bullet3/examples/SharedMemory/PhysicsServer.cpp

362 lines
11 KiB
C++

#include "PhysicsServer.h"
#include "PosixSharedMemory.h"
#include "Win32SharedMemory.h"
#include "../Importers/ImportURDFDemo/ROSURDFImporter.h"
#include "../Importers/ImportURDFDemo/MyMultiBodyCreator.h"
#include "../Importers/ImportURDFDemo/URDF2Bullet.h"
#include "SharedMemoryCommon.h"
class PhysicsServer : public SharedMemoryCommon
{
SharedMemoryInterface* m_sharedMemory;
SharedMemoryExampleData* m_testBlock1;
btAlignedObjectArray<btJointFeedback*> m_jointFeedbacks;
bool m_wantsShutdown;
public:
PhysicsServer(GUIHelperInterface* helper);
virtual ~PhysicsServer();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
void releaseSharedMemory();
bool loadUrdf(const char* fileName, const btVector3& pos, const btQuaternion& orn,
bool useMultiBody, bool useFixedBase);
virtual void resetCamera()
{
float dist = 5;
float pitch = 50;
float yaw = 35;
float targetPos[3]={0,0,0};//-3,2.8,-2.5};
m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]);
}
virtual bool wantsTermination();
};
PhysicsServer::PhysicsServer(GUIHelperInterface* helper)
:SharedMemoryCommon(helper),
m_testBlock1(0),
m_wantsShutdown(false)
{
b3Printf("Started PhysicsServer\n");
bool useServer = true;
#ifdef _WIN32
m_sharedMemory = new Win32SharedMemoryServer();
#else
m_sharedMemory = new PosixSharedMemory();
#endif
}
void PhysicsServer::releaseSharedMemory()
{
b3Printf("releaseSharedMemory1\n");
if (m_testBlock1)
{
b3Printf("m_testBlock1\n");
m_testBlock1->m_magicId = 0;
b3Printf("magic id = %d\n",m_testBlock1->m_magicId);
btAssert(m_sharedMemory);
m_sharedMemory->releaseSharedMemory(SHARED_MEMORY_KEY, SHARED_MEMORY_SIZE);
}
if (m_sharedMemory)
{
b3Printf("m_sharedMemory\n");
delete m_sharedMemory;
m_sharedMemory = 0;
m_testBlock1 = 0;
}
}
PhysicsServer::~PhysicsServer()
{
releaseSharedMemory();
}
void PhysicsServer::initPhysics()
{
///for this testing we use Z-axis up
int upAxis = 2;
m_guiHelper->setUpAxis(upAxis);
createEmptyDynamicsWorld();
//todo: create a special debug drawer that will cache the lines, so we can send the debug info over the wire
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
btVector3 grav(0,0,0);
grav[upAxis] = -9.8;
this->m_dynamicsWorld->setGravity(grav);
m_testBlock1 = (SharedMemoryExampleData*) m_sharedMemory->allocateSharedMemory(SHARED_MEMORY_KEY, SHARED_MEMORY_SIZE);
// btAssert(m_testBlock1);
if (m_testBlock1)
{
// btAssert(m_testBlock1->m_magicId != SHARED_MEMORY_MAGIC_NUMBER);
if (m_testBlock1->m_magicId == SHARED_MEMORY_MAGIC_NUMBER)
{
b3Printf("Warning: shared memory is already initialized, did you already spawn a server?\n");
}
m_testBlock1->m_numClientCommands = 0;
m_testBlock1->m_numServerCommands = 0;
m_testBlock1->m_numProcessedClientCommands=0;
m_testBlock1->m_numProcessedServerCommands=0;
m_testBlock1->m_magicId = SHARED_MEMORY_MAGIC_NUMBER;
b3Printf("Shared memory succesfully allocated\n");
} else
{
b3Error("Couldn't allocated shared memory, is it implemented on your operating system?\n");
}
}
bool PhysicsServer::wantsTermination()
{
return m_wantsShutdown;
}
bool PhysicsServer::loadUrdf(const char* fileName, const btVector3& pos, const btQuaternion& orn,
bool useMultiBody, bool useFixedBase)
{
ROSURDFImporter u2b(m_guiHelper);
bool loadOk = u2b.loadURDF(fileName);
if (loadOk)
{
b3Printf("loaded %s OK!", fileName);
btTransform tr;
tr.setIdentity();
tr.setOrigin(pos);
tr.setRotation(orn);
int rootLinkIndex = u2b.getRootLinkIndex();
// printf("urdf root link index = %d\n",rootLinkIndex);
MyMultiBodyCreator creation(m_guiHelper);
ConvertURDF2Bullet(u2b,creation, tr,m_dynamicsWorld,useMultiBody,u2b.getPathPrefix());
btMultiBody* mb = creation.getBulletMultiBody();
if (useMultiBody)
{
if (mb)
{
return true;
} else
{
b3Warning("No multibody loaded from URDF");
return false;
}
} else
{
for (int i=0;i<m_dynamicsWorld->getNumConstraints();i++)
{
btTypedConstraint* c = m_dynamicsWorld->getConstraint(i);
btJointFeedback* fb = new btJointFeedback();
m_jointFeedbacks.push_back(fb);
c->setJointFeedback(fb);
}
return true;
}
}
return false;
}
void PhysicsServer::stepSimulation(float deltaTime)
{
bool wantsShutdown = false;
if (m_testBlock1)
{
///we ignore overflow of integer for now
if (m_testBlock1->m_numClientCommands> m_testBlock1->m_numProcessedClientCommands)
{
//until we implement a proper ring buffer, we assume always maximum of 1 outstanding commands
btAssert(m_testBlock1->m_numClientCommands==m_testBlock1->m_numProcessedClientCommands+1);
const SharedMemoryCommand& clientCmd =m_testBlock1->m_clientCommands[0];
m_testBlock1->m_numProcessedClientCommands++;
//consume the command
switch (clientCmd.m_type)
{
case CMD_LOAD_URDF:
{
b3Printf("Processed CMD_LOAD_URDF:%s",clientCmd.m_urdfArguments.m_urdfFileName);
//load the actual URDF and send a report: completed or failed
bool completedOk = loadUrdf(clientCmd.m_urdfArguments.m_urdfFileName,
btVector3(0,0,0), btQuaternion(0,0,0,1),clientCmd.m_urdfArguments.m_useMultiBody,clientCmd.m_urdfArguments.m_useFixedBase);
SharedMemoryCommand& serverCmd =m_testBlock1->m_serverCommands[0];
if (completedOk)
{
serverCmd.m_type =CMD_URDF_LOADING_COMPLETED;
} else
{
serverCmd.m_type =CMD_URDF_LOADING_FAILED;
}
m_testBlock1->m_numServerCommands++;
break;
}
case CMD_REQUEST_ACTUAL_STATE:
{
b3Printf("Sending the actual state (Q,U)");
if (m_dynamicsWorld->getNumMultibodies()>0)
{
btMultiBody* mb = m_dynamicsWorld->getMultiBody(0);
SharedMemoryCommand& serverCmd = m_testBlock1->m_serverCommands[0];
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = 0;
int totalDegreeOfFreedomQ = 0;
int totalDegreeOfFreedomU = 0;
//always add the base, even for static (non-moving objects)
//so that we can easily move the 'fixed' base when needed
//do we don't use this conditional "if (!mb->hasFixedBase())"
{
btTransform tr;
tr.setOrigin(mb->getBasePos());
tr.setRotation(mb->getWorldToBaseRot().inverse());
//base position in world space, carthesian
m_testBlock1->m_actualStateQ[0] = tr.getOrigin()[0];
m_testBlock1->m_actualStateQ[1] = tr.getOrigin()[1];
m_testBlock1->m_actualStateQ[2] = tr.getOrigin()[2];
//base orientation, quaternion x,y,z,w, in world space, carthesian
m_testBlock1->m_actualStateQ[3] = tr.getRotation()[0];
m_testBlock1->m_actualStateQ[4] = tr.getRotation()[1];
m_testBlock1->m_actualStateQ[5] = tr.getRotation()[2];
m_testBlock1->m_actualStateQ[6] = tr.getRotation()[3];
totalDegreeOfFreedomQ +=7;//pos + quaternion
//base linear velocity (in world space, carthesian)
m_testBlock1->m_actualStateQdot[0] = mb->getBaseVel()[0];
m_testBlock1->m_actualStateQdot[1] = mb->getBaseVel()[1];
m_testBlock1->m_actualStateQdot[2] = mb->getBaseVel()[2];
//base angular velocity (in world space, carthesian)
m_testBlock1->m_actualStateQdot[3] = mb->getBaseOmega()[0];
m_testBlock1->m_actualStateQdot[4] = mb->getBaseOmega()[1];
m_testBlock1->m_actualStateQdot[5] = mb->getBaseOmega()[2];
totalDegreeOfFreedomU += 6;//3 linear and 3 angular DOF
}
for (int l=0;l<mb->getNumLinks();l++)
{
for (int d=0;d<mb->getLink(l).m_posVarCount;d++)
{
m_testBlock1->m_actualStateQ[totalDegreeOfFreedomQ++] = mb->getJointPosMultiDof(l)[d];
}
for (int d=0;d<mb->getLink(l).m_dofCount;d++)
{
m_testBlock1->m_actualStateQdot[totalDegreeOfFreedomU++] = mb->getJointVelMultiDof(l)[d];
}
}
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
} else
{
b3Warning("Request state but no multibody available");
//rigid bodies?
}
/*
//now we send back the actual q, q' and force/torque and IMU sensor values
for (int i=0;i<m_jointFeedbacks.size();i++)
{
printf("Applied force A:(%f,%f,%f), torque A:(%f,%f,%f)\nForce B:(%f,%f,%f), torque B:(%f,%f,%f)\n",
m_jointFeedbacks[i]->m_appliedForceBodyA.x(),
m_jointFeedbacks[i]->m_appliedForceBodyA.y(),
m_jointFeedbacks[i]->m_appliedForceBodyA.z(),
m_jointFeedbacks[i]->m_appliedTorqueBodyA.x(),
m_jointFeedbacks[i]->m_appliedTorqueBodyA.y(),
m_jointFeedbacks[i]->m_appliedTorqueBodyA.z(),
m_jointFeedbacks[i]->m_appliedForceBodyB.x(),
m_jointFeedbacks[i]->m_appliedForceBodyB.y(),
m_jointFeedbacks[i]->m_appliedForceBodyB.z(),
m_jointFeedbacks[i]->m_appliedTorqueBodyB.x(),
m_jointFeedbacks[i]->m_appliedTorqueBodyB.y(),
m_jointFeedbacks[i]->m_appliedTorqueBodyB.z());
}
*/
m_testBlock1->m_numServerCommands++;
break;
}
case CMD_STEP_FORWARD_SIMULATION:
{
b3Printf("Step simulation request");
double timeStep = clientCmd.m_stepSimulationArguments.m_deltaTimeInSeconds;
m_dynamicsWorld->stepSimulation(timeStep);
SharedMemoryCommand& serverCmd =m_testBlock1->m_serverCommands[0];
serverCmd.m_type =CMD_STEP_FORWARD_SIMULATION_COMPLETED;
m_testBlock1->m_numServerCommands++;
break;
}
case CMD_SHUTDOWN:
{
wantsShutdown = true;
break;
}
default:
{
b3Error("Unsupported command encountered");
btAssert(0);
}
};
//process the command right now
}
}
if (wantsShutdown)
{
b3Printf("releaseSharedMemory!\n");
m_wantsShutdown = true;
releaseSharedMemory();
}
}
class CommonExampleInterface* PhysicsServerCreateFunc(struct CommonExampleOptions& options)
{
return new PhysicsServer(options.m_guiHelper);
}