bullet3/Bullet/BroadphaseCollision/AxisSweep3.cpp
ejcoumans 9105c3af5a Refactoring:
Moved optional code to Extras: AlgebraicCCD,EPA,quickstep
Moved SimpleBroadphase data to OverlappingPairCache, and derive both SimpleBroadphase and AxisSweep3 from OverlappingPairCache.
Added ParallelPhysicsEnvironment (prepair more parallel mainloop)
Upgraded hardcoded limit from 1024/8192 to 32766/65535 (max objects / max overlapping pairs)
2006-06-29 20:57:47 +00:00

503 lines
12 KiB
C++

//Bullet Continuous Collision Detection and Physics Library
//Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
//
// AxisSweep3
//
// Copyright (c) 2006 Simon Hobbs
//
// This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
#include "AxisSweep3.h"
#include <assert.h>
BroadphaseProxy* AxisSweep3::CreateProxy( const SimdVector3& min, const SimdVector3& max,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask)
{
unsigned short handleId = AddHandle(min,max, userPtr,collisionFilterGroup,collisionFilterMask);
Handle* handle = GetHandle(handleId);
return handle;
}
void AxisSweep3::DestroyProxy(BroadphaseProxy* proxy)
{
Handle* handle = static_cast<Handle*>(proxy);
RemoveHandle(handle->m_handleId);
}
void AxisSweep3::SetAabb(BroadphaseProxy* proxy,const SimdVector3& aabbMin,const SimdVector3& aabbMax)
{
Handle* handle = static_cast<Handle*>(proxy);
UpdateHandle(handle->m_handleId,aabbMin,aabbMax);
}
AxisSweep3::AxisSweep3(const SimdPoint3& worldAabbMin,const SimdPoint3& worldAabbMax, int maxHandles, int maxOverlaps)
:OverlappingPairCache(maxOverlaps)
{
//assert(bounds.HasVolume());
// 1 handle is reserved as sentinel
assert(maxHandles > 1 && maxHandles < 32767);
// doesn't need this limit right now, but I may want to use unsigned short indexes into overlaps array
assert(maxOverlaps > 0 && maxOverlaps < 65536);
// init bounds
m_worldAabbMin = worldAabbMin;
m_worldAabbMax = worldAabbMax;
SimdVector3 aabbSize = m_worldAabbMax - m_worldAabbMin;
m_quantize = SimdVector3(65535.0f,65535.0f,65535.0f) / aabbSize;
// allocate handles buffer and put all handles on free list
m_pHandles = new Handle[maxHandles];
m_maxHandles = maxHandles;
m_numHandles = 0;
// handle 0 is reserved as the null index, and is also used as the sentinel
m_firstFreeHandle = 1;
{
for (int i = m_firstFreeHandle; i < maxHandles; i++)
m_pHandles[i].SetNextFree(i + 1);
m_pHandles[maxHandles - 1].SetNextFree(0);
}
{
// allocate edge buffers
for (int i = 0; i < 3; i++)
m_pEdges[i] = new Edge[maxHandles * 2];
}
//removed overlap management
// make boundary sentinels
m_pHandles[0].m_clientObject = 0;
for (int axis = 0; axis < 3; axis++)
{
m_pHandles[0].m_minEdges[axis] = 0;
m_pHandles[0].m_maxEdges[axis] = 1;
m_pEdges[axis][0].m_pos = 0;
m_pEdges[axis][0].m_handle = 0;
m_pEdges[axis][1].m_pos = 0xffff;
m_pEdges[axis][1].m_handle = 0;
}
}
AxisSweep3::~AxisSweep3()
{
for (int i = 2; i >= 0; i--)
delete[] m_pEdges[i];
delete[] m_pHandles;
}
void AxisSweep3::Quantize(unsigned short* out, const SimdPoint3& point, int isMax) const
{
SimdPoint3 clampedPoint(point);
/*
if (isMax)
clampedPoint += SimdVector3(10,10,10);
else
{
clampedPoint -= SimdVector3(10,10,10);
}
*/
clampedPoint.setMax(m_worldAabbMin);
clampedPoint.setMin(m_worldAabbMax);
SimdVector3 v = (clampedPoint - m_worldAabbMin) * m_quantize;
out[0] = (unsigned short)(((int)v.getX() & 0xfffc) | isMax);
out[1] = (unsigned short)(((int)v.getY() & 0xfffc) | isMax);
out[2] = (unsigned short)(((int)v.getZ() & 0xfffc) | isMax);
}
unsigned short AxisSweep3::AllocHandle()
{
assert(m_firstFreeHandle);
unsigned short handle = m_firstFreeHandle;
m_firstFreeHandle = GetHandle(handle)->GetNextFree();
m_numHandles++;
return handle;
}
void AxisSweep3::FreeHandle(unsigned short handle)
{
assert(handle > 0 && handle < m_maxHandles);
GetHandle(handle)->SetNextFree(m_firstFreeHandle);
m_firstFreeHandle = handle;
m_numHandles--;
}
unsigned short AxisSweep3::AddHandle(const SimdPoint3& aabbMin,const SimdPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask)
{
// quantize the bounds
unsigned short min[3], max[3];
Quantize(min, aabbMin, 0);
Quantize(max, aabbMax, 1);
// allocate a handle
unsigned short handle = AllocHandle();
assert(handle!= 0xcdcd);
Handle* pHandle = GetHandle(handle);
pHandle->m_handleId = handle;
//pHandle->m_pOverlaps = 0;
pHandle->m_clientObject = pOwner;
pHandle->m_collisionFilterGroup = collisionFilterGroup;
pHandle->m_collisionFilterMask = collisionFilterMask;
// compute current limit of edge arrays
int limit = m_numHandles * 2;
// insert new edges just inside the max boundary edge
for (int axis = 0; axis < 3; axis++)
{
m_pHandles[0].m_maxEdges[axis] += 2;
m_pEdges[axis][limit + 1] = m_pEdges[axis][limit - 1];
m_pEdges[axis][limit - 1].m_pos = min[axis];
m_pEdges[axis][limit - 1].m_handle = handle;
m_pEdges[axis][limit].m_pos = max[axis];
m_pEdges[axis][limit].m_handle = handle;
pHandle->m_minEdges[axis] = limit - 1;
pHandle->m_maxEdges[axis] = limit;
}
// now sort the new edges to their correct position
SortMinDown(0, pHandle->m_minEdges[0], false);
SortMaxDown(0, pHandle->m_maxEdges[0], false);
SortMinDown(1, pHandle->m_minEdges[1], false);
SortMaxDown(1, pHandle->m_maxEdges[1], false);
SortMinDown(2, pHandle->m_minEdges[2], true);
SortMaxDown(2, pHandle->m_maxEdges[2], true);
//PrintAxis(1);
return handle;
}
void AxisSweep3::RemoveHandle(unsigned short handle)
{
Handle* pHandle = GetHandle(handle);
RemoveOverlappingPairsContainingProxy(pHandle);
// compute current limit of edge arrays
int limit = m_numHandles * 2;
int axis;
for (axis = 0;axis<3;axis++)
{
Edge* pEdges = m_pEdges[axis];
int maxEdge= pHandle->m_maxEdges[axis];
pEdges[maxEdge].m_pos = 0xffff;
int minEdge = pHandle->m_minEdges[axis];
pEdges[minEdge].m_pos = 0xffff;
}
// remove the edges by sorting them up to the end of the list
for ( axis = 0; axis < 3; axis++)
{
Edge* pEdges = m_pEdges[axis];
int max = pHandle->m_maxEdges[axis];
pEdges[max].m_pos = 0xffff;
SortMaxUp(axis,max,false);
int i = pHandle->m_minEdges[axis];
pEdges[i].m_pos = 0xffff;
SortMinUp(axis,i,false);
pEdges[limit-1].m_handle = 0;
pEdges[limit-1].m_pos = 0xffff;
}
// free the handle
FreeHandle(handle);
}
bool AxisSweep3::TestOverlap(int ignoreAxis,const Handle* pHandleA, const Handle* pHandleB)
{
//optimization 1: check the array index (memory address), instead of the m_pos
for (int axis = 0; axis < 3; axis++)
{
if (axis != ignoreAxis)
{
if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] ||
pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis])
{
return false;
}
}
}
//optimization 2: only 2 axis need to be tested
/*for (int axis = 0; axis < 3; axis++)
{
if (m_pEdges[axis][pHandleA->m_maxEdges[axis]].m_pos < m_pEdges[axis][pHandleB->m_minEdges[axis]].m_pos ||
m_pEdges[axis][pHandleB->m_maxEdges[axis]].m_pos < m_pEdges[axis][pHandleA->m_minEdges[axis]].m_pos)
{
return false;
}
}
*/
return true;
}
void AxisSweep3::UpdateHandle(unsigned short handle, const SimdPoint3& aabbMin,const SimdPoint3& aabbMax)
{
// assert(bounds.IsFinite());
//assert(bounds.HasVolume());
Handle* pHandle = GetHandle(handle);
// quantize the new bounds
unsigned short min[3], max[3];
Quantize(min, aabbMin, 0);
Quantize(max, aabbMax, 1);
// update changed edges
for (int axis = 0; axis < 3; axis++)
{
unsigned short emin = pHandle->m_minEdges[axis];
unsigned short emax = pHandle->m_maxEdges[axis];
int dmin = (int)min[axis] - (int)m_pEdges[axis][emin].m_pos;
int dmax = (int)max[axis] - (int)m_pEdges[axis][emax].m_pos;
m_pEdges[axis][emin].m_pos = min[axis];
m_pEdges[axis][emax].m_pos = max[axis];
// expand (only adds overlaps)
if (dmin < 0)
SortMinDown(axis, emin);
if (dmax > 0)
SortMaxUp(axis, emax);
// shrink (only removes overlaps)
if (dmin > 0)
SortMinUp(axis, emin);
if (dmax < 0)
SortMaxDown(axis, emax);
}
//PrintAxis(1);
}
// sorting a min edge downwards can only ever *add* overlaps
void AxisSweep3::SortMinDown(int axis, unsigned short edge, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pPrev = pEdge - 1;
Handle* pHandleEdge = GetHandle(pEdge->m_handle);
while (pEdge->m_pos < pPrev->m_pos)
{
Handle* pHandlePrev = GetHandle(pPrev->m_handle);
if (pPrev->IsMax())
{
// if previous edge is a maximum check the bounds and add an overlap if necessary
if (updateOverlaps && TestOverlap(axis,pHandleEdge, pHandlePrev))
{
AddOverlappingPair(pHandleEdge,pHandlePrev);
//AddOverlap(pEdge->m_handle, pPrev->m_handle);
}
// update edge reference in other handle
pHandlePrev->m_maxEdges[axis]++;
}
else
pHandlePrev->m_minEdges[axis]++;
pHandleEdge->m_minEdges[axis]--;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pPrev;
*pPrev = swap;
// decrement
pEdge--;
pPrev--;
}
}
// sorting a min edge upwards can only ever *remove* overlaps
void AxisSweep3::SortMinUp(int axis, unsigned short edge, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pNext = pEdge + 1;
Handle* pHandleEdge = GetHandle(pEdge->m_handle);
while (pEdge->m_pos > pNext->m_pos)
{
Handle* pHandleNext = GetHandle(pNext->m_handle);
if (pNext->IsMax())
{
// if next edge is maximum remove any overlap between the two handles
if (updateOverlaps)
{
Handle* handle0 = GetHandle(pEdge->m_handle);
Handle* handle1 = GetHandle(pNext->m_handle);
BroadphasePair* pair = FindPair(handle0,handle1);
//assert(pair);
if (pair)
{
RemoveOverlappingPair(*pair);
}
}
// update edge reference in other handle
pHandleNext->m_maxEdges[axis]--;
}
else
pHandleNext->m_minEdges[axis]--;
pHandleEdge->m_minEdges[axis]++;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pNext;
*pNext = swap;
// increment
pEdge++;
pNext++;
}
}
// sorting a max edge downwards can only ever *remove* overlaps
void AxisSweep3::SortMaxDown(int axis, unsigned short edge, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pPrev = pEdge - 1;
Handle* pHandleEdge = GetHandle(pEdge->m_handle);
while (pEdge->m_pos < pPrev->m_pos)
{
Handle* pHandlePrev = GetHandle(pPrev->m_handle);
if (!pPrev->IsMax())
{
// if previous edge was a minimum remove any overlap between the two handles
if (updateOverlaps)
{
Handle* handle0 = GetHandle(pEdge->m_handle);
Handle* handle1 = GetHandle(pPrev->m_handle);
BroadphasePair* pair = FindPair(handle0,handle1);
//assert(pair);
if (pair)
{
RemoveOverlappingPair(*pair);
}
}
// update edge reference in other handle
pHandlePrev->m_minEdges[axis]++;;
}
else
pHandlePrev->m_maxEdges[axis]++;
pHandleEdge->m_maxEdges[axis]--;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pPrev;
*pPrev = swap;
// decrement
pEdge--;
pPrev--;
}
}
// sorting a max edge upwards can only ever *add* overlaps
void AxisSweep3::SortMaxUp(int axis, unsigned short edge, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pNext = pEdge + 1;
Handle* pHandleEdge = GetHandle(pEdge->m_handle);
while (pEdge->m_pos > pNext->m_pos)
{
Handle* pHandleNext = GetHandle(pNext->m_handle);
if (!pNext->IsMax())
{
// if next edge is a minimum check the bounds and add an overlap if necessary
if (updateOverlaps && TestOverlap(axis, pHandleEdge, pHandleNext))
{
Handle* handle0 = GetHandle(pEdge->m_handle);
Handle* handle1 = GetHandle(pNext->m_handle);
AddOverlappingPair(handle0,handle1);
}
// update edge reference in other handle
pHandleNext->m_minEdges[axis]--;
}
else
pHandleNext->m_maxEdges[axis]--;
pHandleEdge->m_maxEdges[axis]++;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pNext;
*pNext = swap;
// increment
pEdge++;
pNext++;
}
}