bullet3/examples/MultiThreadedDemo/CommonRigidBodyMTBase.h
Lunkhound b8720f2161 parallel solver: various changes
- threading: adding btSequentialImpulseConstraintSolverMt
 - task scheduler: added parallelSum so that parallel solver can compute residuals
 - CommonRigidBodyMTBase: add slider for solver least squares residual and allow multithreading without needing OpenMP, TBB, or PPL
 - taskScheduler: don't wait for workers to sleep/signal at the end of each parallel block
 - parallel solver: convertContacts split into an allocContactConstraints and setupContactConstraints stage, the latter of which is done in parallel
 - parallel solver: rolling friction is now interleaved along with normal friction
 - parallel solver: batchified split impulse solving + some cleanup
 - parallel solver: sorting batches from largest to smallest
 - parallel solver: added parallel batch creation
 - parallel solver: added warmstartingWriteBackContacts func + other cleanup
 - task scheduler: truncate low bits to preserve determinism with parallelSum
 - parallel solver: reducing dynamic mem allocs and trying to parallelize more of the batch setup
 - parallel solver: parallelize updating constraint batch ids for merging
 - parallel solver: adding debug visualization
 - task scheduler: make TBB task scheduler parallelSum deterministic
 - parallel solver: split batch gen code into separate file; allow selection of batch gen method
 - task scheduler: add sleepWorkerThreadsHint() at end of simulation
 - parallel solver: added grain size per phase
 - task Scheduler: fix for strange threading issue; also no need for main thread to wait for workers to sleep
 - base constraint solver: break out joint setup into separate function for profiling/overriding
 - parallel solver: allow different batching method for contacts vs joints
 - base constraint solver: add convertJoint and convertBodies to make it possible to parallelize joint and body conversion
 - parallel solver: convert joints and bodies in parallel now
 - parallel solver: speed up batch creation with run-length encoding
 - parallel solver: batch gen: run-length expansion in parallel; collect constraint info in parallel
 - parallel solver: adding spatial grid batching method
 - parallel solver: enhancements to spatial grid batching
 - sequential solver: moving code for writing back into functions that derived classes can call
 - parallel solver: do write back of bodies and joints in parallel
 - parallel solver: removed all batching methods except for spatial grid (others were ineffective)
 - parallel solver: added 2D or 3D grid batching options; and a bit of cleanup
 - move btDefaultTaskScheduler into LinearMath project
2018-02-26 22:47:33 -08:00

458 lines
11 KiB
C++

#ifndef COMMON_RIGID_BODY_MT_BASE_H
#define COMMON_RIGID_BODY_MT_BASE_H
#include "btBulletDynamicsCommon.h"
#include "../CommonInterfaces/CommonExampleInterface.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/CommonCameraInterface.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "../CommonInterfaces/CommonWindowInterface.h"
enum SolverType
{
SOLVER_TYPE_SEQUENTIAL_IMPULSE,
SOLVER_TYPE_SEQUENTIAL_IMPULSE_MT,
SOLVER_TYPE_NNCG,
SOLVER_TYPE_MLCP_PGS,
SOLVER_TYPE_MLCP_DANTZIG,
SOLVER_TYPE_MLCP_LEMKE,
SOLVER_TYPE_COUNT
};
inline const char* getSolverTypeName( SolverType t )
{
switch (t)
{
case SOLVER_TYPE_SEQUENTIAL_IMPULSE: return "SequentialImpulse";
case SOLVER_TYPE_SEQUENTIAL_IMPULSE_MT: return "SequentialImpulseMt";
case SOLVER_TYPE_NNCG: return "NNCG";
case SOLVER_TYPE_MLCP_PGS: return "MLCP ProjectedGaussSeidel";
case SOLVER_TYPE_MLCP_DANTZIG: return "MLCP Dantzig";
case SOLVER_TYPE_MLCP_LEMKE: return "MLCP Lemke";
default:{}
}
btAssert( !"unhandled solver type in switch" );
return "???";
}
struct CommonRigidBodyMTBase : public CommonExampleInterface
{
//keep the collision shapes, for deletion/cleanup
btAlignedObjectArray<btCollisionShape*> m_collisionShapes;
btBroadphaseInterface* m_broadphase;
btCollisionDispatcher* m_dispatcher;
btConstraintSolver* m_solver;
btDefaultCollisionConfiguration* m_collisionConfiguration;
btDiscreteDynamicsWorld* m_dynamicsWorld;
SolverType m_solverType;
bool m_multithreadedWorld;
bool m_multithreadCapable;
//data for picking objects
class btRigidBody* m_pickedBody;
class btTypedConstraint* m_pickedConstraint;
int m_savedState;
btVector3 m_oldPickingPos;
btVector3 m_hitPos;
btScalar m_oldPickingDist;
struct GUIHelperInterface* m_guiHelper;
CommonRigidBodyMTBase(struct GUIHelperInterface* helper);
virtual ~CommonRigidBodyMTBase();
btDiscreteDynamicsWorld* getDynamicsWorld()
{
return m_dynamicsWorld;
}
virtual void createDefaultParameters();
virtual void createEmptyDynamicsWorld();
virtual void stepSimulation(float deltaTime)
{
if (m_dynamicsWorld)
{
m_dynamicsWorld->stepSimulation(deltaTime);
}
}
virtual void drawScreenText();
virtual void renderScene();
virtual void physicsDebugDraw(int debugFlags);
virtual void exitPhysics()
{
removePickingConstraint();
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
if (m_dynamicsWorld)
{
int i;
for (i = m_dynamicsWorld->getNumConstraints() - 1; i >= 0; i--)
{
m_dynamicsWorld->removeConstraint(m_dynamicsWorld->getConstraint(i));
}
for (i = m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--)
{
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject(obj);
delete obj;
}
}
//delete collision shapes
for (int j = 0; j<m_collisionShapes.size(); j++)
{
btCollisionShape* shape = m_collisionShapes[j];
delete shape;
}
m_collisionShapes.clear();
delete m_dynamicsWorld;
m_dynamicsWorld=0;
delete m_solver;
m_solver=0;
delete m_broadphase;
m_broadphase=0;
delete m_dispatcher;
m_dispatcher=0;
delete m_collisionConfiguration;
m_collisionConfiguration=0;
}
virtual void debugDraw(int debugDrawFlags)
{
if (m_dynamicsWorld)
{
if (m_dynamicsWorld->getDebugDrawer())
{
m_dynamicsWorld->getDebugDrawer()->setDebugMode(debugDrawFlags);
}
m_dynamicsWorld->debugDrawWorld();
}
}
virtual bool keyboardCallback(int key, int state)
{
if ((key==B3G_F3) && state && m_dynamicsWorld)
{
btDefaultSerializer* serializer = new btDefaultSerializer();
m_dynamicsWorld->serialize(serializer);
FILE* file = fopen("testFile.bullet","wb");
fwrite(serializer->getBufferPointer(),serializer->getCurrentBufferSize(),1, file);
fclose(file);
//b3Printf("btDefaultSerializer wrote testFile.bullet");
delete serializer;
return true;
}
return false;//don't handle this key
}
btVector3 getRayTo(int x,int y)
{
CommonRenderInterface* renderer = m_guiHelper->getRenderInterface();
if (!renderer)
{
btAssert(0);
return btVector3(0,0,0);
}
float top = 1.f;
float bottom = -1.f;
float nearPlane = 1.f;
float tanFov = (top-bottom)*0.5f / nearPlane;
float fov = btScalar(2.0) * btAtan(tanFov);
btVector3 camPos,camTarget;
renderer->getActiveCamera()->getCameraPosition(camPos);
renderer->getActiveCamera()->getCameraTargetPosition(camTarget);
btVector3 rayFrom = camPos;
btVector3 rayForward = (camTarget-camPos);
rayForward.normalize();
float farPlane = 10000.f;
rayForward*= farPlane;
btVector3 rightOffset;
btVector3 cameraUp=btVector3(0,0,0);
cameraUp[m_guiHelper->getAppInterface()->getUpAxis()]=1;
btVector3 vertical = cameraUp;
btVector3 hor;
hor = rayForward.cross(vertical);
hor.safeNormalize();
vertical = hor.cross(rayForward);
vertical.safeNormalize();
float tanfov = tanf(0.5f*fov);
hor *= 2.f * farPlane * tanfov;
vertical *= 2.f * farPlane * tanfov;
btScalar aspect;
float width = float(renderer->getScreenWidth());
float height = float (renderer->getScreenHeight());
aspect = width / height;
hor*=aspect;
btVector3 rayToCenter = rayFrom + rayForward;
btVector3 dHor = hor * 1.f/width;
btVector3 dVert = vertical * 1.f/height;
btVector3 rayTo = rayToCenter - 0.5f * hor + 0.5f * vertical;
rayTo += btScalar(x) * dHor;
rayTo -= btScalar(y) * dVert;
return rayTo;
}
virtual bool mouseMoveCallback(float x,float y)
{
CommonRenderInterface* renderer = m_guiHelper->getRenderInterface();
if (!renderer)
{
btAssert(0);
return false;
}
btVector3 rayTo = getRayTo(int(x), int(y));
btVector3 rayFrom;
renderer->getActiveCamera()->getCameraPosition(rayFrom);
movePickedBody(rayFrom,rayTo);
return false;
}
virtual bool mouseButtonCallback(int button, int state, float x, float y)
{
CommonRenderInterface* renderer = m_guiHelper->getRenderInterface();
if (!renderer)
{
btAssert(0);
return false;
}
CommonWindowInterface* window = m_guiHelper->getAppInterface()->m_window;
#if 0
if (window->isModifierKeyPressed(B3G_ALT))
{
printf("ALT pressed\n");
} else
{
printf("NO ALT pressed\n");
}
if (window->isModifierKeyPressed(B3G_SHIFT))
{
printf("SHIFT pressed\n");
} else
{
printf("NO SHIFT pressed\n");
}
if (window->isModifierKeyPressed(B3G_CONTROL))
{
printf("CONTROL pressed\n");
} else
{
printf("NO CONTROL pressed\n");
}
#endif
if (state==1)
{
if(button==0 && (!window->isModifierKeyPressed(B3G_ALT) && !window->isModifierKeyPressed(B3G_CONTROL) ))
{
btVector3 camPos;
renderer->getActiveCamera()->getCameraPosition(camPos);
btVector3 rayFrom = camPos;
btVector3 rayTo = getRayTo(int(x),int(y));
pickBody(rayFrom, rayTo);
}
} else
{
if (button==0)
{
removePickingConstraint();
//remove p2p
}
}
//printf("button=%d, state=%d\n",button,state);
return false;
}
virtual bool pickBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
if (m_dynamicsWorld==0)
return false;
btCollisionWorld::ClosestRayResultCallback rayCallback(rayFromWorld, rayToWorld);
m_dynamicsWorld->rayTest(rayFromWorld, rayToWorld, rayCallback);
if (rayCallback.hasHit())
{
btVector3 pickPos = rayCallback.m_hitPointWorld;
btRigidBody* body = (btRigidBody*)btRigidBody::upcast(rayCallback.m_collisionObject);
if (body)
{
//other exclusions?
if (!(body->isStaticObject() || body->isKinematicObject()))
{
m_pickedBody = body;
m_savedState = m_pickedBody->getActivationState();
m_pickedBody->setActivationState(DISABLE_DEACTIVATION);
//printf("pickPos=%f,%f,%f\n",pickPos.getX(),pickPos.getY(),pickPos.getZ());
btVector3 localPivot = body->getCenterOfMassTransform().inverse() * pickPos;
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body, localPivot);
m_dynamicsWorld->addConstraint(p2p, true);
m_pickedConstraint = p2p;
btScalar mousePickClamping = 30.f;
p2p->m_setting.m_impulseClamp = mousePickClamping;
//very weak constraint for picking
p2p->m_setting.m_tau = 0.001f;
}
}
// pickObject(pickPos, rayCallback.m_collisionObject);
m_oldPickingPos = rayToWorld;
m_hitPos = pickPos;
m_oldPickingDist = (pickPos - rayFromWorld).length();
// printf("hit !\n");
//add p2p
}
return false;
}
virtual bool movePickedBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
if (m_pickedBody && m_pickedConstraint)
{
btPoint2PointConstraint* pickCon = static_cast<btPoint2PointConstraint*>(m_pickedConstraint);
if (pickCon)
{
//keep it at the same picking distance
btVector3 newPivotB;
btVector3 dir = rayToWorld - rayFromWorld;
dir.normalize();
dir *= m_oldPickingDist;
newPivotB = rayFromWorld + dir;
pickCon->setPivotB(newPivotB);
return true;
}
}
return false;
}
virtual void removePickingConstraint()
{
if (m_pickedConstraint)
{
m_pickedBody->forceActivationState(m_savedState);
m_pickedBody->activate();
m_dynamicsWorld->removeConstraint(m_pickedConstraint);
delete m_pickedConstraint;
m_pickedConstraint = 0;
m_pickedBody = 0;
}
}
btBoxShape* createBoxShape(const btVector3& halfExtents)
{
btBoxShape* box = new btBoxShape(halfExtents);
return box;
}
btRigidBody* createRigidBody(float mass, const btTransform& startTransform, btCollisionShape* shape, const btVector4& color = btVector4(1, 0, 0, 1))
{
btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE));
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
shape->calculateLocalInertia(mass, localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
#define USE_MOTIONSTATE 1
#ifdef USE_MOTIONSTATE
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo cInfo(mass, myMotionState, shape, localInertia);
btRigidBody* body = new btRigidBody(cInfo);
//body->setContactProcessingThreshold(m_defaultContactProcessingThreshold);
#else
btRigidBody* body = new btRigidBody(mass, 0, shape, localInertia);
body->setWorldTransform(startTransform);
#endif//
body->setUserIndex(-1);
m_dynamicsWorld->addRigidBody(body);
return body;
}
btRigidBody* createKinematicBody(const btTransform& startTransform, btCollisionShape* shape)
{
btAssert( ( !shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE ) );
btRigidBody* body = new btRigidBody( 0.0f, NULL, shape );
body->setWorldTransform( startTransform );
body->setCollisionFlags( body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT );
body->setUserIndex( -1 );
m_dynamicsWorld->addRigidBody( body );
return body;
}
};
#endif //#define COMMON_RIGID_BODY_MT_BASE_H