mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-07 08:10:08 +00:00
21f9d1b816
work-in-progress (need to add missing data files, fix paths etc) example: pip install pybullet pip install gym python import gym import pybullet import pybullet_envs env = gym.make("HumanoidBulletEnv-v0")
97 lines
2.8 KiB
Python
97 lines
2.8 KiB
Python
"""
|
|
Classic cart-pole system implemented by Rich Sutton et al.
|
|
Copied from https://webdocs.cs.ualberta.ca/~sutton/book/code/pole.c
|
|
"""
|
|
import os
|
|
import logging
|
|
import math
|
|
import gym
|
|
from gym import spaces
|
|
from gym.utils import seeding
|
|
import numpy as np
|
|
import time
|
|
import subprocess
|
|
import pybullet as p
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class CartPoleBulletEnv(gym.Env):
|
|
metadata = {
|
|
'render.modes': ['human', 'rgb_array'],
|
|
'video.frames_per_second' : 50
|
|
}
|
|
|
|
def __init__(self, renders=True):
|
|
# start the bullet physics server
|
|
self._renders = renders
|
|
if (renders):
|
|
p.connect(p.GUI)
|
|
else:
|
|
p.connect(p.DIRECT)
|
|
|
|
observation_high = np.array([
|
|
np.finfo(np.float32).max,
|
|
np.finfo(np.float32).max,
|
|
np.finfo(np.float32).max,
|
|
np.finfo(np.float32).max])
|
|
action_high = np.array([0.1])
|
|
|
|
self.action_space = spaces.Discrete(9)
|
|
self.observation_space = spaces.Box(-observation_high, observation_high)
|
|
|
|
self.theta_threshold_radians = 1
|
|
self.x_threshold = 2.4
|
|
self._seed()
|
|
# self.reset()
|
|
self.viewer = None
|
|
self._configure()
|
|
|
|
def _configure(self, display=None):
|
|
self.display = display
|
|
|
|
def _seed(self, seed=None):
|
|
self.np_random, seed = seeding.np_random(seed)
|
|
return [seed]
|
|
|
|
def _step(self, action):
|
|
p.stepSimulation()
|
|
# time.sleep(self.timeStep)
|
|
self.state = p.getJointState(self.cartpole, 1)[0:2] + p.getJointState(self.cartpole, 0)[0:2]
|
|
theta, theta_dot, x, x_dot = self.state
|
|
|
|
dv = 0.1
|
|
deltav = [-10.*dv,-5.*dv, -2.*dv, -0.1*dv, 0, 0.1*dv, 2.*dv,5.*dv, 10.*dv][action]
|
|
|
|
p.setJointMotorControl2(self.cartpole, 0, p.VELOCITY_CONTROL, targetVelocity=(deltav + self.state[3]))
|
|
|
|
done = x < -self.x_threshold \
|
|
or x > self.x_threshold \
|
|
or theta < -self.theta_threshold_radians \
|
|
or theta > self.theta_threshold_radians
|
|
reward = 1.0
|
|
|
|
return np.array(self.state), reward, done, {}
|
|
|
|
def _reset(self):
|
|
# print("-----------reset simulation---------------")
|
|
p.resetSimulation()
|
|
self.cartpole = p.loadURDF(os.path.join(os.path.dirname(__file__),"../data","cartpole.urdf"),[0,0,0])
|
|
self.timeStep = 0.01
|
|
p.setJointMotorControl2(self.cartpole, 1, p.VELOCITY_CONTROL, force=0)
|
|
p.setGravity(0,0, -10)
|
|
p.setTimeStep(self.timeStep)
|
|
p.setRealTimeSimulation(0)
|
|
|
|
initialCartPos = self.np_random.uniform(low=-0.5, high=0.5, size=(1,))
|
|
initialAngle = self.np_random.uniform(low=-0.5, high=0.5, size=(1,))
|
|
p.resetJointState(self.cartpole, 1, initialAngle)
|
|
p.resetJointState(self.cartpole, 0, initialCartPos)
|
|
|
|
self.state = p.getJointState(self.cartpole, 1)[0:2] + p.getJointState(self.cartpole, 0)[0:2]
|
|
|
|
return np.array(self.state)
|
|
|
|
def _render(self, mode='human', close=False):
|
|
return
|