mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-16 14:40:05 +00:00
75e86051c2
Uses Kuka IIWA model description and 4 methods: Selectively Damped Least Squares,Damped Least Squares, Jacobi Transpose, Jacobi Pseudo Inverse Tweak some PD values in Inverse Dynamics example and Robot example.
385 lines
6.9 KiB
C++
385 lines
6.9 KiB
C++
/*
|
|
*
|
|
* Mathematics Subpackage (VrMath)
|
|
*
|
|
*
|
|
* Author: Samuel R. Buss, sbuss@ucsd.edu.
|
|
* Web page: http://math.ucsd.edu/~sbuss/MathCG
|
|
*
|
|
*
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
*
|
|
*/
|
|
|
|
|
|
#ifndef MATH_MISC_H
|
|
#define MATH_MISC_H
|
|
|
|
#include <math.h>
|
|
|
|
//
|
|
// Commonly used constants
|
|
//
|
|
|
|
const double PI = 3.1415926535897932384626433832795028841972;
|
|
const double PI2 = 2.0*PI;
|
|
const double PI4 = 4.0*PI;
|
|
const double PISq = PI*PI;
|
|
const double PIhalves = 0.5*PI;
|
|
const double PIthirds = PI/3.0;
|
|
const double PItwothirds = PI2/3.0;
|
|
const double PIfourths = 0.25*PI;
|
|
const double PIsixths = PI/6.0;
|
|
const double PIsixthsSq = PIsixths*PIsixths;
|
|
const double PItwelfths = PI/12.0;
|
|
const double PItwelfthsSq = PItwelfths*PItwelfths;
|
|
const double PIinv = 1.0/PI;
|
|
const double PI2inv = 0.5/PI;
|
|
const double PIhalfinv = 2.0/PI;
|
|
|
|
const double RadiansToDegrees = 180.0/PI;
|
|
const double DegreesToRadians = PI/180;
|
|
|
|
const double OneThird = 1.0/3.0;
|
|
const double TwoThirds = 2.0/3.0;
|
|
const double OneSixth = 1.0/6.0;
|
|
const double OneEighth = 1.0/8.0;
|
|
const double OneTwelfth = 1.0/12.0;
|
|
|
|
const double Root2 = sqrt(2.0);
|
|
const double Root3 = sqrt(3.0);
|
|
const double Root2Inv = 1.0/Root2; // sqrt(2)/2
|
|
const double HalfRoot3 = sqrtf(3)/2.0;
|
|
|
|
const double LnTwo = log(2.0);
|
|
const double LnTwoInv = 1.0/log(2.0);
|
|
|
|
// Special purpose constants
|
|
const double OnePlusEpsilon15 = 1.0+1.0e-15;
|
|
const double OneMinusEpsilon15 = 1.0-1.0e-15;
|
|
|
|
inline double ZeroValue(const double& x)
|
|
{
|
|
return 0.0;
|
|
}
|
|
|
|
//
|
|
// Comparisons
|
|
//
|
|
|
|
template<class T> inline T Min ( T x, T y )
|
|
{
|
|
return (x<y ? x : y);
|
|
}
|
|
|
|
template<class T> inline T Max ( T x, T y )
|
|
{
|
|
return (y<x ? x : y);
|
|
}
|
|
|
|
template<class T> inline T ClampRange ( T x, T min, T max)
|
|
{
|
|
if ( x<min ) {
|
|
return min;
|
|
}
|
|
if ( x>max ) {
|
|
return max;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
template<class T> inline bool ClampRange ( T *x, T min, T max)
|
|
{
|
|
if ( (*x)<min ) {
|
|
(*x) = min;
|
|
return false;
|
|
}
|
|
else if ( (*x)>max ) {
|
|
(*x) = max;
|
|
return false;
|
|
}
|
|
else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
template<class T> inline bool ClampMin ( T *x, T min)
|
|
{
|
|
if ( (*x)<min ) {
|
|
(*x) = min;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
template<class T> inline bool ClampMax ( T *x, T max)
|
|
{
|
|
if ( (*x)>max ) {
|
|
(*x) = max;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<class T> inline T& UpdateMin ( const T& x, T& y )
|
|
{
|
|
if ( x<y ) {
|
|
y = x;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
template<class T> inline T& UpdateMax ( const T& x, T& y )
|
|
{
|
|
if ( x>y ) {
|
|
y = x;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
|
|
template<class T> inline bool SameSignNonzero( T x, T y )
|
|
{
|
|
if ( x<0 ) {
|
|
return (y<0);
|
|
}
|
|
else if ( 0<x ) {
|
|
return (0<y);
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline double Mag ( double x ) {
|
|
return fabs(x);
|
|
}
|
|
|
|
inline double Dist ( double x, double y ) {
|
|
return fabs(x-y);
|
|
}
|
|
|
|
template <class T>
|
|
inline bool NearEqual( T a, T b, double tolerance ) {
|
|
a -= b;
|
|
return ( Mag(a)<=tolerance );
|
|
}
|
|
|
|
inline bool EqualZeroFuzzy( double x ) {
|
|
return ( fabs(x)<=1.0e-14 );
|
|
}
|
|
|
|
inline bool NearZero( double x, double tolerance ) {
|
|
return ( fabs(x)<=tolerance );
|
|
}
|
|
|
|
inline bool LessOrEqualFuzzy( double x, double y )
|
|
{
|
|
if ( x <= y ) {
|
|
return true;
|
|
}
|
|
|
|
if ( y > 0.0 ) {
|
|
if ( x>0.0 ) {
|
|
return ( x*OneMinusEpsilon15 < y*OnePlusEpsilon15 );
|
|
}
|
|
else {
|
|
return ( y<1.0e-15 ); // x==0 in this case
|
|
}
|
|
}
|
|
else if ( y < 0.0 ) {
|
|
if ( x<0.0 ) {
|
|
return ( x*OnePlusEpsilon15 < y*OneMinusEpsilon15 );
|
|
}
|
|
else {
|
|
return ( y>-1.0e-15 ); // x==0 in this case
|
|
}
|
|
}
|
|
else {
|
|
return ( -1.0e-15<x && x<1.0e-15 );
|
|
}
|
|
}
|
|
|
|
inline bool GreaterOrEqualFuzzy ( double x, double y )
|
|
{
|
|
return LessOrEqualFuzzy( y, x );
|
|
}
|
|
|
|
inline bool UpdateMaxAbs( double *maxabs, double updateval )
|
|
{
|
|
if ( updateval > *maxabs ) {
|
|
*maxabs = updateval;
|
|
return true;
|
|
}
|
|
else if ( -updateval > *maxabs ) {
|
|
*maxabs = -updateval;
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// **********************************************************
|
|
// Combinations and averages. *
|
|
// **********************************************************
|
|
|
|
template <class T>
|
|
void averageOf ( const T& a, const T &b, T&c ) {
|
|
c = a;
|
|
c += b;
|
|
c *= 0.5;
|
|
}
|
|
|
|
template <class T>
|
|
void Lerp( const T& a, const T&b, double alpha, T&c ) {
|
|
double beta = 1.0-alpha;
|
|
if ( beta>alpha ) {
|
|
c = b;
|
|
c *= alpha/beta;
|
|
c += a;
|
|
c *= beta;
|
|
}
|
|
else {
|
|
c = a;
|
|
c *= beta/alpha;
|
|
c += b;
|
|
c *= alpha;
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
T Lerp( const T& a, const T&b, double alpha ) {
|
|
T ret;
|
|
Lerp( a, b, alpha, ret );
|
|
return ret;
|
|
}
|
|
|
|
// **********************************************************
|
|
// Trigonometry *
|
|
// **********************************************************
|
|
|
|
// TimesCot(x) returns x*cot(x)
|
|
inline double TimesCot ( double x ) {
|
|
if ( -1.0e-5 < x && x < 1.0e-5 ) {
|
|
return 1.0+x*OneThird;
|
|
}
|
|
else {
|
|
return ( x*cos(x)/sin(x) );
|
|
}
|
|
}
|
|
|
|
// SineOver(x) returns sin(x)/x.
|
|
inline double SineOver( double x ) {
|
|
if ( -1.0e-5 < x && x < 1.0e-5 ) {
|
|
return 1.0-x*x*OneSixth;
|
|
}
|
|
else {
|
|
return sin(x)/x;
|
|
}
|
|
}
|
|
// OverSine(x) returns x/sin(x).
|
|
inline double OverSine( double x ) {
|
|
if ( -1.0e-5 < x && x < 1.0e-5 ) {
|
|
return 1.0+x*x*OneSixth;
|
|
}
|
|
else {
|
|
return x/sin(x);
|
|
}
|
|
}
|
|
|
|
inline double SafeAsin( double x ) {
|
|
if ( x <= -1.0 ) {
|
|
return -PIhalves;
|
|
}
|
|
else if ( x >= 1.0 ) {
|
|
return PIhalves;
|
|
}
|
|
else {
|
|
return asin(x);
|
|
}
|
|
}
|
|
|
|
inline double SafeAcos( double x ) {
|
|
if ( x <= -1.0 ) {
|
|
return PI;
|
|
}
|
|
else if ( x >= 1.0 ) {
|
|
return 0.0;
|
|
}
|
|
else {
|
|
return acos(x);
|
|
}
|
|
}
|
|
|
|
|
|
// **********************************************************************
|
|
// Roots and powers *
|
|
// **********************************************************************
|
|
|
|
// Square(x) returns x*x, of course!
|
|
|
|
template<class T> inline T Square ( T x )
|
|
{
|
|
return (x*x);
|
|
}
|
|
|
|
// Cube(x) returns x*x*x, of course!
|
|
|
|
template<class T> inline T Cube ( T x )
|
|
{
|
|
return (x*x*x);
|
|
}
|
|
|
|
// SafeSqrt(x) = returns sqrt(max(x, 0.0));
|
|
|
|
inline double SafeSqrt( double x ) {
|
|
if ( x<=0.0 ) {
|
|
return 0.0;
|
|
}
|
|
else {
|
|
return sqrt(x);
|
|
}
|
|
}
|
|
|
|
|
|
// SignedSqrt(a, s) returns (sign(s)*sqrt(a)).
|
|
inline double SignedSqrt( double a, double sgn )
|
|
{
|
|
if ( sgn==0.0 ) {
|
|
return 0.0;
|
|
}
|
|
else {
|
|
return ( sgn>0.0 ? sqrt(a) : -sqrt(a) );
|
|
}
|
|
}
|
|
|
|
|
|
// Template version of Sign function
|
|
|
|
template<class T> inline int Sign( T x)
|
|
{
|
|
if ( x<0 ) {
|
|
return -1;
|
|
}
|
|
else if ( x==0 ) {
|
|
return 0;
|
|
}
|
|
else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
#endif // #ifndef MATH_MISC_H
|