bullet3/examples/Experiments/ImplicitCloth/stan/vec3n.h
2015-04-30 13:36:39 -07:00

341 lines
10 KiB
C++

//
// Big Vector and Sparse Matrix Classes
//
// (c) S Melax 2006
//
// The focus is on 3D applications, so
// the big vector is an array of float3s
// and the matrix class uses 3x3 blocks.
//
// This file includes both:
// - basic non-optimized version
// - an expression optimized version
//
// Optimized Expressions
//
// We want to write sweet looking code such as V=As+Bt with big vectors.
// However, we dont want the extra overheads with allocating memory for temps and excessing copying.
// Instead of a full Template Metaprogramming approach, we explicitly write
// classes to specifically handle all the expressions we are likely to use.
// Most applicable lines of code will be of the same handful of basic forms,
// but with different parameters for the operands.
// In the future, if we ever need a longer expression with more operands,
// then we will just add whatever additional building blocks that are necessary - not a big deal.
// This approach is much simpler to develop, debug and optimize (restrict keyword, simd etc)
// than template metaprogramming is. We do not rely on the implementation
// of a particular compiler to be able to expand extensive nested inline codes.
// Additionally, we reliably get our optimizations even within a debug build.
// Therefore we believe that our Optimized Expressions
// are a good compromise that give us the best of both worlds.
// The code within those important algorithms, which use this library,
// can now remain clean and readable yet still execute quickly.
//
#ifndef SM_VEC3N_H
#define SM_VEC3N_H
#include "vecmath.h"
#include "array.h"
//#include <malloc.h>
//template <class T> void * vec4<T>::operator new[](size_t n){ return _mm_malloc(n,64); }
//template <class T> void vec4<T>::operator delete[](void *a) { _mm_free(a); }
struct HalfConstraint {
float3 n;int vi;
float s,t;
HalfConstraint(const float3& _n,int _vi,float _t):n(_n),vi(_vi),s(0),t(_t){}
HalfConstraint():vi(-1){}
};
class float3Nx3N
{
public:
class Block
{
public:
float3x3 m;
int r,c;
float unused[16];
Block(){}
Block(short _r,short _c):r(_r),c(_c){m.x=m.y=m.z=float3(0,0,0);}
};
Array<Block> blocks; // the first n blocks use as the diagonal.
int n;
void Zero();
void InitDiagonal(float d);
void Identity(){InitDiagonal(1.0f);}
float3Nx3N():n(0){}
float3Nx3N(int _n):n(_n) {for(int i=0;i<n;i++) blocks.Add(Block((short)i,(short)i));}
template<class E> float3Nx3N &operator= (const E& expression) {expression.evalequals(*this);return *this;}
template<class E> float3Nx3N &operator+=(const E& expression) {expression.evalpluseq(*this);return *this;}
template<class E> float3Nx3N &operator-=(const E& expression) {expression.evalmnuseq(*this);return *this;}
};
class float3N: public Array<float3>
{
public:
float3N(int _count=0)
{
SetSize(_count);
}
void Zero();
void Init(const float3 &v); // sets each subvector to v
template<class E> float3N &operator= (const E& expression) {expression.evalequals(*this);return *this;}
template<class E> float3N &operator+=(const E& expression) {expression.evalpluseq(*this);return *this;}
template<class E> float3N &operator-=(const E& expression) {expression.evalmnuseq(*this);return *this;}
float3N &operator=( const float3N &V) { this->copy(V); return *this;}
};
int ConjGradient(float3N &X, float3Nx3N &A, float3N &B);
int ConjGradientFiltered(float3N &X, const float3Nx3N &A, const float3N &B,const float3Nx3N &S,Array<HalfConstraint> &H);
int ConjGradientFiltered(float3N &X, const float3Nx3N &A, const float3N &B,const float3Nx3N &S);
inline float3N& Mul(float3N &r,const float3Nx3N &m, const float3N &v)
{
int i;
for(i=0;i<r.count;i++) r[i]=float3(0,0,0);
for(i=0;i<m.blocks.count;i++)
{
r[m.blocks[i].r] += m.blocks[i].m * v[m.blocks[i].c];
}
return r;
}
inline float dot(const float3N &a,const float3N &b)
{
float d=0;
for(int i=0;i<a.count;i++)
{
d+= dot(a[i],b[i]);
}
return d;
}
inline void float3Nx3N::Zero()
{
for(int i=0;i<blocks.count;i++)
{
blocks[i].m = float3x3(0,0,0,0,0,0,0,0,0);
}
}
inline void float3Nx3N::InitDiagonal(float d)
{
for(int i=0;i<blocks.count;i++)
{
blocks[i].m = (blocks[i].c==blocks[i].r) ? float3x3(d,0,0,0,d,0,0,0,d) : float3x3(0,0,0,0,0,0,0,0,0);
}
}
inline void float3N::Zero()
{
for(int i=0;i<count;i++)
{
element[i] = float3(0,0,0);
}
}
inline void float3N::Init(const float3 &v)
{
for(int i=0;i<count;i++)
{
element[i] = v;
}
}
#ifdef WE_LIKE_SLOW_CODE
// Unoptimized Slow Basic Version of big vector operators.
// Uses typical implmentation for operators +/-*=
// These operators cause lots of unnecessary construction, memory allocation, and copying.
inline float3N operator +(const float3N &a,const float3N &b)
{
float3N r(a.count);
for(int i=0;i<a.count;i++) r[i]=a[i]+b[i];
return r;
}
inline float3N operator *(const float3N &a,const float &s)
{
float3N r(a.count);
for(int i=0;i<a.count;i++) r[i]=a[i]*s;
return r;
}
inline float3N operator /(const float3N &a,const float &s)
{
float3N r(a.count);
return Mul(r,a, 1.0f/s );
}
inline float3N operator -(const float3N &a,const float3N &b)
{
float3N r(a.count);
for(int i=0;i<a.count;i++) r[i]=a[i]-b[i];
return r;
}
inline float3N operator -(const float3N &a)
{
float3N r(a.count);
for(int i=0;i<a.count;i++) r[i]=-a[i];
return r;
}
inline float3N operator *(const float3Nx3N &m,const float3N &v)
{
float3N r(v.count);
return Mul(r,m,v);
}
inline float3N &operator-=(float3N &A, const float3N &B)
{
assert(A.count==B.count);
for(int i=0;i<A.count;i++) A[i] -= B[i];
return A;
}
inline float3N &operator+=(float3N &A, const float3N &B)
{
assert(A.count==B.count);
for(int i=0;i<A.count;i++) A[i] += B[i];
return A;
}
#else
// Optimized Expressions
class exVneg
{
public:
const float3N &v;
exVneg(const float3N &_v): v(_v){}
void evalequals(float3N &r)const { for(int i=0;i<v.count;i++) r[i] =-v[i];}
void evalpluseq(float3N &r)const { for(int i=0;i<v.count;i++) r[i]+=-v[i];}
void evalmnuseq(float3N &r)const { for(int i=0;i<v.count;i++) r[i]-=-v[i];}
};
class exVaddV
{
public:
const float3N &a;
const float3N &b;
exVaddV(const float3N &_a,const float3N &_b): a(_a),b(_b){}
void evalequals(float3N &r)const { for(int i=0;i<a.count;i++) r[i] =a[i]+b[i];}
void evalpluseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]+=a[i]+b[i];}
void evalmnuseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]-=a[i]+b[i];}
};
class exVsubV
{
public:
const float3N &a;
const float3N &b;
exVsubV(const float3N &_a,const float3N &_b): a(_a),b(_b){}
void evalequals(float3N &r)const { for(int i=0;i<a.count;i++) r[i] =a[i]-b[i];}
void evalpluseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]+=a[i]-b[i];}
void evalmnuseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]-=a[i]-b[i];}
};
class exVs
{
public:
const float3N &v;
const float s;
exVs(const float3N &_v,const float &_s): v(_v),s(_s){}
void evalequals(float3N &r)const { for(int i=0;i<v.count;i++) r[i] =v[i]*s;}
void evalpluseq(float3N &r)const { for(int i=0;i<v.count;i++) r[i]+=v[i]*s;}
void evalmnuseq(float3N &r)const { for(int i=0;i<v.count;i++) r[i]-=v[i]*s;}
};
class exAsaddB
{
public:
const float3N &a;
const float3N &b;
const float s;
exAsaddB(const float3N &_a,const float &_s,const float3N &_b): a(_a),s(_s),b(_b){}
void evalequals(float3N &r)const { for(int i=0;i<a.count;i++) r[i] =a[i]*s+b[i];}
void evalpluseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]+=a[i]*s+b[i];}
void evalmnuseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]-=a[i]*s+b[i];}
};
class exAsaddBt
{
public:
const float3N &a;
const float3N &b;
const float s;
const float t;
exAsaddBt(const float3N &_a,const float &_s,const float3N &_b,const float &_t): a(_a),s(_s),b(_b),t(_t){}
void evalequals(float3N &r)const { for(int i=0;i<a.count;i++) r[i] =a[i]*s+b[i]*t;}
void evalpluseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]+=a[i]*s+b[i]*t;}
void evalmnuseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]-=a[i]*s+b[i]*t;}
};
class exMv
{
public:
const float3Nx3N &m;
const float3N &v;
exMv(const float3Nx3N &_m,const float3N &_v): m(_m),v(_v){}
void evalequals(float3N &r)const { Mul(r,m,v);}
};
class exMs
{
public:
const float3Nx3N &m;
const float s;
exMs(const float3Nx3N &_m,const float &_s): m(_m),s(_s){}
void evalequals(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m = m.blocks[i].m*s;}
void evalpluseq(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m += m.blocks[i].m*s;}
void evalmnuseq(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m -= m.blocks[i].m*s;}
};
class exMAsMBt
{
public:
const float3Nx3N &a;
const float s;
const float3Nx3N &b;
const float t;
exMAsMBt(const float3Nx3N &_a,const float &_s,const float3Nx3N &_b,const float &_t): a(_a),s(_s),b(_b),t(_t){}
void evalequals(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m = a.blocks[i].m*s + b.blocks[i].m*t;}
void evalpluseq(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m += a.blocks[i].m*s + b.blocks[i].m*t;}
void evalmnuseq(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m -= a.blocks[i].m*s + b.blocks[i].m*t;}
};
inline exVaddV operator +(const float3N &a,const float3N &b) {return exVaddV(a,b);}
inline exVsubV operator +(const exVneg &E,const float3N &b) {return exVsubV(b,E.v);}
inline exVsubV operator -(const float3N &a,const float3N &b) {return exVsubV(a,b);}
inline exVs operator *(const float3N &V,const float &s) {return exVs(V,s); }
inline exVs operator *(const exVs &E,const float &s) {return exVs(E.v,E.s*s); }
inline exAsaddB operator +(const exVs &E,const float3N &b) {return exAsaddB(E.v, E.s,b);}
inline exAsaddB operator +(const float3N &b,const exVs &E) {return exAsaddB(E.v, E.s,b);}
inline exAsaddB operator -(const float3N &b,const exVs &E) {return exAsaddB(E.v,-E.s,b);}
inline exAsaddBt operator +(const exVs &Ea,const exVs &Eb) {return exAsaddBt(Ea.v,Ea.s,Eb.v, Eb.s);}
inline exAsaddBt operator -(const exVs &Ea,const exVs &Eb) {return exAsaddBt(Ea.v,Ea.s,Eb.v,-Eb.s);}
inline exMv operator *(const float3Nx3N &m,const float3N &v) {return exMv(m,v); }
inline exMs operator *(const exMs &E,const float &s) {return exMs(E.m,E.s*s); }
inline exMs operator *(const float3Nx3N &m,const float &s) {return exMs(m,s); }
inline exMAsMBt operator +(const exMs &Ea,const exMs &Eb) {return exMAsMBt(Ea.m,Ea.s, Eb.m,Eb.s);}
inline exMAsMBt operator -(const exMs &Ea,const exMs &Eb) {return exMAsMBt(Ea.m,Ea.s, Eb.m,-Eb.s);}
#endif
#endif