bullet3/Demos/BspDemo/BspConverter.cpp
2006-08-11 23:01:25 +00:00

282 lines
7.6 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "BspConverter.h"
#include "BspLoader.h"
#include "CcdPhysicsEnvironment.h"
#include "SimdVector3.h"
void BspConverter::convertBsp(BspLoader& bspLoader,float scaling)
{
{
SimdVector3 playerStart (0.f, 0.f, 100.f);
if (bspLoader.findVectorByName(&playerStart[0],"info_player_start"))
{
printf("found playerstart\n");
}
else
{
if (bspLoader.findVectorByName(&playerStart[0],"info_player_deathmatch"))
{
printf("found deatchmatch start\n");
}
}
playerStart[2] += 20.f; //start a bit higher
playerStart *= scaling;
//progressBegin("Loading bsp");
for (int i=0;i<bspLoader.m_numleafs;i++)
{
printf("Reading bspLeaf %i from total %i (%f procent)\n",i, bspLoader.m_numleafs,(100.f*(float)i/float(bspLoader.m_numleafs)) );
bool isValid = false;
bool isValidBrush = false;
BSPLeaf& leaf = bspLoader.m_dleafs[i];
for (int b=0;b<leaf.numLeafBrushes;b++)
{
std::vector<SimdVector3> planeEquations;
int brushid = bspLoader.m_dleafbrushes[leaf.firstLeafBrush+b];
BSPBrush& brush = bspLoader.m_dbrushes[brushid];
if (brush.shaderNum!=-1)
{
if (bspLoader.m_dshaders[ brush.shaderNum ].contentFlags & BSPCONTENTS_SOLID)
{
brush.shaderNum = -1;
for (int p=0;p<brush.numSides;p++)
{
int sideid = brush.firstSide+p;
BSPBrushSide& brushside = bspLoader.m_dbrushsides[sideid];
int planeid = brushside.planeNum;
BSPPlane& plane = bspLoader.m_dplanes[planeid];
SimdVector3 planeEq;
planeEq.setValue(
plane.normal[0],
plane.normal[1],
plane.normal[2],
scaling*-plane.dist);
planeEquations.push_back(planeEq);
isValidBrush=true;
}
if (isValidBrush)
{
std::vector<SimdVector3> vertices;
getVerticesFromPlaneEquations(planeEquations,vertices);
printf("getVerticesFromPlaneEquations returned %i\n",vertices.size());
bool isEntity = false;
SimdVector3 entityTarget(0.f,0.f,0.f);
AddConvexVerticesCollider(vertices,isEntity,entityTarget);
}
}
}
else
{
int i=0;
}
}
}
#define USE_ENTITIES
#ifdef USE_ENTITIES
{
int i;
for (i=0;i<bspLoader.m_num_entities;i++)
{
const BSPEntity& entity = bspLoader.m_entities[i];
const char* cl = bspLoader.ValueForKey(&entity,"classname");
if ( !strcmp( cl, "trigger_push" ) ) {
SimdVector3 targetLocation(0.f,0.f,0.f);
cl = bspLoader.ValueForKey(&entity,"target");
if ( strcmp( cl, "" ) ) {
//its not empty so ...
//lookup the target position for the jumppad:
const BSPEntity* targetentity = bspLoader.getEntityByValue( "targetname" , cl );
if (targetentity)
{
if (bspLoader.GetVectorForKey( targetentity , "origin",&targetLocation[0]))
{
}
}
cl = bspLoader.ValueForKey(&entity,"model");
if ( strcmp( cl, "" ) ) {
// add the model as a brush
if (cl[0] == '*')
{
int modelnr = atoi(&cl[1]);
if ((modelnr >=0) && (modelnr < bspLoader.m_nummodels))
{
const BSPModel& model = bspLoader.m_dmodels[modelnr];
for (int n=0;n<model.numBrushes;n++)
{
std::vector<SimdVector3> planeEquations;
bool isValidBrush = false;
//convert brush
const BSPBrush& brush = bspLoader.m_dbrushes[model.firstBrush+n];
{
for (int p=0;p<brush.numSides;p++)
{
int sideid = brush.firstSide+p;
BSPBrushSide& brushside = bspLoader.m_dbrushsides[sideid];
int planeid = brushside.planeNum;
BSPPlane& plane = bspLoader.m_dplanes[planeid];
SimdVector3 planeEq;
planeEq.setValue(
plane.normal[0],
plane.normal[1],
plane.normal[2],
scaling*-plane.dist);
planeEquations.push_back(planeEq);
isValidBrush=true;
}
if (isValidBrush)
{
std::vector<SimdVector3> vertices;
getVerticesFromPlaneEquations(planeEquations,vertices);
bool isEntity=true;
AddConvexVerticesCollider(vertices,isEntity,targetLocation);
}
}
}
}
}
else
{
printf("unsupported trigger_push model, md3 ?\n");
}
}
}
}
}
}
#endif //USE_ENTITIES
//progressEnd();
}
}
void BspConverter::getVerticesFromPlaneEquations(const std::vector<SimdVector3>& planeEquations , std::vector<SimdVector3>& verticesOut )
{
float minimumDotProduct = 1e30f;
const int numbrushes = planeEquations.size();
// brute force:
for (int i=0;i<numbrushes;i++)
{
const SimdVector3& N1 = planeEquations[i];
for (int j=i+1;j<numbrushes;j++)
{
const SimdVector3& N2 = planeEquations[j];
for (int k=j+1;k<numbrushes;k++)
{
const SimdVector3& N3 = planeEquations[k];
SimdVector3 n2n3; n2n3 = N2.cross(N3);
SimdVector3 n3n1; n3n1 = N3.cross(N1);
SimdVector3 n1n2; n1n2 = N1.cross(N2);
if ( ( n2n3.length2() > 0.0001f ) &&
( n3n1.length2() > 0.0001f ) &&
( n1n2.length2() > 0.0001f ) )
{
//point P out of 3 plane equations:
// d1 ( N2 * N3 ) + d2 ( N3 * N1 ) + d3 ( N1 * N2 )
//P = -------------------------------------------------------------------------
// N1 . ( N2 * N3 )
float quotient = (N1.dot(n2n3));
if (SimdFabs(quotient) > 0.000001f)
{
quotient = -1.f / quotient;
n2n3 *= N1[3];
n3n1 *= N2[3];
n1n2 *= N3[3];
SimdVector3 potentialVertex = n2n3;
potentialVertex += n3n1;
potentialVertex += n1n2;
potentialVertex *= quotient;
//check if inside, and replace supportingVertexOut if needed
if (isInside(planeEquations,potentialVertex,0.1f))
{
verticesOut.push_back(potentialVertex);
}
}
}
}
}
}
}
bool BspConverter::isInside(const std::vector<SimdVector3>& planeEquations, const SimdVector3& point, float margin)
{
int numbrushes = planeEquations.size();
for (int i=0;i<numbrushes;i++)
{
const SimdVector3& N1 = planeEquations[i];
float dist = float(N1.dot(point))+float(N1[3])-margin;
if (dist>0.f)
{
return false;
}
}
return true;
}