bullet3/test/gtest-1.7.0/include/gtest/internal/gtest-internal.h
erwincoumans ab8f16961e Code-style consistency improvement:
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
2018-09-23 14:17:31 -07:00

1274 lines
49 KiB
C++

// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
//
// The Google C++ Testing Framework (Google Test)
//
// This header file declares functions and macros used internally by
// Google Test. They are subject to change without notice.
#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
#include "gtest/internal/gtest-port.h"
#if GTEST_OS_LINUX
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#endif // GTEST_OS_LINUX
#if GTEST_HAS_EXCEPTIONS
#include <stdexcept>
#endif
#include <ctype.h>
#include <float.h>
#include <string.h>
#include <iomanip>
#include <limits>
#include <set>
#include "gtest/gtest-message.h"
#include "gtest/internal/gtest-string.h"
#include "gtest/internal/gtest-filepath.h"
#include "gtest/internal/gtest-type-util.h"
// Due to C++ preprocessor weirdness, we need double indirection to
// concatenate two tokens when one of them is __LINE__. Writing
//
// foo ## __LINE__
//
// will result in the token foo__LINE__, instead of foo followed by
// the current line number. For more details, see
// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
class ProtocolMessage;
namespace proto2
{
class Message;
}
namespace testing
{
// Forward declarations.
class AssertionResult; // Result of an assertion.
class Message; // Represents a failure message.
class Test; // Represents a test.
class TestInfo; // Information about a test.
class TestPartResult; // Result of a test part.
class UnitTest; // A collection of test cases.
template <typename T>
::std::string PrintToString(const T& value);
namespace internal
{
struct TraceInfo; // Information about a trace point.
class ScopedTrace; // Implements scoped trace.
class TestInfoImpl; // Opaque implementation of TestInfo
class UnitTestImpl; // Opaque implementation of UnitTest
// How many times InitGoogleTest() has been called.
GTEST_API_ extern int g_init_gtest_count;
// The text used in failure messages to indicate the start of the
// stack trace.
GTEST_API_ extern const char kStackTraceMarker[];
// Two overloaded helpers for checking at compile time whether an
// expression is a null pointer literal (i.e. NULL or any 0-valued
// compile-time integral constant). Their return values have
// different sizes, so we can use sizeof() to test which version is
// picked by the compiler. These helpers have no implementations, as
// we only need their signatures.
//
// Given IsNullLiteralHelper(x), the compiler will pick the first
// version if x can be implicitly converted to Secret*, and pick the
// second version otherwise. Since Secret is a secret and incomplete
// type, the only expression a user can write that has type Secret* is
// a null pointer literal. Therefore, we know that x is a null
// pointer literal if and only if the first version is picked by the
// compiler.
char IsNullLiteralHelper(Secret* p);
char (&IsNullLiteralHelper(...))[2]; // NOLINT
// A compile-time bool constant that is true if and only if x is a
// null pointer literal (i.e. NULL or any 0-valued compile-time
// integral constant).
#ifdef GTEST_ELLIPSIS_NEEDS_POD_
// We lose support for NULL detection where the compiler doesn't like
// passing non-POD classes through ellipsis (...).
#define GTEST_IS_NULL_LITERAL_(x) false
#else
#define GTEST_IS_NULL_LITERAL_(x) \
(sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
#endif // GTEST_ELLIPSIS_NEEDS_POD_
// Appends the user-supplied message to the Google-Test-generated message.
GTEST_API_ std::string AppendUserMessage(
const std::string& gtest_msg, const Message& user_msg);
#if GTEST_HAS_EXCEPTIONS
// This exception is thrown by (and only by) a failed Google Test
// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
// are enabled). We derive it from std::runtime_error, which is for
// errors presumably detectable only at run time. Since
// std::runtime_error inherits from std::exception, many testing
// frameworks know how to extract and print the message inside it.
class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error
{
public:
explicit GoogleTestFailureException(const TestPartResult& failure);
};
#endif // GTEST_HAS_EXCEPTIONS
// A helper class for creating scoped traces in user programs.
class GTEST_API_ ScopedTrace
{
public:
// The c'tor pushes the given source file location and message onto
// a trace stack maintained by Google Test.
ScopedTrace(const char* file, int line, const Message& message);
// The d'tor pops the info pushed by the c'tor.
//
// Note that the d'tor is not virtual in order to be efficient.
// Don't inherit from ScopedTrace!
~ScopedTrace();
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
} GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its
// c'tor and d'tor. Therefore it doesn't
// need to be used otherwise.
// Constructs and returns the message for an equality assertion
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
//
// The first four parameters are the expressions used in the assertion
// and their values, as strings. For example, for ASSERT_EQ(foo, bar)
// where foo is 5 and bar is 6, we have:
//
// expected_expression: "foo"
// actual_expression: "bar"
// expected_value: "5"
// actual_value: "6"
//
// The ignoring_case parameter is true iff the assertion is a
// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
// be inserted into the message.
GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
const char* actual_expression,
const std::string& expected_value,
const std::string& actual_value,
bool ignoring_case);
// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
GTEST_API_ std::string GetBoolAssertionFailureMessage(
const AssertionResult& assertion_result,
const char* expression_text,
const char* actual_predicate_value,
const char* expected_predicate_value);
// This template class represents an IEEE floating-point number
// (either single-precision or double-precision, depending on the
// template parameters).
//
// The purpose of this class is to do more sophisticated number
// comparison. (Due to round-off error, etc, it's very unlikely that
// two floating-points will be equal exactly. Hence a naive
// comparison by the == operation often doesn't work.)
//
// Format of IEEE floating-point:
//
// The most-significant bit being the leftmost, an IEEE
// floating-point looks like
//
// sign_bit exponent_bits fraction_bits
//
// Here, sign_bit is a single bit that designates the sign of the
// number.
//
// For float, there are 8 exponent bits and 23 fraction bits.
//
// For double, there are 11 exponent bits and 52 fraction bits.
//
// More details can be found at
// http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
//
// Template parameter:
//
// RawType: the raw floating-point type (either float or double)
template <typename RawType>
class FloatingPoint
{
public:
// Defines the unsigned integer type that has the same size as the
// floating point number.
typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
// Constants.
// # of bits in a number.
static const size_t kBitCount = 8 * sizeof(RawType);
// # of fraction bits in a number.
static const size_t kFractionBitCount =
std::numeric_limits<RawType>::digits - 1;
// # of exponent bits in a number.
static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
// The mask for the sign bit.
static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
// The mask for the fraction bits.
static const Bits kFractionBitMask =
~static_cast<Bits>(0) >> (kExponentBitCount + 1);
// The mask for the exponent bits.
static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
// How many ULP's (Units in the Last Place) we want to tolerate when
// comparing two numbers. The larger the value, the more error we
// allow. A 0 value means that two numbers must be exactly the same
// to be considered equal.
//
// The maximum error of a single floating-point operation is 0.5
// units in the last place. On Intel CPU's, all floating-point
// calculations are done with 80-bit precision, while double has 64
// bits. Therefore, 4 should be enough for ordinary use.
//
// See the following article for more details on ULP:
// http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
static const size_t kMaxUlps = 4;
// Constructs a FloatingPoint from a raw floating-point number.
//
// On an Intel CPU, passing a non-normalized NAN (Not a Number)
// around may change its bits, although the new value is guaranteed
// to be also a NAN. Therefore, don't expect this constructor to
// preserve the bits in x when x is a NAN.
explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
// Static methods
// Reinterprets a bit pattern as a floating-point number.
//
// This function is needed to test the AlmostEquals() method.
static RawType ReinterpretBits(const Bits bits)
{
FloatingPoint fp(0);
fp.u_.bits_ = bits;
return fp.u_.value_;
}
// Returns the floating-point number that represent positive infinity.
static RawType Infinity()
{
return ReinterpretBits(kExponentBitMask);
}
// Returns the maximum representable finite floating-point number.
static RawType Max();
// Non-static methods
// Returns the bits that represents this number.
const Bits& bits() const { return u_.bits_; }
// Returns the exponent bits of this number.
Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
// Returns the fraction bits of this number.
Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
// Returns the sign bit of this number.
Bits sign_bit() const { return kSignBitMask & u_.bits_; }
// Returns true iff this is NAN (not a number).
bool is_nan() const
{
// It's a NAN if the exponent bits are all ones and the fraction
// bits are not entirely zeros.
return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
}
// Returns true iff this number is at most kMaxUlps ULP's away from
// rhs. In particular, this function:
//
// - returns false if either number is (or both are) NAN.
// - treats really large numbers as almost equal to infinity.
// - thinks +0.0 and -0.0 are 0 DLP's apart.
bool AlmostEquals(const FloatingPoint& rhs) const
{
// The IEEE standard says that any comparison operation involving
// a NAN must return false.
if (is_nan() || rhs.is_nan()) return false;
return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <= kMaxUlps;
}
private:
// The data type used to store the actual floating-point number.
union FloatingPointUnion {
RawType value_; // The raw floating-point number.
Bits bits_; // The bits that represent the number.
};
// Converts an integer from the sign-and-magnitude representation to
// the biased representation. More precisely, let N be 2 to the
// power of (kBitCount - 1), an integer x is represented by the
// unsigned number x + N.
//
// For instance,
//
// -N + 1 (the most negative number representable using
// sign-and-magnitude) is represented by 1;
// 0 is represented by N; and
// N - 1 (the biggest number representable using
// sign-and-magnitude) is represented by 2N - 1.
//
// Read http://en.wikipedia.org/wiki/Signed_number_representations
// for more details on signed number representations.
static Bits SignAndMagnitudeToBiased(const Bits& sam)
{
if (kSignBitMask & sam)
{
// sam represents a negative number.
return ~sam + 1;
}
else
{
// sam represents a positive number.
return kSignBitMask | sam;
}
}
// Given two numbers in the sign-and-magnitude representation,
// returns the distance between them as an unsigned number.
static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1,
const Bits& sam2)
{
const Bits biased1 = SignAndMagnitudeToBiased(sam1);
const Bits biased2 = SignAndMagnitudeToBiased(sam2);
return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
}
FloatingPointUnion u_;
};
// We cannot use std::numeric_limits<T>::max() as it clashes with the max()
// macro defined by <windows.h>.
template <>
inline float FloatingPoint<float>::Max()
{
return FLT_MAX;
}
template <>
inline double FloatingPoint<double>::Max()
{
return DBL_MAX;
}
// Typedefs the instances of the FloatingPoint template class that we
// care to use.
typedef FloatingPoint<float> Float;
typedef FloatingPoint<double> Double;
// In order to catch the mistake of putting tests that use different
// test fixture classes in the same test case, we need to assign
// unique IDs to fixture classes and compare them. The TypeId type is
// used to hold such IDs. The user should treat TypeId as an opaque
// type: the only operation allowed on TypeId values is to compare
// them for equality using the == operator.
typedef const void* TypeId;
template <typename T>
class TypeIdHelper
{
public:
// dummy_ must not have a const type. Otherwise an overly eager
// compiler (e.g. MSVC 7.1 & 8.0) may try to merge
// TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
static bool dummy_;
};
template <typename T>
bool TypeIdHelper<T>::dummy_ = false;
// GetTypeId<T>() returns the ID of type T. Different values will be
// returned for different types. Calling the function twice with the
// same type argument is guaranteed to return the same ID.
template <typename T>
TypeId GetTypeId()
{
// The compiler is required to allocate a different
// TypeIdHelper<T>::dummy_ variable for each T used to instantiate
// the template. Therefore, the address of dummy_ is guaranteed to
// be unique.
return &(TypeIdHelper<T>::dummy_);
}
// Returns the type ID of ::testing::Test. Always call this instead
// of GetTypeId< ::testing::Test>() to get the type ID of
// ::testing::Test, as the latter may give the wrong result due to a
// suspected linker bug when compiling Google Test as a Mac OS X
// framework.
GTEST_API_ TypeId GetTestTypeId();
// Defines the abstract factory interface that creates instances
// of a Test object.
class TestFactoryBase
{
public:
virtual ~TestFactoryBase() {}
// Creates a test instance to run. The instance is both created and destroyed
// within TestInfoImpl::Run()
virtual Test* CreateTest() = 0;
protected:
TestFactoryBase() {}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
};
// This class provides implementation of TeastFactoryBase interface.
// It is used in TEST and TEST_F macros.
template <class TestClass>
class TestFactoryImpl : public TestFactoryBase
{
public:
virtual Test* CreateTest() { return new TestClass; }
};
#if GTEST_OS_WINDOWS
// Predicate-formatters for implementing the HRESULT checking macros
// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
// We pass a long instead of HRESULT to avoid causing an
// include dependency for the HRESULT type.
GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
long hr); // NOLINT
GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
long hr); // NOLINT
#endif // GTEST_OS_WINDOWS
// Types of SetUpTestCase() and TearDownTestCase() functions.
typedef void (*SetUpTestCaseFunc)();
typedef void (*TearDownTestCaseFunc)();
// Creates a new TestInfo object and registers it with Google Test;
// returns the created object.
//
// Arguments:
//
// test_case_name: name of the test case
// name: name of the test
// type_param the name of the test's type parameter, or NULL if
// this is not a typed or a type-parameterized test.
// value_param text representation of the test's value parameter,
// or NULL if this is not a type-parameterized test.
// fixture_class_id: ID of the test fixture class
// set_up_tc: pointer to the function that sets up the test case
// tear_down_tc: pointer to the function that tears down the test case
// factory: pointer to the factory that creates a test object.
// The newly created TestInfo instance will assume
// ownership of the factory object.
GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
const char* test_case_name,
const char* name,
const char* type_param,
const char* value_param,
TypeId fixture_class_id,
SetUpTestCaseFunc set_up_tc,
TearDownTestCaseFunc tear_down_tc,
TestFactoryBase* factory);
// If *pstr starts with the given prefix, modifies *pstr to be right
// past the prefix and returns true; otherwise leaves *pstr unchanged
// and returns false. None of pstr, *pstr, and prefix can be NULL.
GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
// State of the definition of a type-parameterized test case.
class GTEST_API_ TypedTestCasePState
{
public:
TypedTestCasePState() : registered_(false) {}
// Adds the given test name to defined_test_names_ and return true
// if the test case hasn't been registered; otherwise aborts the
// program.
bool AddTestName(const char* file, int line, const char* case_name,
const char* test_name)
{
if (registered_)
{
fprintf(stderr,
"%s Test %s must be defined before "
"REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
FormatFileLocation(file, line).c_str(), test_name, case_name);
fflush(stderr);
posix::Abort();
}
defined_test_names_.insert(test_name);
return true;
}
// Verifies that registered_tests match the test names in
// defined_test_names_; returns registered_tests if successful, or
// aborts the program otherwise.
const char* VerifyRegisteredTestNames(
const char* file, int line, const char* registered_tests);
private:
bool registered_;
::std::set<const char*> defined_test_names_;
};
// Skips to the first non-space char after the first comma in 'str';
// returns NULL if no comma is found in 'str'.
inline const char* SkipComma(const char* str)
{
const char* comma = strchr(str, ',');
if (comma == NULL)
{
return NULL;
}
while (IsSpace(*(++comma)))
{
}
return comma;
}
// Returns the prefix of 'str' before the first comma in it; returns
// the entire string if it contains no comma.
inline std::string GetPrefixUntilComma(const char* str)
{
const char* comma = strchr(str, ',');
return comma == NULL ? str : std::string(str, comma);
}
// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
// registers a list of type-parameterized tests with Google Test. The
// return value is insignificant - we just need to return something
// such that we can call this function in a namespace scope.
//
// Implementation note: The GTEST_TEMPLATE_ macro declares a template
// template parameter. It's defined in gtest-type-util.h.
template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
class TypeParameterizedTest
{
public:
// 'index' is the index of the test in the type list 'Types'
// specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
// Types). Valid values for 'index' are [0, N - 1] where N is the
// length of Types.
static bool Register(const char* prefix, const char* case_name,
const char* test_names, int index)
{
typedef typename Types::Head Type;
typedef Fixture<Type> FixtureClass;
typedef typename GTEST_BIND_(TestSel, Type) TestClass;
// First, registers the first type-parameterized test in the type
// list.
MakeAndRegisterTestInfo(
(std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/" + StreamableToString(index)).c_str(),
GetPrefixUntilComma(test_names).c_str(),
GetTypeName<Type>().c_str(),
NULL, // No value parameter.
GetTypeId<FixtureClass>(),
TestClass::SetUpTestCase,
TestClass::TearDownTestCase,
new TestFactoryImpl<TestClass>);
// Next, recurses (at compile time) with the tail of the type list.
return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>::Register(prefix, case_name, test_names, index + 1);
}
};
// The base case for the compile time recursion.
template <GTEST_TEMPLATE_ Fixture, class TestSel>
class TypeParameterizedTest<Fixture, TestSel, Types0>
{
public:
static bool Register(const char* /*prefix*/, const char* /*case_name*/,
const char* /*test_names*/, int /*index*/)
{
return true;
}
};
// TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
// registers *all combinations* of 'Tests' and 'Types' with Google
// Test. The return value is insignificant - we just need to return
// something such that we can call this function in a namespace scope.
template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
class TypeParameterizedTestCase
{
public:
static bool Register(const char* prefix, const char* case_name,
const char* test_names)
{
typedef typename Tests::Head Head;
// First, register the first test in 'Test' for each type in 'Types'.
TypeParameterizedTest<Fixture, Head, Types>::Register(
prefix, case_name, test_names, 0);
// Next, recurses (at compile time) with the tail of the test list.
return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>::Register(prefix, case_name, SkipComma(test_names));
}
};
// The base case for the compile time recursion.
template <GTEST_TEMPLATE_ Fixture, typename Types>
class TypeParameterizedTestCase<Fixture, Templates0, Types>
{
public:
static bool Register(const char* /*prefix*/, const char* /*case_name*/,
const char* /*test_names*/)
{
return true;
}
};
#endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
// Returns the current OS stack trace as an std::string.
//
// The maximum number of stack frames to be included is specified by
// the gtest_stack_trace_depth flag. The skip_count parameter
// specifies the number of top frames to be skipped, which doesn't
// count against the number of frames to be included.
//
// For example, if Foo() calls Bar(), which in turn calls
// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
UnitTest* unit_test, int skip_count);
// Helpers for suppressing warnings on unreachable code or constant
// condition.
// Always returns true.
GTEST_API_ bool AlwaysTrue();
// Always returns false.
inline bool AlwaysFalse() { return !AlwaysTrue(); }
// Helper for suppressing false warning from Clang on a const char*
// variable declared in a conditional expression always being NULL in
// the else branch.
struct GTEST_API_ ConstCharPtr
{
ConstCharPtr(const char* str) : value(str) {}
operator bool() const { return true; }
const char* value;
};
// A simple Linear Congruential Generator for generating random
// numbers with a uniform distribution. Unlike rand() and srand(), it
// doesn't use global state (and therefore can't interfere with user
// code). Unlike rand_r(), it's portable. An LCG isn't very random,
// but it's good enough for our purposes.
class GTEST_API_ Random
{
public:
static const UInt32 kMaxRange = 1u << 31;
explicit Random(UInt32 seed) : state_(seed) {}
void Reseed(UInt32 seed) { state_ = seed; }
// Generates a random number from [0, range). Crashes if 'range' is
// 0 or greater than kMaxRange.
UInt32 Generate(UInt32 range);
private:
UInt32 state_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
};
// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
// compiler error iff T1 and T2 are different types.
template <typename T1, typename T2>
struct CompileAssertTypesEqual;
template <typename T>
struct CompileAssertTypesEqual<T, T>
{
};
// Removes the reference from a type if it is a reference type,
// otherwise leaves it unchanged. This is the same as
// tr1::remove_reference, which is not widely available yet.
template <typename T>
struct RemoveReference
{
typedef T type;
}; // NOLINT
template <typename T>
struct RemoveReference<T&>
{
typedef T type;
}; // NOLINT
// A handy wrapper around RemoveReference that works when the argument
// T depends on template parameters.
#define GTEST_REMOVE_REFERENCE_(T) \
typename ::testing::internal::RemoveReference<T>::type
// Removes const from a type if it is a const type, otherwise leaves
// it unchanged. This is the same as tr1::remove_const, which is not
// widely available yet.
template <typename T>
struct RemoveConst
{
typedef T type;
}; // NOLINT
template <typename T>
struct RemoveConst<const T>
{
typedef T type;
}; // NOLINT
// MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
// definition to fail to remove the const in 'const int[3]' and 'const
// char[3][4]'. The following specialization works around the bug.
template <typename T, size_t N>
struct RemoveConst<const T[N]>
{
typedef typename RemoveConst<T>::type type[N];
};
#if defined(_MSC_VER) && _MSC_VER < 1400
// This is the only specialization that allows VC++ 7.1 to remove const in
// 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC
// and thus needs to be conditionally compiled.
template <typename T, size_t N>
struct RemoveConst<T[N]>
{
typedef typename RemoveConst<T>::type type[N];
};
#endif
// A handy wrapper around RemoveConst that works when the argument
// T depends on template parameters.
#define GTEST_REMOVE_CONST_(T) \
typename ::testing::internal::RemoveConst<T>::type
// Turns const U&, U&, const U, and U all into U.
#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
// Adds reference to a type if it is not a reference type,
// otherwise leaves it unchanged. This is the same as
// tr1::add_reference, which is not widely available yet.
template <typename T>
struct AddReference
{
typedef T& type;
}; // NOLINT
template <typename T>
struct AddReference<T&>
{
typedef T& type;
}; // NOLINT
// A handy wrapper around AddReference that works when the argument T
// depends on template parameters.
#define GTEST_ADD_REFERENCE_(T) \
typename ::testing::internal::AddReference<T>::type
// Adds a reference to const on top of T as necessary. For example,
// it transforms
//
// char ==> const char&
// const char ==> const char&
// char& ==> const char&
// const char& ==> const char&
//
// The argument T must depend on some template parameters.
#define GTEST_REFERENCE_TO_CONST_(T) \
GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
// ImplicitlyConvertible<From, To>::value is a compile-time bool
// constant that's true iff type From can be implicitly converted to
// type To.
template <typename From, typename To>
class ImplicitlyConvertible
{
private:
// We need the following helper functions only for their types.
// They have no implementations.
// MakeFrom() is an expression whose type is From. We cannot simply
// use From(), as the type From may not have a public default
// constructor.
static From MakeFrom();
// These two functions are overloaded. Given an expression
// Helper(x), the compiler will pick the first version if x can be
// implicitly converted to type To; otherwise it will pick the
// second version.
//
// The first version returns a value of size 1, and the second
// version returns a value of size 2. Therefore, by checking the
// size of Helper(x), which can be done at compile time, we can tell
// which version of Helper() is used, and hence whether x can be
// implicitly converted to type To.
static char Helper(To);
static char (&Helper(...))[2]; // NOLINT
// We have to put the 'public' section after the 'private' section,
// or MSVC refuses to compile the code.
public:
// MSVC warns about implicitly converting from double to int for
// possible loss of data, so we need to temporarily disable the
// warning.
#ifdef _MSC_VER
#pragma warning(push) // Saves the current warning state.
#pragma warning(disable : 4244) // Temporarily disables warning 4244.
static const bool value =
sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
#pragma warning(pop) // Restores the warning state.
#elif defined(__BORLANDC__)
// C++Builder cannot use member overload resolution during template
// instantiation. The simplest workaround is to use its C++0x type traits
// functions (C++Builder 2009 and above only).
static const bool value = __is_convertible(From, To);
#else
static const bool value =
sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
#endif // _MSV_VER
};
template <typename From, typename To>
const bool ImplicitlyConvertible<From, To>::value;
// IsAProtocolMessage<T>::value is a compile-time bool constant that's
// true iff T is type ProtocolMessage, proto2::Message, or a subclass
// of those.
template <typename T>
struct IsAProtocolMessage
: public bool_constant<
ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
ImplicitlyConvertible<const T*, const ::proto2::Message*>::value>
{
};
// When the compiler sees expression IsContainerTest<C>(0), if C is an
// STL-style container class, the first overload of IsContainerTest
// will be viable (since both C::iterator* and C::const_iterator* are
// valid types and NULL can be implicitly converted to them). It will
// be picked over the second overload as 'int' is a perfect match for
// the type of argument 0. If C::iterator or C::const_iterator is not
// a valid type, the first overload is not viable, and the second
// overload will be picked. Therefore, we can determine whether C is
// a container class by checking the type of IsContainerTest<C>(0).
// The value of the expression is insignificant.
//
// Note that we look for both C::iterator and C::const_iterator. The
// reason is that C++ injects the name of a class as a member of the
// class itself (e.g. you can refer to class iterator as either
// 'iterator' or 'iterator::iterator'). If we look for C::iterator
// only, for example, we would mistakenly think that a class named
// iterator is an STL container.
//
// Also note that the simpler approach of overloading
// IsContainerTest(typename C::const_iterator*) and
// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
typedef int IsContainer;
template <class C>
IsContainer IsContainerTest(int /* dummy */,
typename C::iterator* /* it */ = NULL,
typename C::const_iterator* /* const_it */ = NULL)
{
return 0;
}
typedef char IsNotContainer;
template <class C>
IsNotContainer IsContainerTest(long /* dummy */)
{
return '\0';
}
// EnableIf<condition>::type is void when 'Cond' is true, and
// undefined when 'Cond' is false. To use SFINAE to make a function
// overload only apply when a particular expression is true, add
// "typename EnableIf<expression>::type* = 0" as the last parameter.
template <bool>
struct EnableIf;
template <>
struct EnableIf<true>
{
typedef void type;
}; // NOLINT
// Utilities for native arrays.
// ArrayEq() compares two k-dimensional native arrays using the
// elements' operator==, where k can be any integer >= 0. When k is
// 0, ArrayEq() degenerates into comparing a single pair of values.
template <typename T, typename U>
bool ArrayEq(const T* lhs, size_t size, const U* rhs);
// This generic version is used when k is 0.
template <typename T, typename U>
inline bool ArrayEq(const T& lhs, const U& rhs)
{
return lhs == rhs;
}
// This overload is used when k >= 1.
template <typename T, typename U, size_t N>
inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N])
{
return internal::ArrayEq(lhs, N, rhs);
}
// This helper reduces code bloat. If we instead put its logic inside
// the previous ArrayEq() function, arrays with different sizes would
// lead to different copies of the template code.
template <typename T, typename U>
bool ArrayEq(const T* lhs, size_t size, const U* rhs)
{
for (size_t i = 0; i != size; i++)
{
if (!internal::ArrayEq(lhs[i], rhs[i]))
return false;
}
return true;
}
// Finds the first element in the iterator range [begin, end) that
// equals elem. Element may be a native array type itself.
template <typename Iter, typename Element>
Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem)
{
for (Iter it = begin; it != end; ++it)
{
if (internal::ArrayEq(*it, elem))
return it;
}
return end;
}
// CopyArray() copies a k-dimensional native array using the elements'
// operator=, where k can be any integer >= 0. When k is 0,
// CopyArray() degenerates into copying a single value.
template <typename T, typename U>
void CopyArray(const T* from, size_t size, U* to);
// This generic version is used when k is 0.
template <typename T, typename U>
inline void CopyArray(const T& from, U* to)
{
*to = from;
}
// This overload is used when k >= 1.
template <typename T, typename U, size_t N>
inline void CopyArray(const T (&from)[N], U (*to)[N])
{
internal::CopyArray(from, N, *to);
}
// This helper reduces code bloat. If we instead put its logic inside
// the previous CopyArray() function, arrays with different sizes
// would lead to different copies of the template code.
template <typename T, typename U>
void CopyArray(const T* from, size_t size, U* to)
{
for (size_t i = 0; i != size; i++)
{
internal::CopyArray(from[i], to + i);
}
}
// The relation between an NativeArray object (see below) and the
// native array it represents.
enum RelationToSource
{
kReference, // The NativeArray references the native array.
kCopy // The NativeArray makes a copy of the native array and
// owns the copy.
};
// Adapts a native array to a read-only STL-style container. Instead
// of the complete STL container concept, this adaptor only implements
// members useful for Google Mock's container matchers. New members
// should be added as needed. To simplify the implementation, we only
// support Element being a raw type (i.e. having no top-level const or
// reference modifier). It's the client's responsibility to satisfy
// this requirement. Element can be an array type itself (hence
// multi-dimensional arrays are supported).
template <typename Element>
class NativeArray
{
public:
// STL-style container typedefs.
typedef Element value_type;
typedef Element* iterator;
typedef const Element* const_iterator;
// Constructs from a native array.
NativeArray(const Element* array, size_t count, RelationToSource relation)
{
Init(array, count, relation);
}
// Copy constructor.
NativeArray(const NativeArray& rhs)
{
Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
}
~NativeArray()
{
// Ensures that the user doesn't instantiate NativeArray with a
// const or reference type.
static_cast<void>(StaticAssertTypeEqHelper<Element,
GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
if (relation_to_source_ == kCopy)
delete[] array_;
}
// STL-style container methods.
size_t size() const { return size_; }
const_iterator begin() const { return array_; }
const_iterator end() const { return array_ + size_; }
bool operator==(const NativeArray& rhs) const
{
return size() == rhs.size() &&
ArrayEq(begin(), size(), rhs.begin());
}
private:
// Initializes this object; makes a copy of the input array if
// 'relation' is kCopy.
void Init(const Element* array, size_t a_size, RelationToSource relation)
{
if (relation == kReference)
{
array_ = array;
}
else
{
Element* const copy = new Element[a_size];
CopyArray(array, a_size, copy);
array_ = copy;
}
size_ = a_size;
relation_to_source_ = relation;
}
const Element* array_;
size_t size_;
RelationToSource relation_to_source_;
GTEST_DISALLOW_ASSIGN_(NativeArray);
};
} // namespace internal
} // namespace testing
#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
::testing::internal::AssertHelper(result_type, file, line, message) = ::testing::Message()
#define GTEST_MESSAGE_(message, result_type) \
GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
#define GTEST_FATAL_FAILURE_(message) \
return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
#define GTEST_NONFATAL_FAILURE_(message) \
GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
#define GTEST_SUCCESS_(message) \
GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
// Suppresses MSVC warnings 4072 (unreachable code) for the code following
// statement if it returns or throws (or doesn't return or throw in some
// situations).
#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
if (::testing::internal::AlwaysTrue()) \
{ \
statement; \
}
#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (::testing::internal::ConstCharPtr gtest_msg = "") \
{ \
bool gtest_caught_expected = false; \
try \
{ \
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
} \
catch (expected_exception const&) \
{ \
gtest_caught_expected = true; \
} \
catch (...) \
{ \
gtest_msg.value = \
"Expected: " #statement " throws an exception of type " #expected_exception ".\n Actual: it throws a different type."; \
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
} \
if (!gtest_caught_expected) \
{ \
gtest_msg.value = \
"Expected: " #statement " throws an exception of type " #expected_exception ".\n Actual: it throws nothing."; \
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
} \
} \
else \
GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) : fail(gtest_msg.value)
#define GTEST_TEST_NO_THROW_(statement, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (::testing::internal::AlwaysTrue()) \
{ \
try \
{ \
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
} \
catch (...) \
{ \
goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
} \
} \
else \
GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__) : fail("Expected: " #statement \
" doesn't throw an exception.\n" \
" Actual: it throws.")
#define GTEST_TEST_ANY_THROW_(statement, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (::testing::internal::AlwaysTrue()) \
{ \
bool gtest_caught_any = false; \
try \
{ \
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
} \
catch (...) \
{ \
gtest_caught_any = true; \
} \
if (!gtest_caught_any) \
{ \
goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
} \
} \
else \
GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__) : fail("Expected: " #statement \
" throws an exception.\n" \
" Actual: it doesn't.")
// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
// either a boolean expression or an AssertionResult. text is a textual
// represenation of expression as it was passed into the EXPECT_TRUE.
#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (const ::testing::AssertionResult gtest_ar_ = \
::testing::AssertionResult(expression)) \
; \
else \
fail(::testing::internal::GetBoolAssertionFailureMessage( \
gtest_ar_, text, #actual, #expected) \
.c_str())
#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (::testing::internal::AlwaysTrue()) \
{ \
::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
if (gtest_fatal_failure_checker.has_new_fatal_failure()) \
{ \
goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
} \
} \
else \
GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__) : fail("Expected: " #statement \
" doesn't generate new fatal " \
"failures in the current thread.\n" \
" Actual: it does.")
// Expands to the name of the class that implements the given test.
#define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
test_case_name##_##test_name##_Test
// Helper macro for defining tests.
#define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id) \
class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class \
{ \
public: \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
() {} \
\
private: \
virtual void TestBody(); \
static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \
GTEST_DISALLOW_COPY_AND_ASSIGN_( \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \
}; \
\
::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::test_info_ = \
::testing::internal::MakeAndRegisterTestInfo( \
#test_case_name, #test_name, NULL, NULL, \
(parent_id), \
parent_class::SetUpTestCase, \
parent_class::TearDownTestCase, \
new ::testing::internal::TestFactoryImpl< \
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>); \
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_