEMki\nVMV+Cb0QotLUNZxTJZsVuhFC1IK6hHOqJPAh8uiFELWiikIaUlXb5NELIWpH1bz7qgp8iDx6IURt\nqUL8ftz7z4I8eiFE7Rn1gGl1EPco8uiFEI1gVN593UQeJPRCCNF4FLoRQjSKYTXU1tGTD5FHL4Ro\nJGWGcuos8iCPXgjRcIp4+HUX+BB59EKIiWBQD78pIg/y6IUQE0Y/D79JAh8ij14IMZEkCXoTRR7k\n0QshJpimCnscefQVpCrjdwgxCdz72Kurv6YioRdCTCxxcW+q2Ju7j9sGzOxFYD/wi3HbUiLHo/JU\nnaaVSeWpPmWX6TfcfVO/lSoh9ABmtsvdt4/bjrJQeapP08qk8lSfcZVJoRshhGg4EnohhGg4VRL6\nneM2oGRUnurTtDKpPNVnLGWqTIxeCCHEcKiSRy+EEGIIjF3ozexdZvaUmT1tZleO2568mNmzZvZD\nM3vEzHYFaRvN7G4z+0nwf+y47UzDzG4ws71m9ngkLdV+M7sqOGdPmdnvjcfqdFLK8xkzeyE4R4+Y\n2YWRZVUvz4lmdp+ZPWFmu83sI0F6nc9RWplqeZ7MbJ2ZPWRmjwbl+Y9B+vjPkbuP7QdMA88ApwKz\nwKPAm8ZpU4GyPAscH0v7G+DKYPpK4PPjtrOH/ecCvwU83s9+4E3BuVoLnBKcw+lxlyFDeT4D/PuE\ndetQni3AbwXTC8CPA7vrfI7SylTL8wQYMB9MzwAPAm+vwjkat0d/FvC0u//U3Q8BNwMXjdmmMrkI\n+Gow/VXgD8ZoS0/c/TvAS7HkNPsvAm529yV3/xnwNK1zWRlSypNGHcqzx93/IZh+FXgSeAP1Pkdp\nZUqj0mXyFvuC2Zng51TgHI1b6N8A/GNk/nl6n+gq48A9Zvawme0I0ja7+55g+ufA5vGYlps0++t8\n3j5sZo8FoZ3wEbpW5TGzk4G30vIYG3GOYmWCmp4nM5s2s0eAvcDd7l6JczRuoW8S57j7NuD3gSvM\n7NzoQm89q9W2i1Pd7Q/4Mq0w4TZgD/DF8ZozOGY2D9wG/Jm7vxJdVtdzlFCm2p4ndz8S6MAJwFlm\n9ubY8rGco3EL/QvAiZH5E4K02uHuLwT/e4HbaT2CLZrZFoDgf+/4LMxFmv21PG/uvhjciCvAdbQf\nk2tRHjOboSWI33D3vw2Sa32OkspU9/ME4O6/Au4D3kUFztG4hf4HwGlmdoqZzQKXAHeO2aaBMbM5\nM1sIp4F3Ao/TKsv7gtXeB9wxHgtzk2b/ncAlZrbWzE4BTgMeGoN9AxHebAHvoXWOoAblMTMDrgee\ndPerI4tqe47SylTX82Rmm8zsmGB6PfAO4EdU4RxVoKX6Qlqt7c8Anxy3PTnLcCqt1vNHgd1hOYDj\ngHuBnwD3ABvHbWuPMtxE6zF5mVas8IO97Ac+GZyzp4DfH7f9GcvzdeCHwGO0brItNSrPObQe+R8D\nHgl+F9b8HKWVqZbnCTgT+L+B3Y8DfxGkj/0c6c1YIYRoOOMO3QghhBgyEnohhGg4EnohhGg4Enoh\nhGg4EnohhGg4EnohhGg4EnohhGg4EnohhGg4/x8Y5R/5ppVyFQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x108feb4a8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"w=img_arr[0] #width of the image, in pixels\n",
"h=img_arr[1] #height of the image, in pixels\n",
"rgb=img_arr[2] #color data RGB\n",
"plt.imshow(rgb,interpolation='none')\n",
"plt.draw()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}