mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-15 22:20:12 +00:00
230 lines
6.4 KiB
C++
230 lines
6.4 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "GjkPairDetector.h"
|
|
#include "CollisionShapes/ConvexShape.h"
|
|
#include "NarrowPhaseCollision/SimplexSolverInterface.h"
|
|
#include "NarrowPhaseCollision/ConvexPenetrationDepthSolver.h"
|
|
|
|
#if defined(DEBUG) || defined (_DEBUG)
|
|
#include <stdio.h> //for debug printf
|
|
#endif
|
|
|
|
static const SimdScalar rel_error = SimdScalar(1.0e-5);
|
|
SimdScalar rel_error2 = rel_error * rel_error;
|
|
float maxdist2 = 1.e30f;
|
|
|
|
|
|
int gGjkMaxIter=1000;
|
|
|
|
GjkPairDetector::GjkPairDetector(ConvexShape* objectA,ConvexShape* objectB,SimplexSolverInterface* simplexSolver,ConvexPenetrationDepthSolver* penetrationDepthSolver)
|
|
:m_cachedSeparatingAxis(0.f,0.f,1.f),
|
|
m_penetrationDepthSolver(penetrationDepthSolver),
|
|
m_simplexSolver(simplexSolver),
|
|
m_minkowskiA(objectA),
|
|
m_minkowskiB(objectB),
|
|
m_ignoreMargin(false),
|
|
m_partId0(-1),
|
|
m_index0(-1),
|
|
m_partId1(-1),
|
|
m_index1(-1)
|
|
{
|
|
}
|
|
|
|
void GjkPairDetector::GetClosestPoints(const ClosestPointInput& input,Result& output,class IDebugDraw* debugDraw)
|
|
{
|
|
SimdScalar distance=0.f;
|
|
SimdVector3 normalInB(0.f,0.f,0.f);
|
|
SimdVector3 pointOnA,pointOnB;
|
|
|
|
float marginA = m_minkowskiA->GetMargin();
|
|
float marginB = m_minkowskiB->GetMargin();
|
|
|
|
//for CCD we don't use margins
|
|
if (m_ignoreMargin)
|
|
{
|
|
marginA = 0.f;
|
|
marginB = 0.f;
|
|
}
|
|
|
|
int curIter = 0;
|
|
|
|
bool isValid = false;
|
|
bool checkSimplex = false;
|
|
bool checkPenetration = true;
|
|
|
|
{
|
|
SimdScalar squaredDistance = SIMD_INFINITY;
|
|
SimdScalar delta = 0.f;
|
|
|
|
SimdScalar margin = marginA + marginB;
|
|
|
|
|
|
|
|
m_simplexSolver->reset();
|
|
|
|
while (true)
|
|
{
|
|
//rare failure case, perhaps deferate shapes?
|
|
if (curIter++ > gGjkMaxIter)
|
|
{
|
|
#if defined(DEBUG) || defined (_DEBUG)
|
|
printf("GjkPairDetector maxIter exceeded:%i\n",curIter);
|
|
printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",
|
|
m_cachedSeparatingAxis.getX(),
|
|
m_cachedSeparatingAxis.getY(),
|
|
m_cachedSeparatingAxis.getZ(),
|
|
squaredDistance,
|
|
m_minkowskiA->GetShapeType(),
|
|
m_minkowskiB->GetShapeType());
|
|
#endif
|
|
break;
|
|
|
|
}
|
|
|
|
SimdVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* input.m_transformA.getBasis();
|
|
SimdVector3 seperatingAxisInB = m_cachedSeparatingAxis* input.m_transformB.getBasis();
|
|
|
|
SimdVector3 pInA = m_minkowskiA->LocalGetSupportingVertexWithoutMargin(seperatingAxisInA);
|
|
SimdVector3 qInB = m_minkowskiB->LocalGetSupportingVertexWithoutMargin(seperatingAxisInB);
|
|
SimdPoint3 pWorld = input.m_transformA(pInA);
|
|
SimdPoint3 qWorld = input.m_transformB(qInB);
|
|
|
|
SimdVector3 w = pWorld - qWorld;
|
|
delta = m_cachedSeparatingAxis.dot(w);
|
|
|
|
// potential exit, they don't overlap
|
|
if ((delta > SimdScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
|
|
{
|
|
checkPenetration = false;
|
|
break;
|
|
}
|
|
|
|
//exit 0: the new point is already in the simplex, or we didn't come any closer
|
|
if (m_simplexSolver->inSimplex(w))
|
|
{
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
// are we getting any closer ?
|
|
if (squaredDistance - delta <= squaredDistance * rel_error2)
|
|
{
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
//add current vertex to simplex
|
|
m_simplexSolver->addVertex(w, pWorld, qWorld);
|
|
|
|
//calculate the closest point to the origin (update vector v)
|
|
if (!m_simplexSolver->closest(m_cachedSeparatingAxis))
|
|
{
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
|
|
SimdScalar previousSquaredDistance = squaredDistance;
|
|
squaredDistance = m_cachedSeparatingAxis.length2();
|
|
|
|
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
|
|
|
|
//are we getting any closer ?
|
|
if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
|
|
{
|
|
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
|
checkSimplex = true;
|
|
break;
|
|
}
|
|
bool check = (!m_simplexSolver->fullSimplex());
|
|
//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
|
|
|
|
if (!check)
|
|
{
|
|
//do we need this backup_closest here ?
|
|
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (checkSimplex)
|
|
{
|
|
m_simplexSolver->compute_points(pointOnA, pointOnB);
|
|
normalInB = pointOnA-pointOnB;
|
|
float lenSqr = m_cachedSeparatingAxis.length2();
|
|
//valid normal
|
|
if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON))
|
|
{
|
|
float rlen = 1.f / SimdSqrt(lenSqr );
|
|
normalInB *= rlen; //normalize
|
|
SimdScalar s = SimdSqrt(squaredDistance);
|
|
ASSERT(s > SimdScalar(0.0));
|
|
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
|
|
pointOnB += m_cachedSeparatingAxis * (marginB / s);
|
|
distance = ((1.f/rlen) - margin);
|
|
isValid = true;
|
|
}
|
|
}
|
|
|
|
if (checkPenetration && !isValid)
|
|
{
|
|
//penetration case
|
|
|
|
//if there is no way to handle penetrations, bail out
|
|
if (m_penetrationDepthSolver)
|
|
{
|
|
// Penetration depth case.
|
|
isValid = m_penetrationDepthSolver->CalcPenDepth(
|
|
*m_simplexSolver,
|
|
m_minkowskiA,m_minkowskiB,
|
|
input.m_transformA,input.m_transformB,
|
|
m_cachedSeparatingAxis, pointOnA, pointOnB,
|
|
debugDraw
|
|
);
|
|
|
|
if (isValid)
|
|
{
|
|
normalInB = pointOnB-pointOnA;
|
|
float lenSqr = normalInB.length2();
|
|
if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON))
|
|
{
|
|
normalInB /= SimdSqrt(lenSqr);
|
|
distance = -(pointOnA-pointOnB).length();
|
|
} else
|
|
{
|
|
isValid = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isValid)
|
|
{
|
|
output.SetShapeIdentifiers(m_partId0,m_index0,m_partId1,m_index1);
|
|
|
|
output.AddContactPoint(
|
|
normalInB,
|
|
pointOnB,
|
|
distance);
|
|
//printf("gjk add:%f",distance);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|