bullet3/Demos/VehicleDemo/VehicleDemo.cpp
erwin.coumans 4894f24c9a Fixes for FPU exceptions, thanks to Phil Knight for reporting and John McCutchan for fix/workarounds.
Added new cluster collision methods for soft bodies, thanks to Nathanael Presson.
Enable/disable textures/shadows for specific demos.
2008-08-01 01:04:45 +00:00

668 lines
18 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/// September 2006: VehicleDemo is work in progress, this file is mostly just a placeholder
/// This VehicleDemo file is very early in development, please check it later
/// One todo is a basic engine model:
/// A function that maps user input (throttle) into torque/force applied on the wheels
/// with gears etc.
#include "btBulletDynamicsCommon.h"
#include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h"
//
// By default, Bullet Vehicle uses Y as up axis.
// You can override the up axis, for example Z-axis up. Enable this define to see how to:
//#define FORCE_ZAXIS_UP 1
//
#ifdef FORCE_ZAXIS_UP
int rightIndex = 0;
int upIndex = 2;
int forwardIndex = 1;
btVector3 wheelDirectionCS0(0,0,-1);
btVector3 wheelAxleCS(1,0,0);
#else
int rightIndex = 0;
int upIndex = 1;
int forwardIndex = 2;
btVector3 wheelDirectionCS0(0,-1,0);
btVector3 wheelAxleCS(-1,0,0);
#endif
#include "GLDebugDrawer.h"
#include <stdio.h> //printf debugging
#include "GL_ShapeDrawer.h"
#include "GlutStuff.h"
#include "VehicleDemo.h"
const int maxProxies = 32766;
const int maxOverlap = 65535;
///btRaycastVehicle is the interface for the constraint that implements the raycast vehicle
///notice that for higher-quality slow-moving vehicles, another approach might be better
///implementing explicit hinged-wheel constraints with cylinder collision, rather then raycasts
float gEngineForce = 0.f;
float gBreakingForce = 0.f;
float maxEngineForce = 1000.f;//this should be engine/velocity dependent
float maxBreakingForce = 100.f;
float gVehicleSteering = 0.f;
float steeringIncrement = 0.04f;
float steeringClamp = 0.3f;
float wheelRadius = 0.5f;
float wheelWidth = 0.4f;
float wheelFriction = 1000;//1e30f;
float suspensionStiffness = 20.f;
float suspensionDamping = 2.3f;
float suspensionCompression = 4.4f;
float rollInfluence = 0.1f;//1.0f;
btScalar suspensionRestLength(0.6);
#define CUBE_HALF_EXTENTS 1
////////////////////////////////////
VehicleDemo::VehicleDemo()
:
m_carChassis(0),
m_cameraHeight(4.f),
m_minCameraDistance(3.f),
m_maxCameraDistance(10.f),
m_indexVertexArrays(0),
m_vertices(0)
{
m_vehicle = 0;
m_cameraPosition = btVector3(30,30,30);
}
VehicleDemo::~VehicleDemo()
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
int i;
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
{
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject( obj );
delete obj;
}
//delete collision shapes
for (int j=0;j<m_collisionShapes.size();j++)
{
btCollisionShape* shape = m_collisionShapes[j];
delete shape;
}
delete m_indexVertexArrays;
delete m_vertices;
//delete dynamics world
delete m_dynamicsWorld;
delete m_vehicleRayCaster;
delete m_vehicle;
//delete solver
delete m_constraintSolver;
//delete broadphase
delete m_overlappingPairCache;
//delete dispatcher
delete m_dispatcher;
delete m_collisionConfiguration;
}
void VehicleDemo::initPhysics()
{
#ifdef FORCE_ZAXIS_UP
m_cameraUp = btVector3(0,0,1);
m_forwardAxis = 1;
#endif
btCollisionShape* groundShape = new btBoxShape(btVector3(50,3,50));
m_collisionShapes.push_back(groundShape);
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
btVector3 worldMin(-1000,-1000,-1000);
btVector3 worldMax(1000,1000,1000);
m_overlappingPairCache = new btAxisSweep3(worldMin,worldMax);
m_constraintSolver = new btSequentialImpulseConstraintSolver();
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_overlappingPairCache,m_constraintSolver,m_collisionConfiguration);
#ifdef FORCE_ZAXIS_UP
m_dynamicsWorld->setGravity(btVector3(0,0,-10));
#endif
//m_dynamicsWorld->setGravity(btVector3(0,0,0));
btTransform tr;
tr.setIdentity();
//either use heightfield or triangle mesh
#define USE_TRIMESH_GROUND 1
#ifdef USE_TRIMESH_GROUND
int i;
const float TRIANGLE_SIZE=20.f;
//create a triangle-mesh ground
int vertStride = sizeof(btVector3);
int indexStride = 3*sizeof(int);
const int NUM_VERTS_X = 20;
const int NUM_VERTS_Y = 20;
const int totalVerts = NUM_VERTS_X*NUM_VERTS_Y;
const int totalTriangles = 2*(NUM_VERTS_X-1)*(NUM_VERTS_Y-1);
m_vertices = new btVector3[totalVerts];
int* gIndices = new int[totalTriangles*3];
for ( i=0;i<NUM_VERTS_X;i++)
{
for (int j=0;j<NUM_VERTS_Y;j++)
{
float wl = .2f;
//height set to zero, but can also use curved landscape, just uncomment out the code
float height = 0.f;//20.f*sinf(float(i)*wl)*cosf(float(j)*wl);
#ifdef FORCE_ZAXIS_UP
m_vertices[i+j*NUM_VERTS_X].setValue(
(i-NUM_VERTS_X*0.5f)*TRIANGLE_SIZE,
(j-NUM_VERTS_Y*0.5f)*TRIANGLE_SIZE,
height
);
#else
m_vertices[i+j*NUM_VERTS_X].setValue(
(i-NUM_VERTS_X*0.5f)*TRIANGLE_SIZE,
height,
(j-NUM_VERTS_Y*0.5f)*TRIANGLE_SIZE);
#endif
}
}
int index=0;
for ( i=0;i<NUM_VERTS_X-1;i++)
{
for (int j=0;j<NUM_VERTS_Y-1;j++)
{
gIndices[index++] = j*NUM_VERTS_X+i;
gIndices[index++] = j*NUM_VERTS_X+i+1;
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
gIndices[index++] = j*NUM_VERTS_X+i;
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
gIndices[index++] = (j+1)*NUM_VERTS_X+i;
}
}
m_indexVertexArrays = new btTriangleIndexVertexArray(totalTriangles,
gIndices,
indexStride,
totalVerts,(btScalar*) &m_vertices[0].x(),vertStride);
bool useQuantizedAabbCompression = true;
groundShape = new btBvhTriangleMeshShape(m_indexVertexArrays,useQuantizedAabbCompression);
tr.setOrigin(btVector3(0,-4.5f,0));
#else
//testing btHeightfieldTerrainShape
int width=128;
int length=128;
unsigned char* heightfieldData = new unsigned char[width*length];
{
for (int i=0;i<width*length;i++)
{
heightfieldData[i]=0;
}
}
char* filename="heightfield128x128.raw";
FILE* heightfieldFile = fopen(filename,"r");
if (!heightfieldFile)
{
filename="../../heightfield128x128.raw";
heightfieldFile = fopen(filename,"r");
}
if (heightfieldFile)
{
int numBytes =fread(heightfieldData,1,width*length,heightfieldFile);
//btAssert(numBytes);
if (!numBytes)
{
printf("couldn't read heightfield at %s\n",filename);
}
fclose (heightfieldFile);
}
btScalar maxHeight = 20000.f;
bool useFloatDatam=false;
bool flipQuadEdges=false;
btHeightfieldTerrainShape* heightFieldShape = new btHeightfieldTerrainShape(width,length,heightfieldData,maxHeight,upIndex,useFloatDatam,flipQuadEdges);;
groundShape = heightFieldShape;
heightFieldShape->setUseDiamondSubdivision(true);
btVector3 localScaling(20,20,20);
localScaling[upIndex]=1.f;
groundShape->setLocalScaling(localScaling);
tr.setOrigin(btVector3(0,-64.5f,0));
#endif //
m_collisionShapes.push_back(groundShape);
//create ground object
localCreateRigidBody(0,tr,groundShape);
#ifdef FORCE_ZAXIS_UP
// indexRightAxis = 0;
// indexUpAxis = 2;
// indexForwardAxis = 1;
btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,2.f, 0.5f));
btCompoundShape* compound = new btCompoundShape();
btTransform localTrans;
localTrans.setIdentity();
//localTrans effectively shifts the center of mass with respect to the chassis
localTrans.setOrigin(btVector3(0,0,1));
#else
btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f));
m_collisionShapes.push_back(chassisShape);
btCompoundShape* compound = new btCompoundShape();
m_collisionShapes.push_back(compound);
btTransform localTrans;
localTrans.setIdentity();
//localTrans effectively shifts the center of mass with respect to the chassis
localTrans.setOrigin(btVector3(0,1,0));
#endif
compound->addChildShape(localTrans,chassisShape);
tr.setOrigin(btVector3(0,0.f,0));
m_carChassis = localCreateRigidBody(800,tr,compound);//chassisShape);
//m_carChassis->setDamping(0.2,0.2);
clientResetScene();
/// create vehicle
{
m_vehicleRayCaster = new btDefaultVehicleRaycaster(m_dynamicsWorld);
m_vehicle = new btRaycastVehicle(m_tuning,m_carChassis,m_vehicleRayCaster);
///never deactivate the vehicle
m_carChassis->setActivationState(DISABLE_DEACTIVATION);
m_dynamicsWorld->addVehicle(m_vehicle);
float connectionHeight = 1.2f;
bool isFrontWheel=true;
//choose coordinate system
m_vehicle->setCoordinateSystem(rightIndex,upIndex,forwardIndex);
#ifdef FORCE_ZAXIS_UP
btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),2*CUBE_HALF_EXTENTS-wheelRadius, connectionHeight);
#else
btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);
#endif
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
#ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),2*CUBE_HALF_EXTENTS-wheelRadius, connectionHeight);
#else
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);
#endif
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
#ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),-2*CUBE_HALF_EXTENTS+wheelRadius, connectionHeight);
#else
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
#endif //FORCE_ZAXIS_UP
isFrontWheel = false;
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
#ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),-2*CUBE_HALF_EXTENTS+wheelRadius, connectionHeight);
#else
connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
#endif
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
for (int i=0;i<m_vehicle->getNumWheels();i++)
{
btWheelInfo& wheel = m_vehicle->getWheelInfo(i);
wheel.m_suspensionStiffness = suspensionStiffness;
wheel.m_wheelsDampingRelaxation = suspensionDamping;
wheel.m_wheelsDampingCompression = suspensionCompression;
wheel.m_frictionSlip = wheelFriction;
wheel.m_rollInfluence = rollInfluence;
}
}
setCameraDistance(26.f);
}
//to be implemented by the demo
void VehicleDemo::renderme()
{
updateCamera();
btScalar m[16];
int i;
btCylinderShapeX wheelShape(btVector3(wheelWidth,wheelRadius,wheelRadius));
btVector3 wheelColor(1,0,0);
btVector3 worldBoundsMin,worldBoundsMax;
getDynamicsWorld()->getBroadphase()->getBroadphaseAabb(worldBoundsMin,worldBoundsMax);
for (i=0;i<m_vehicle->getNumWheels();i++)
{
//synchronize the wheels with the (interpolated) chassis worldtransform
m_vehicle->updateWheelTransform(i,true);
//draw wheels (cylinders)
m_vehicle->getWheelInfo(i).m_worldTransform.getOpenGLMatrix(m);
m_shapeDrawer.drawOpenGL(m,&wheelShape,wheelColor,getDebugMode(),worldBoundsMin,worldBoundsMax);
}
DemoApplication::renderme();
}
void VehicleDemo::clientMoveAndDisplay()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
{
int wheelIndex = 2;
m_vehicle->applyEngineForce(gEngineForce,wheelIndex);
m_vehicle->setBrake(gBreakingForce,wheelIndex);
wheelIndex = 3;
m_vehicle->applyEngineForce(gEngineForce,wheelIndex);
m_vehicle->setBrake(gBreakingForce,wheelIndex);
wheelIndex = 0;
m_vehicle->setSteeringValue(gVehicleSteering,wheelIndex);
wheelIndex = 1;
m_vehicle->setSteeringValue(gVehicleSteering,wheelIndex);
}
float dt = getDeltaTimeMicroseconds() * 0.000001f;
if (m_dynamicsWorld)
{
//during idle mode, just run 1 simulation step maximum
int maxSimSubSteps = m_idle ? 1 : 2;
if (m_idle)
dt = 1.0/420.f;
int numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps);
//#define VERBOSE_FEEDBACK
#ifdef VERBOSE_FEEDBACK
if (!numSimSteps)
printf("Interpolated transforms\n");
else
{
if (numSimSteps > maxSimSubSteps)
{
//detect dropping frames
printf("Dropped (%i) simulation steps out of %i\n",numSimSteps - maxSimSubSteps,numSimSteps);
} else
{
printf("Simulated (%i) steps\n",numSimSteps);
}
}
#endif //VERBOSE_FEEDBACK
}
#ifdef USE_QUICKPROF
btProfiler::beginBlock("render");
#endif //USE_QUICKPROF
renderme();
//optional but useful: debug drawing
if (m_dynamicsWorld)
m_dynamicsWorld->debugDrawWorld();
#ifdef USE_QUICKPROF
btProfiler::endBlock("render");
#endif
glFlush();
glutSwapBuffers();
}
void VehicleDemo::displayCallback(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderme();
//optional but useful: debug drawing
if (m_dynamicsWorld)
m_dynamicsWorld->debugDrawWorld();
glFlush();
glutSwapBuffers();
}
void VehicleDemo::clientResetScene()
{
gVehicleSteering = 0.f;
m_carChassis->setCenterOfMassTransform(btTransform::getIdentity());
m_carChassis->setLinearVelocity(btVector3(0,0,0));
m_carChassis->setAngularVelocity(btVector3(0,0,0));
m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(m_carChassis->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher());
if (m_vehicle)
{
m_vehicle->resetSuspension();
for (int i=0;i<m_vehicle->getNumWheels();i++)
{
//synchronize the wheels with the (interpolated) chassis worldtransform
m_vehicle->updateWheelTransform(i,true);
}
}
}
void VehicleDemo::specialKeyboardUp(int key, int x, int y)
{
switch (key)
{
case GLUT_KEY_UP :
{
gEngineForce = 0.f;
break;
}
case GLUT_KEY_DOWN :
{
gBreakingForce = 0.f;
break;
}
default:
DemoApplication::specialKeyboardUp(key,x,y);
break;
}
}
void VehicleDemo::specialKeyboard(int key, int x, int y)
{
// printf("key = %i x=%i y=%i\n",key,x,y);
switch (key)
{
case GLUT_KEY_LEFT :
{
gVehicleSteering += steeringIncrement;
if ( gVehicleSteering > steeringClamp)
gVehicleSteering = steeringClamp;
break;
}
case GLUT_KEY_RIGHT :
{
gVehicleSteering -= steeringIncrement;
if ( gVehicleSteering < -steeringClamp)
gVehicleSteering = -steeringClamp;
break;
}
case GLUT_KEY_UP :
{
gEngineForce = maxEngineForce;
gBreakingForce = 0.f;
break;
}
case GLUT_KEY_DOWN :
{
gBreakingForce = maxBreakingForce;
gEngineForce = 0.f;
break;
}
default:
DemoApplication::specialKeyboard(key,x,y);
break;
}
// glutPostRedisplay();
}
void VehicleDemo::updateCamera()
{
//#define DISABLE_CAMERA 1
#ifdef DISABLE_CAMERA
DemoApplication::updateCamera();
return;
#endif //DISABLE_CAMERA
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
btTransform chassisWorldTrans;
//look at the vehicle
m_carChassis->getMotionState()->getWorldTransform(chassisWorldTrans);
m_cameraTargetPosition = chassisWorldTrans.getOrigin();
//interpolate the camera height
#ifdef FORCE_ZAXIS_UP
m_cameraPosition[2] = (15.0*m_cameraPosition[2] + m_cameraTargetPosition[2] + m_cameraHeight)/16.0;
#else
m_cameraPosition[1] = (15.0*m_cameraPosition[1] + m_cameraTargetPosition[1] + m_cameraHeight)/16.0;
#endif
btVector3 camToObject = m_cameraTargetPosition - m_cameraPosition;
//keep distance between min and max distance
float cameraDistance = camToObject.length();
float correctionFactor = 0.f;
if (cameraDistance < m_minCameraDistance)
{
correctionFactor = 0.15*(m_minCameraDistance-cameraDistance)/cameraDistance;
}
if (cameraDistance > m_maxCameraDistance)
{
correctionFactor = 0.15*(m_maxCameraDistance-cameraDistance)/cameraDistance;
}
m_cameraPosition -= correctionFactor*camToObject;
//update OpenGL camera settings
glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 10000.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(m_cameraPosition[0],m_cameraPosition[1],m_cameraPosition[2],
m_cameraTargetPosition[0],m_cameraTargetPosition[1], m_cameraTargetPosition[2],
m_cameraUp.getX(),m_cameraUp.getY(),m_cameraUp.getZ());
}