bullet3/examples/RoboticsLearning/R2D2GraspExample.cpp

202 lines
5.5 KiB
C++

#include "R2D2GraspExample.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/CommonExampleInterface.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "../SharedMemory/PhysicsServerSharedMemory.h"
#include "../SharedMemory/PhysicsClientC_API.h"
#include <string>
#include "../RobotSimulator/b3RobotSimulatorClientAPI.h"
#include "../Utils/b3Clock.h"
///quick demo showing the right-handed coordinate system and positive rotations around each axis
class R2D2GraspExample : public CommonExampleInterface
{
CommonGraphicsApp* m_app;
GUIHelperInterface* m_guiHelper;
b3RobotSimulatorClientAPI m_robotSim;
int m_options;
int m_r2d2Index;
b3AlignedObjectArray<int> m_movingInstances;
enum
{
numCubesX = 20,
numCubesY = 20
};
public:
R2D2GraspExample(GUIHelperInterface* helper, int options)
: m_app(helper->getAppInterface()),
m_guiHelper(helper),
m_options(options),
m_r2d2Index(-1)
{
m_app->setUpAxis(2);
}
virtual ~R2D2GraspExample()
{
}
virtual void physicsDebugDraw(int debugDrawMode)
{
}
virtual void initPhysics()
{
int mode = eCONNECT_EXISTING_EXAMPLE_BROWSER;
m_robotSim.setGuiHelper(m_guiHelper);
bool connected = m_robotSim.connect(mode);
m_robotSim.configureDebugVisualizer(COV_ENABLE_RGB_BUFFER_PREVIEW, 0);
m_robotSim.configureDebugVisualizer(COV_ENABLE_DEPTH_BUFFER_PREVIEW, 0);
m_robotSim.configureDebugVisualizer(COV_ENABLE_SEGMENTATION_MARK_PREVIEW, 0);
b3Printf("robotSim connected = %d", connected);
if ((m_options & eROBOTIC_LEARN_GRASP) != 0)
{
{
b3RobotSimulatorLoadUrdfFileArgs args;
args.m_startPosition.setValue(0, 0, .5);
m_r2d2Index = m_robotSim.loadURDF("r2d2.urdf", args);
if (m_r2d2Index >= 0)
{
int numJoints = m_robotSim.getNumJoints(m_r2d2Index);
b3Printf("numJoints = %d", numJoints);
for (int i = 0; i < numJoints; i++)
{
b3JointInfo jointInfo;
m_robotSim.getJointInfo(m_r2d2Index, i, &jointInfo);
b3Printf("joint[%d].m_jointName=%s", i, jointInfo.m_jointName);
}
int wheelJointIndices[4] = {2, 3, 6, 7};
int wheelTargetVelocities[4] = {-10, -10, -10, -10};
for (int i = 0; i < 4; i++)
{
b3RobotSimulatorJointMotorArgs controlArgs(CONTROL_MODE_VELOCITY);
controlArgs.m_targetVelocity = wheelTargetVelocities[i];
controlArgs.m_maxTorqueValue = 1e30;
m_robotSim.setJointMotorControl(m_r2d2Index, wheelJointIndices[i], controlArgs);
}
}
}
{
b3RobotSimulatorLoadFileResults results;
m_robotSim.loadSDF("kiva_shelf/model.sdf", results);
}
{
m_robotSim.loadURDF("plane.urdf");
}
m_robotSim.setGravity(btVector3(0, 0, -10));
}
if ((m_options & eROBOTIC_LEARN_COMPLIANT_CONTACT) != 0)
{
b3RobotSimulatorLoadUrdfFileArgs args;
b3RobotSimulatorLoadFileResults results;
{
args.m_startPosition.setValue(0, 0, 2.5);
args.m_startOrientation.setEulerZYX(0, 0.2, 0);
m_r2d2Index = m_robotSim.loadURDF("cube_soft.urdf", args);
}
{
args.m_startPosition.setValue(0, 2, 2.5);
args.m_startOrientation.setEulerZYX(0, 0.2, 0);
m_robotSim.loadURDF("cube_no_friction.urdf", args);
}
{
args.m_startPosition.setValue(0, 0, 0);
args.m_startOrientation.setEulerZYX(0, 0.2, 0);
args.m_forceOverrideFixedBase = true;
m_robotSim.loadURDF("plane.urdf", args);
}
m_robotSim.setGravity(btVector3(0, 0, -10));
}
if ((m_options & eROBOTIC_LEARN_ROLLING_FRICTION) != 0)
{
b3RobotSimulatorLoadUrdfFileArgs args;
b3RobotSimulatorLoadFileResults results;
{
args.m_startPosition.setValue(0, 0, 2.5);
args.m_startOrientation.setEulerZYX(0, 0, 0);
args.m_useMultiBody = true;
m_robotSim.loadURDF("sphere2_rolling_friction.urdf", args);
}
{
args.m_startPosition.setValue(0, 2, 2.5);
args.m_startOrientation.setEulerZYX(0, 0, 0);
args.m_useMultiBody = true;
m_robotSim.loadURDF("sphere2.urdf", args);
}
{
args.m_startPosition.setValue(0, 0, 0);
args.m_startOrientation.setEulerZYX(0, 0.2, 0);
args.m_useMultiBody = true;
args.m_forceOverrideFixedBase = true;
m_robotSim.loadURDF("plane.urdf", args);
}
m_robotSim.setGravity(btVector3(0, 0, -10));
}
}
virtual void exitPhysics()
{
m_robotSim.disconnect();
}
virtual void stepSimulation(float deltaTime)
{
m_robotSim.stepSimulation();
}
virtual void renderScene()
{
m_robotSim.renderScene();
//m_app->m_renderer->renderScene();
}
virtual void physicsDebugDraw()
{
}
virtual bool mouseMoveCallback(float x, float y)
{
return false;
}
virtual bool mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
virtual bool keyboardCallback(int key, int state)
{
return false;
}
virtual void resetCamera()
{
float dist = 3;
float pitch = -30;
float yaw = -75;
float targetPos[3] = {-0.2, 0.8, 0.3};
if (m_app->m_renderer && m_app->m_renderer->getActiveCamera())
{
m_app->m_renderer->getActiveCamera()->setCameraDistance(dist);
m_app->m_renderer->getActiveCamera()->setCameraPitch(pitch);
m_app->m_renderer->getActiveCamera()->setCameraYaw(yaw);
m_app->m_renderer->getActiveCamera()->setCameraTargetPosition(targetPos[0], targetPos[1], targetPos[2]);
}
}
};
class CommonExampleInterface* R2D2GraspExampleCreateFunc(struct CommonExampleOptions& options)
{
return new R2D2GraspExample(options.m_guiHelper, options.m_option);
}