bullet3/examples/Experiments/ImplicitCloth/stan/SpringNetwork.cpp
2015-04-30 13:36:39 -07:00

199 lines
7.1 KiB
C++

#include "vec3n.h"
//#include "console.h"
extern int numX;
//
// Cloth - Backward Integrated Spring Network
//
// (c) Stan Melax 2006
// http://www.melax.com/cloth
// freeware demo and source
// Although its free software, I'll gaurantee and support this software as much as is reasonable.
// However, if you choose to use any of this code, then you agree that
// I assume no financial liability should the software not meet your expectations.
// But do feel free to send any feedback.
//
// The core backward integration functionality has all been extracted into the SpringNetwork class.
// This makes it easy for you if you just want to look at or use the math and the algorithms.
// The remainder of the code builds a cloth system with basic render support, I/O, and manipulators,
// so its possible to make use of the technology within a 3D application.
// This code is separated from the SpringNetwork class in order to avoid pushing a particular style
// and prevent any dependancies of the algorithms onto unrelated systems.
// Feel free to adapt any of this into your own 3D engine/environment.
//
// Instead of having unique Hooke force and damping coefficients on each spring, the SpringNetwork
// code uses a spring 'type' that indexes a short list of shared named coefficients.
// This was just more practical for the typical application of this technology.
// Over-designed systems that are too general can be slower for
// the next guy to understand and more painful to use.
// Editing/creation is easier when only 1 number needs to be changed.
// Nonetheless, feel free to adapt to your own needs.
//
#include <stdio.h>
#include <float.h>
#include "vec3n.h"
//#include "console.h"
//#include "manipulatori.h"
//#include "object.h"
//#include "xmlparse.h"
static const float3x3 I(1,0,0,0,1,0,0,0,1);
inline float3x3 dfdx_spring(const float3 &dir,float length,float rest,float k)
{
// dir is unit length direction, rest is spring's restlength, k is spring constant.
return ( (I-outerprod(dir,dir))*Min(1.0f,rest/length) - I) * -k;
}
inline float3x3 dfdx_damp(const float3 &dir,float length,const float3& vel,float rest,float damping)
{
// inner spring damping vel is the relative velocity of the endpoints.
return (I-outerprod(dir,dir)) * (-damping * -(dot(dir,vel)/Max(length,rest)));
}
inline float3x3 dfdv_damp(const float3 &dir,float damping)
{
// derivative of force wrt velocity.
return outerprod(dir,dir) * damping;
}
#include "SpringNetwork.h"
SpringNetwork::SpringNetwork(int _n):X(_n),V(_n),F(_n),dV(_n),A(_n),dFdX(_n),dFdV(_n)
{
assert(SPRING_STRUCT==0);
assert(&spring_shear == &spring_struct +SPRING_SHEAR);
assert(&spring_bend == &spring_struct +SPRING_BEND);
assert(&spring_struct== &spring_k[SPRING_STRUCT]);
assert(&spring_shear == &spring_k[SPRING_SHEAR ]);
assert(&spring_bend == &spring_k[SPRING_BEND ]);
// spring_struct=1000000.0f;
// spring_shear=1000000.0f;
spring_struct=1000.0f;
spring_shear=100.0f;
spring_bend=25.0f;
spring_damp=5.0f;
spring_air=1.0f;
spring_air=1.0f;
cloth_step = 0.25f; // delta time for cloth
cloth_gravity=float3(0,-10,0);
cloth_sleepthreshold = 0.001f;
cloth_sleepcount = 100;
awake = cloth_sleepcount;
//fix/pin two points in worldspace
float3Nx3N::Block zero;
zero.m = float3x3(0,0,0,0,0,0,0,0,0);
zero.c = 0;
zero.r = 0;
S.blocks.Add(zero);
zero.r = numX-1;
S.blocks.Add(zero);
}
SpringNetwork::Spring &SpringNetwork::AddBlocks(Spring &s)
{
// Called during initial creation of springs in our spring network.
// Sets up the sparse matrices corresponding to connections.
// Note the indices (s.iab,s.iba) are also stored with spring to avoid looking them up each time a spring is applied
// All 3 matrices A,dFdX, and dFdV are contstructed identically so the block array layout will be the same for each.
s.iab = A.blocks.count; // added 'ab' blocks will have this index.
A.blocks.Add(float3Nx3N::Block(s.a,s.b));
dFdX.blocks.Add(float3Nx3N::Block(s.a,s.b));
dFdV.blocks.Add(float3Nx3N::Block(s.a,s.b));
s.iba = A.blocks.count; // added 'ba' blocks will have this index.
A.blocks.Add(float3Nx3N::Block(s.b,s.a));
dFdX.blocks.Add(float3Nx3N::Block(s.b,s.a));
dFdV.blocks.Add(float3Nx3N::Block(s.b,s.a));
return s;
}
void SpringNetwork::PreSolveSpring(const SpringNetwork::Spring &s)
{
// Adds this spring's contribution into force vector F and force derivitves dFdX and dFdV
// One optimization would be premultiply dfdx by dt*dt and F and dFdV by dt right here in this function.
// However, for educational purposes we wont do that now and intead just follow the paper directly.
//assert(dFdX.blocks[s.a].c==s.a); // delete this assert, no bugs here
//assert(dFdX.blocks[s.a].r==s.a);
float3 extent = X[s.b] - X[s.a];
float length = magnitude(extent);
float3 dir = (length==0)?float3(0,0,0): extent * 1.0f/length;
float3 vel = V[s.b] - V[s.a];
float k = spring_k[s.type];
float3 f = dir * ((k * (length-s.restlen) ) + spring_damp * dot(vel,dir)); // spring force + damping force
F[s.a] += f;
F[s.b] -= f;
float3x3 dfdx = dfdx_spring(dir,length,s.restlen,k) + dfdx_damp(dir,length,vel,s.restlen,spring_damp);
dFdX.blocks[s.a].m -= dfdx; // diagonal chunk dFdX[a,a]
dFdX.blocks[s.b].m -= dfdx; // diagonal chunk dFdX[b,b]
dFdX.blocks[s.iab].m += dfdx; // off-diag chunk dFdX[a,b]
dFdX.blocks[s.iba].m += dfdx; // off-diag chunk dFdX[b,a]
float3x3 dfdv = dfdv_damp(dir,spring_damp);
dFdV.blocks[s.a].m -= dfdv; // diagonal chunk dFdV[a,a]
dFdV.blocks[s.b].m -= dfdv; // diagonal chunk dFdV[b,b]
dFdV.blocks[s.iab].m += dfdv; // off-diag chunk dFdV[a,b]
dFdV.blocks[s.iba].m += dfdv; // off-diag chunk dFdV[b,a]
}
void SpringNetwork::CalcForces()
{
// Collect forces and derivatives: F,dFdX,dFdV
dFdX.Zero();
dFdV.InitDiagonal(-spring_air);
F.Init(cloth_gravity);
F.element[0]=float3(0,0,0);
F.element[numX-1]=float3(0,0,0);
F -= V * spring_air;
for(int i=0;i<springs.count;i++)
{
PreSolveSpring(springs[i]); // will add to F,dFdX,dFdV
}
}
void SpringNetwork::Simulate(float dt)
{
// Get ready for conjugate gradient iterative solver step.
// Initialize operands.
if(!awake) return;
CalcForces();
int n=X.count; // all our big vectors are of this size
float3N dFdXmV(n); // temp to store result of matrix multiply
float3N B(n);
dV.Zero();
A.Identity(); // build up the big matrix we feed to solver
A -= dFdV * dt + dFdX * (dt*dt) ;
dFdXmV = dFdX * V;
B = F * dt + dFdXmV * (dt*dt);
ConjGradientFiltered(dV,A,B,S);
V = V + dV;
// V.element[0] = float3(0,0,0);
// V.element[numX-1] = float3(0,0,0);
X = X + V*dt;
UpdateLimits();
awake = (dot(V,V)<cloth_sleepthreshold)?awake-1:awake=cloth_sleepcount;
}