bullet3/examples/pybullet/gym/pybullet_envs/bullet/cartpole_bullet.py
Erwin Coumans 21f9d1b816 refactor pybullet/gym to allow instantiating environments directly from a pybullet install:
work-in-progress (need to add missing data files, fix paths etc)

example:

pip install pybullet
pip install gym

python
import gym
import pybullet
import pybullet_envs
env = gym.make("HumanoidBulletEnv-v0")
2017-08-22 00:42:02 -07:00

97 lines
2.8 KiB
Python

"""
Classic cart-pole system implemented by Rich Sutton et al.
Copied from https://webdocs.cs.ualberta.ca/~sutton/book/code/pole.c
"""
import os
import logging
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import subprocess
import pybullet as p
logger = logging.getLogger(__name__)
class CartPoleBulletEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self, renders=True):
# start the bullet physics server
self._renders = renders
if (renders):
p.connect(p.GUI)
else:
p.connect(p.DIRECT)
observation_high = np.array([
np.finfo(np.float32).max,
np.finfo(np.float32).max,
np.finfo(np.float32).max,
np.finfo(np.float32).max])
action_high = np.array([0.1])
self.action_space = spaces.Discrete(9)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.theta_threshold_radians = 1
self.x_threshold = 2.4
self._seed()
# self.reset()
self.viewer = None
self._configure()
def _configure(self, display=None):
self.display = display
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _step(self, action):
p.stepSimulation()
# time.sleep(self.timeStep)
self.state = p.getJointState(self.cartpole, 1)[0:2] + p.getJointState(self.cartpole, 0)[0:2]
theta, theta_dot, x, x_dot = self.state
dv = 0.1
deltav = [-10.*dv,-5.*dv, -2.*dv, -0.1*dv, 0, 0.1*dv, 2.*dv,5.*dv, 10.*dv][action]
p.setJointMotorControl2(self.cartpole, 0, p.VELOCITY_CONTROL, targetVelocity=(deltav + self.state[3]))
done = x < -self.x_threshold \
or x > self.x_threshold \
or theta < -self.theta_threshold_radians \
or theta > self.theta_threshold_radians
reward = 1.0
return np.array(self.state), reward, done, {}
def _reset(self):
# print("-----------reset simulation---------------")
p.resetSimulation()
self.cartpole = p.loadURDF(os.path.join(os.path.dirname(__file__),"../data","cartpole.urdf"),[0,0,0])
self.timeStep = 0.01
p.setJointMotorControl2(self.cartpole, 1, p.VELOCITY_CONTROL, force=0)
p.setGravity(0,0, -10)
p.setTimeStep(self.timeStep)
p.setRealTimeSimulation(0)
initialCartPos = self.np_random.uniform(low=-0.5, high=0.5, size=(1,))
initialAngle = self.np_random.uniform(low=-0.5, high=0.5, size=(1,))
p.resetJointState(self.cartpole, 1, initialAngle)
p.resetJointState(self.cartpole, 0, initialCartPos)
self.state = p.getJointState(self.cartpole, 1)[0:2] + p.getJointState(self.cartpole, 0)[0:2]
return np.array(self.state)
def _render(self, mode='human', close=False):
return