mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-07 08:10:08 +00:00
1138 lines
32 KiB
C++
Executable File
1138 lines
32 KiB
C++
Executable File
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2015 Google Inc. http://bulletphysics.org
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "NN3DWalkers.h"
|
|
|
|
#include <cmath>
|
|
|
|
#include "btBulletDynamicsCommon.h"
|
|
|
|
#include "LinearMath/btIDebugDraw.h"
|
|
#include "LinearMath/btAlignedObjectArray.h"
|
|
#include "LinearMath/btHashMap.h"
|
|
class btBroadphaseInterface;
|
|
class btCollisionShape;
|
|
class btOverlappingPairCache;
|
|
class btCollisionDispatcher;
|
|
class btConstraintSolver;
|
|
struct btCollisionAlgorithmCreateFunc;
|
|
class btDefaultCollisionConfiguration;
|
|
class NNWalker;
|
|
|
|
#include "NN3DWalkersTimeWarpBase.h"
|
|
#include "../CommonInterfaces/CommonParameterInterface.h"
|
|
|
|
#include "../Utils/b3ReferenceFrameHelper.hpp"
|
|
#include "../RenderingExamples/TimeSeriesCanvas.h"
|
|
|
|
static btScalar gRootBodyRadius = 0.25f;
|
|
static btScalar gRootBodyHeight = 0.1f;
|
|
static btScalar gLegRadius = 0.1f;
|
|
static btScalar gLegLength = 0.45f;
|
|
static btScalar gForeLegLength = 0.75f;
|
|
static btScalar gForeLegRadius = 0.08f;
|
|
|
|
static btScalar gParallelEvaluations = 10.0f;
|
|
|
|
#ifndef SIMD_PI_4
|
|
#define SIMD_PI_4 0.5 * SIMD_HALF_PI
|
|
#endif
|
|
|
|
#ifndef SIMD_PI_8
|
|
#define SIMD_PI_8 0.25 * SIMD_HALF_PI
|
|
#endif
|
|
|
|
#ifndef RANDOM_MOVEMENT
|
|
#define RANDOM_MOVEMENT false
|
|
#endif
|
|
|
|
#ifndef RANDOMIZE_DIMENSIONS
|
|
#define RANDOMIZE_DIMENSIONS false
|
|
#endif
|
|
|
|
#ifndef NUM_WALKERS
|
|
#define NUM_WALKERS 50
|
|
#endif
|
|
|
|
#ifndef EVALUATION_TIME
|
|
#define EVALUATION_TIME 10 // s
|
|
#endif
|
|
|
|
#ifndef REAP_QTY
|
|
#define REAP_QTY 0.3f // number of walkers reaped based on their bad performance
|
|
#endif
|
|
|
|
#ifndef SOW_CROSSOVER_QTY
|
|
#define SOW_CROSSOVER_QTY 0.2f // this means REAP_QTY-SOW_CROSSOVER_QTY = NEW_RANDOM_BREED_QTY
|
|
#endif
|
|
|
|
#ifndef SOW_ELITE_QTY
|
|
#define SOW_ELITE_QTY 0.2f // number of walkers kept using an elitist strategy
|
|
#endif
|
|
|
|
#ifndef SOW_MUTATION_QTY
|
|
#define SOW_MUTATION_QTY 0.5f // SOW_ELITE_QTY + SOW_MUTATION_QTY + REAP_QTY = 1
|
|
#endif
|
|
|
|
#ifndef MUTATION_RATE
|
|
#define MUTATION_RATE 0.5f // the mutation rate of for the walker with the worst performance
|
|
#endif
|
|
|
|
#ifndef SOW_ELITE_PARTNER
|
|
#define SOW_ELITE_PARTNER 0.8f
|
|
#endif
|
|
|
|
#define NUM_LEGS 6
|
|
#define BODYPART_COUNT (2 * NUM_LEGS + 1)
|
|
#define JOINT_COUNT (BODYPART_COUNT - 1)
|
|
#define DRAW_INTERPENETRATIONS false
|
|
|
|
void* GROUND_ID = (void*)1;
|
|
|
|
class NN3DWalkersExample : public NN3DWalkersTimeWarpBase
|
|
{
|
|
btScalar m_Time;
|
|
btScalar m_SpeedupTimestamp;
|
|
btScalar m_targetAccumulator;
|
|
btScalar m_targetFrequency;
|
|
btScalar m_motorStrength;
|
|
int m_evaluationsQty;
|
|
int m_nextReaped;
|
|
|
|
btAlignedObjectArray<class NNWalker*> m_walkersInPopulation;
|
|
|
|
TimeSeriesCanvas* m_timeSeriesCanvas;
|
|
|
|
public:
|
|
NN3DWalkersExample(struct GUIHelperInterface* helper)
|
|
: NN3DWalkersTimeWarpBase(helper),
|
|
m_Time(0),
|
|
m_SpeedupTimestamp(0),
|
|
m_targetAccumulator(0),
|
|
m_targetFrequency(3),
|
|
m_motorStrength(0.5f),
|
|
m_evaluationsQty(0),
|
|
m_nextReaped(0),
|
|
m_timeSeriesCanvas(0)
|
|
{
|
|
}
|
|
|
|
virtual ~NN3DWalkersExample()
|
|
{
|
|
delete m_timeSeriesCanvas;
|
|
}
|
|
|
|
void initPhysics();
|
|
|
|
virtual void exitPhysics();
|
|
|
|
void spawnWalker(int index, const btVector3& startOffset, bool bFixed);
|
|
|
|
virtual bool keyboardCallback(int key, int state);
|
|
|
|
bool detectCollisions();
|
|
|
|
void resetCamera()
|
|
{
|
|
float dist = 11;
|
|
float pitch = -35;
|
|
float yaw = 52;
|
|
float targetPos[3] = {0, 0.46, 0};
|
|
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
|
|
}
|
|
|
|
// Evaluation
|
|
|
|
void update(const btScalar timeSinceLastTick);
|
|
|
|
void updateEvaluations(const btScalar timeSinceLastTick);
|
|
|
|
void scheduleEvaluations();
|
|
|
|
void drawMarkings();
|
|
|
|
// Reaper
|
|
|
|
void rateEvaluations();
|
|
|
|
void reap();
|
|
|
|
void sow();
|
|
|
|
void crossover(NNWalker* mother, NNWalker* father, NNWalker* offspring);
|
|
|
|
void mutate(NNWalker* mutant, btScalar mutationRate);
|
|
|
|
NNWalker* getRandomElite();
|
|
|
|
NNWalker* getRandomNonElite();
|
|
|
|
NNWalker* getNextReaped();
|
|
|
|
void printWalkerConfigs();
|
|
};
|
|
|
|
static NN3DWalkersExample* nn3DWalkers = NULL;
|
|
|
|
class NNWalker
|
|
{
|
|
btDynamicsWorld* m_ownerWorld;
|
|
btCollisionShape* m_shapes[BODYPART_COUNT];
|
|
btRigidBody* m_bodies[BODYPART_COUNT];
|
|
btTransform m_bodyRelativeTransforms[BODYPART_COUNT];
|
|
btTypedConstraint* m_joints[JOINT_COUNT];
|
|
btHashMap<btHashPtr, int> m_bodyTouchSensorIndexMap;
|
|
bool m_touchSensors[BODYPART_COUNT];
|
|
btScalar m_sensoryMotorWeights[BODYPART_COUNT * JOINT_COUNT];
|
|
|
|
bool m_inEvaluation;
|
|
btScalar m_evaluationTime;
|
|
bool m_reaped;
|
|
btVector3 m_startPosition;
|
|
int m_index;
|
|
|
|
btRigidBody* localCreateRigidBody(btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
|
|
{
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0, 0, 0);
|
|
if (isDynamic)
|
|
shape->calculateLocalInertia(mass, localInertia);
|
|
|
|
btDefaultMotionState* motionState = new btDefaultMotionState(startTransform);
|
|
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, motionState, shape, localInertia);
|
|
btRigidBody* body = new btRigidBody(rbInfo);
|
|
|
|
return body;
|
|
}
|
|
|
|
public:
|
|
void randomizeSensoryMotorWeights()
|
|
{
|
|
//initialize random weights
|
|
for (int i = 0; i < BODYPART_COUNT; i++)
|
|
{
|
|
for (int j = 0; j < JOINT_COUNT; j++)
|
|
{
|
|
m_sensoryMotorWeights[i + j * BODYPART_COUNT] = ((double)rand() / (RAND_MAX)) * 2.0f - 1.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
NNWalker(int index, btDynamicsWorld* ownerWorld, const btVector3& positionOffset, bool bFixed)
|
|
: m_ownerWorld(ownerWorld),
|
|
m_inEvaluation(false),
|
|
m_evaluationTime(0),
|
|
m_reaped(false)
|
|
{
|
|
m_index = index;
|
|
btVector3 vUp(0, 1, 0); // up in local reference frame
|
|
|
|
NN3DWalkersExample* nnWalkersDemo = (NN3DWalkersExample*)m_ownerWorld->getWorldUserInfo();
|
|
|
|
randomizeSensoryMotorWeights();
|
|
|
|
//
|
|
// Setup geometry
|
|
m_shapes[0] = new btCapsuleShape(gRootBodyRadius, gRootBodyHeight); // root body capsule
|
|
int i;
|
|
for (i = 0; i < NUM_LEGS; i++)
|
|
{
|
|
m_shapes[1 + 2 * i] = new btCapsuleShape(gLegRadius, gLegLength); // leg capsule
|
|
m_shapes[2 + 2 * i] = new btCapsuleShape(gForeLegRadius, gForeLegLength); // fore leg capsule
|
|
}
|
|
|
|
//
|
|
// Setup rigid bodies
|
|
btScalar rootAboveGroundHeight = gForeLegLength;
|
|
btTransform bodyOffset;
|
|
bodyOffset.setIdentity();
|
|
bodyOffset.setOrigin(positionOffset);
|
|
|
|
// root body
|
|
btVector3 localRootBodyPosition = btVector3(btScalar(0.), rootAboveGroundHeight, btScalar(0.)); // root body position in local reference frame
|
|
btTransform transform;
|
|
transform.setIdentity();
|
|
transform.setOrigin(localRootBodyPosition);
|
|
|
|
btTransform originTransform = transform;
|
|
|
|
m_bodies[0] = localCreateRigidBody(btScalar(bFixed ? 0. : 1.), bodyOffset * transform, m_shapes[0]);
|
|
m_ownerWorld->addRigidBody(m_bodies[0]);
|
|
m_bodyRelativeTransforms[0] = btTransform::getIdentity();
|
|
m_bodies[0]->setUserPointer(this);
|
|
m_bodyTouchSensorIndexMap.insert(btHashPtr(m_bodies[0]), 0);
|
|
|
|
btHingeConstraint* hingeC;
|
|
//btConeTwistConstraint* coneC;
|
|
|
|
btTransform localA, localB, localC;
|
|
|
|
// legs
|
|
for (i = 0; i < NUM_LEGS; i++)
|
|
{
|
|
float footAngle = 2 * SIMD_PI * i / NUM_LEGS; // legs are uniformly distributed around the root body
|
|
float footYUnitPosition = std::sin(footAngle); // y position of the leg on the unit circle
|
|
float footXUnitPosition = std::cos(footAngle); // x position of the leg on the unit circle
|
|
|
|
transform.setIdentity();
|
|
btVector3 legCOM = btVector3(btScalar(footXUnitPosition * (gRootBodyRadius + 0.5 * gLegLength)), btScalar(rootAboveGroundHeight), btScalar(footYUnitPosition * (gRootBodyRadius + 0.5 * gLegLength)));
|
|
transform.setOrigin(legCOM);
|
|
|
|
// thigh
|
|
btVector3 legDirection = (legCOM - localRootBodyPosition).normalize();
|
|
btVector3 kneeAxis = legDirection.cross(vUp);
|
|
transform.setRotation(btQuaternion(kneeAxis, SIMD_HALF_PI));
|
|
m_bodies[1 + 2 * i] = localCreateRigidBody(btScalar(1.), bodyOffset * transform, m_shapes[1 + 2 * i]);
|
|
m_bodyRelativeTransforms[1 + 2 * i] = transform;
|
|
m_bodies[1 + 2 * i]->setUserPointer(this);
|
|
m_bodyTouchSensorIndexMap.insert(btHashPtr(m_bodies[1 + 2 * i]), 1 + 2 * i);
|
|
|
|
// shin
|
|
transform.setIdentity();
|
|
transform.setOrigin(btVector3(btScalar(footXUnitPosition * (gRootBodyRadius + gLegLength)), btScalar(rootAboveGroundHeight - 0.5 * gForeLegLength), btScalar(footYUnitPosition * (gRootBodyRadius + gLegLength))));
|
|
m_bodies[2 + 2 * i] = localCreateRigidBody(btScalar(1.), bodyOffset * transform, m_shapes[2 + 2 * i]);
|
|
m_bodyRelativeTransforms[2 + 2 * i] = transform;
|
|
m_bodies[2 + 2 * i]->setUserPointer(this);
|
|
m_bodyTouchSensorIndexMap.insert(btHashPtr(m_bodies[2 + 2 * i]), 2 + 2 * i);
|
|
|
|
// hip joints
|
|
localA.setIdentity();
|
|
localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0, -footAngle, 0);
|
|
localA.setOrigin(btVector3(btScalar(footXUnitPosition * gRootBodyRadius), btScalar(0.), btScalar(footYUnitPosition * gRootBodyRadius)));
|
|
localB = b3ReferenceFrameHelper::getTransformWorldToLocal(m_bodies[1 + 2 * i]->getWorldTransform(), b3ReferenceFrameHelper::getTransformLocalToWorld(m_bodies[0]->getWorldTransform(), localA));
|
|
hingeC = new btHingeConstraint(*m_bodies[0], *m_bodies[1 + 2 * i], localA, localB);
|
|
hingeC->setLimit(btScalar(-0.75 * SIMD_PI_4), btScalar(SIMD_PI_8));
|
|
//hingeC->setLimit(btScalar(-0.1), btScalar(0.1));
|
|
m_joints[2 * i] = hingeC;
|
|
|
|
// knee joints
|
|
localA.setIdentity();
|
|
localB.setIdentity();
|
|
localC.setIdentity();
|
|
localA.getBasis().setEulerZYX(0, -footAngle, 0);
|
|
localA.setOrigin(btVector3(btScalar(footXUnitPosition * (gRootBodyRadius + gLegLength)), btScalar(0.), btScalar(footYUnitPosition * (gRootBodyRadius + gLegLength))));
|
|
localB = b3ReferenceFrameHelper::getTransformWorldToLocal(m_bodies[1 + 2 * i]->getWorldTransform(), b3ReferenceFrameHelper::getTransformLocalToWorld(m_bodies[0]->getWorldTransform(), localA));
|
|
localC = b3ReferenceFrameHelper::getTransformWorldToLocal(m_bodies[2 + 2 * i]->getWorldTransform(), b3ReferenceFrameHelper::getTransformLocalToWorld(m_bodies[0]->getWorldTransform(), localA));
|
|
hingeC = new btHingeConstraint(*m_bodies[1 + 2 * i], *m_bodies[2 + 2 * i], localB, localC);
|
|
//hingeC->setLimit(btScalar(-0.01), btScalar(0.01));
|
|
hingeC->setLimit(btScalar(-SIMD_PI_8), btScalar(0.2));
|
|
m_joints[1 + 2 * i] = hingeC;
|
|
|
|
m_ownerWorld->addRigidBody(m_bodies[1 + 2 * i]); // add thigh bone
|
|
|
|
m_ownerWorld->addConstraint(m_joints[2 * i], true); // connect thigh bone with root
|
|
|
|
if (nnWalkersDemo->detectCollisions())
|
|
{ // if thigh bone causes collision, remove it again
|
|
m_ownerWorld->removeRigidBody(m_bodies[1 + 2 * i]);
|
|
m_ownerWorld->removeConstraint(m_joints[2 * i]); // disconnect thigh bone from root
|
|
}
|
|
else
|
|
{
|
|
m_ownerWorld->addRigidBody(m_bodies[2 + 2 * i]); // add shin bone
|
|
m_ownerWorld->addConstraint(m_joints[1 + 2 * i], true); // connect shin bone with thigh
|
|
|
|
if (nnWalkersDemo->detectCollisions())
|
|
{ // if shin bone causes collision, remove it again
|
|
m_ownerWorld->removeRigidBody(m_bodies[2 + 2 * i]);
|
|
m_ownerWorld->removeConstraint(m_joints[1 + 2 * i]); // disconnect shin bone from thigh
|
|
}
|
|
}
|
|
}
|
|
|
|
// Setup some damping on the m_bodies
|
|
for (i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_bodies[i]->setDamping(0.05, 0.85);
|
|
m_bodies[i]->setDeactivationTime(0.8);
|
|
//m_bodies[i]->setSleepingThresholds(1.6, 2.5);
|
|
m_bodies[i]->setSleepingThresholds(0.5f, 0.5f);
|
|
}
|
|
|
|
removeFromWorld(); // it should not yet be in the world
|
|
}
|
|
|
|
virtual ~NNWalker()
|
|
{
|
|
int i;
|
|
|
|
// Remove all constraints
|
|
for (i = 0; i < JOINT_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->removeConstraint(m_joints[i]);
|
|
delete m_joints[i];
|
|
m_joints[i] = 0;
|
|
}
|
|
|
|
// Remove all bodies and shapes
|
|
for (i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->removeRigidBody(m_bodies[i]);
|
|
|
|
delete m_bodies[i]->getMotionState();
|
|
|
|
delete m_bodies[i];
|
|
m_bodies[i] = 0;
|
|
delete m_shapes[i];
|
|
m_shapes[i] = 0;
|
|
}
|
|
}
|
|
|
|
btTypedConstraint** getJoints()
|
|
{
|
|
return &m_joints[0];
|
|
}
|
|
|
|
void setTouchSensor(void* bodyPointer)
|
|
{
|
|
m_touchSensors[*m_bodyTouchSensorIndexMap.find(btHashPtr(bodyPointer))] = true;
|
|
}
|
|
|
|
void clearTouchSensors()
|
|
{
|
|
for (int i = 0; i < BODYPART_COUNT; i++)
|
|
{
|
|
m_touchSensors[i] = false;
|
|
}
|
|
}
|
|
|
|
bool getTouchSensor(int i)
|
|
{
|
|
return m_touchSensors[i];
|
|
}
|
|
|
|
btScalar* getSensoryMotorWeights()
|
|
{
|
|
return m_sensoryMotorWeights;
|
|
}
|
|
|
|
void addToWorld()
|
|
{
|
|
int i;
|
|
// add all bodies and shapes
|
|
for (i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->addRigidBody(m_bodies[i]);
|
|
}
|
|
|
|
// add all constraints
|
|
for (i = 0; i < JOINT_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->addConstraint(m_joints[i], true); // important! If you add constraints back, you must set bullet physics to disable collision between constrained bodies
|
|
}
|
|
m_startPosition = getPosition();
|
|
}
|
|
|
|
void removeFromWorld()
|
|
{
|
|
int i;
|
|
|
|
// Remove all constraints
|
|
for (i = 0; i < JOINT_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->removeConstraint(m_joints[i]);
|
|
}
|
|
|
|
// Remove all bodies
|
|
for (i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->removeRigidBody(m_bodies[i]);
|
|
}
|
|
}
|
|
|
|
btVector3 getPosition() const
|
|
{
|
|
btVector3 finalPosition(0, 0, 0);
|
|
|
|
for (int i = 0; i < BODYPART_COUNT; i++)
|
|
{
|
|
finalPosition += m_bodies[i]->getCenterOfMassPosition();
|
|
}
|
|
|
|
finalPosition /= BODYPART_COUNT;
|
|
return finalPosition;
|
|
}
|
|
|
|
btScalar getDistanceFitness() const
|
|
{
|
|
btScalar distance = 0;
|
|
|
|
distance = (getPosition() - m_startPosition).length2();
|
|
|
|
return distance;
|
|
}
|
|
|
|
btScalar getFitness() const
|
|
{
|
|
return getDistanceFitness(); // for now it is only distance
|
|
}
|
|
|
|
void resetAt(const btVector3& position)
|
|
{
|
|
btTransform resetPosition(btQuaternion::getIdentity(), position);
|
|
for (int i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_bodies[i]->setWorldTransform(resetPosition * m_bodyRelativeTransforms[i]);
|
|
if (m_bodies[i]->getMotionState())
|
|
{
|
|
m_bodies[i]->getMotionState()->setWorldTransform(resetPosition * m_bodyRelativeTransforms[i]);
|
|
}
|
|
m_bodies[i]->clearForces();
|
|
m_bodies[i]->setAngularVelocity(btVector3(0, 0, 0));
|
|
m_bodies[i]->setLinearVelocity(btVector3(0, 0, 0));
|
|
}
|
|
|
|
clearTouchSensors();
|
|
}
|
|
|
|
btScalar getEvaluationTime() const
|
|
{
|
|
return m_evaluationTime;
|
|
}
|
|
|
|
void setEvaluationTime(btScalar evaluationTime)
|
|
{
|
|
m_evaluationTime = evaluationTime;
|
|
}
|
|
|
|
bool isInEvaluation() const
|
|
{
|
|
return m_inEvaluation;
|
|
}
|
|
|
|
void setInEvaluation(bool inEvaluation)
|
|
{
|
|
m_inEvaluation = inEvaluation;
|
|
}
|
|
|
|
bool isReaped() const
|
|
{
|
|
return m_reaped;
|
|
}
|
|
|
|
void setReaped(bool reaped)
|
|
{
|
|
m_reaped = reaped;
|
|
}
|
|
|
|
int getIndex() const
|
|
{
|
|
return m_index;
|
|
}
|
|
};
|
|
|
|
void evaluationUpdatePreTickCallback(btDynamicsWorld* world, btScalar timeStep);
|
|
|
|
bool legContactProcessedCallback(btManifoldPoint& cp, void* body0, void* body1)
|
|
{
|
|
btCollisionObject* o1 = static_cast<btCollisionObject*>(body0);
|
|
btCollisionObject* o2 = static_cast<btCollisionObject*>(body1);
|
|
|
|
void* ID1 = o1->getUserPointer();
|
|
void* ID2 = o2->getUserPointer();
|
|
|
|
if (ID1 != GROUND_ID || ID2 != GROUND_ID)
|
|
{
|
|
// Make a circle with a 0.9 radius at (0,0,0)
|
|
// with RGB color (1,0,0).
|
|
if (nn3DWalkers->m_dynamicsWorld->getDebugDrawer() != NULL)
|
|
{
|
|
if (!nn3DWalkers->mIsHeadless)
|
|
{
|
|
nn3DWalkers->m_dynamicsWorld->getDebugDrawer()->drawSphere(cp.getPositionWorldOnA(), 0.1, btVector3(1., 0., 0.));
|
|
}
|
|
}
|
|
|
|
if (ID1 != GROUND_ID && ID1)
|
|
{
|
|
((NNWalker*)ID1)->setTouchSensor(o1);
|
|
}
|
|
|
|
if (ID2 != GROUND_ID && ID2)
|
|
{
|
|
((NNWalker*)ID2)->setTouchSensor(o2);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct WalkerFilterCallback : public btOverlapFilterCallback
|
|
{
|
|
// return true when pairs need collision
|
|
virtual bool needBroadphaseCollision(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) const
|
|
{
|
|
btCollisionObject* obj0 = static_cast<btCollisionObject*>(proxy0->m_clientObject);
|
|
btCollisionObject* obj1 = static_cast<btCollisionObject*>(proxy1->m_clientObject);
|
|
|
|
if (obj0->getUserPointer() == GROUND_ID || obj1->getUserPointer() == GROUND_ID)
|
|
{ // everything collides with ground
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return ((NNWalker*)obj0->getUserPointer())->getIndex() == ((NNWalker*)obj1->getUserPointer())->getIndex();
|
|
}
|
|
}
|
|
};
|
|
|
|
void NN3DWalkersExample::initPhysics()
|
|
{
|
|
setupBasicParamInterface(); // parameter interface to use timewarp
|
|
|
|
gContactProcessedCallback = legContactProcessedCallback;
|
|
|
|
m_guiHelper->setUpAxis(1);
|
|
|
|
// Setup the basic world
|
|
|
|
m_Time = 0;
|
|
|
|
createEmptyDynamicsWorld();
|
|
|
|
m_dynamicsWorld->setInternalTickCallback(evaluationUpdatePreTickCallback, this, true);
|
|
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
|
|
|
|
m_targetFrequency = 3;
|
|
|
|
// new SIMD solver for joints clips accumulated impulse, so the new limits for the motor
|
|
// should be (numberOfsolverIterations * oldLimits)
|
|
m_motorStrength = 0.05f * m_dynamicsWorld->getSolverInfo().m_numIterations;
|
|
|
|
{ // create a slider to change the motor update frequency
|
|
SliderParams slider("Motor update frequency", &m_targetFrequency);
|
|
slider.m_minVal = 0;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the motor torque
|
|
SliderParams slider("Motor force", &m_motorStrength);
|
|
slider.m_minVal = 1;
|
|
slider.m_maxVal = 50;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the root body radius
|
|
SliderParams slider("Root body radius", &gRootBodyRadius);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the root body height
|
|
SliderParams slider("Root body height", &gRootBodyHeight);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the leg radius
|
|
SliderParams slider("Leg radius", &gLegRadius);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the leg length
|
|
SliderParams slider("Leg length", &gLegLength);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the fore leg radius
|
|
SliderParams slider("Fore Leg radius", &gForeLegRadius);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the fore leg length
|
|
SliderParams slider("Fore Leg length", &gForeLegLength);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the number of parallel evaluations
|
|
SliderParams slider("Parallel evaluations", &gParallelEvaluations);
|
|
slider.m_minVal = 1;
|
|
slider.m_maxVal = NUM_WALKERS;
|
|
slider.m_clampToIntegers = true;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
// Setup a big ground box
|
|
{
|
|
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(200.), btScalar(10.), btScalar(200.)));
|
|
m_collisionShapes.push_back(groundShape);
|
|
btTransform groundTransform;
|
|
groundTransform.setIdentity();
|
|
groundTransform.setOrigin(btVector3(0, -10, 0));
|
|
btRigidBody* ground = createRigidBody(btScalar(0.), groundTransform, groundShape);
|
|
ground->setFriction(5);
|
|
ground->setUserPointer(GROUND_ID);
|
|
}
|
|
|
|
for (int i = 0; i < NUM_WALKERS; i++)
|
|
{
|
|
if (RANDOMIZE_DIMENSIONS)
|
|
{
|
|
float maxDimension = 0.2f;
|
|
|
|
// randomize the dimensions
|
|
gRootBodyRadius = ((double)rand() / (RAND_MAX)) * (maxDimension - 0.01f) + 0.01f;
|
|
gRootBodyHeight = ((double)rand() / (RAND_MAX)) * (maxDimension - 0.01f) + 0.01f;
|
|
gLegRadius = ((double)rand() / (RAND_MAX)) * (maxDimension - 0.01f) + 0.01f;
|
|
gLegLength = ((double)rand() / (RAND_MAX)) * (maxDimension - 0.01f) + 0.01f;
|
|
gForeLegLength = ((double)rand() / (RAND_MAX)) * (maxDimension - 0.01f) + 0.01f;
|
|
gForeLegRadius = ((double)rand() / (RAND_MAX)) * (maxDimension - 0.01f) + 0.01f;
|
|
}
|
|
|
|
// Spawn one walker
|
|
btVector3 offset(0, 0, 0);
|
|
spawnWalker(i, offset, false);
|
|
}
|
|
|
|
btOverlapFilterCallback* filterCallback = new WalkerFilterCallback();
|
|
m_dynamicsWorld->getPairCache()->setOverlapFilterCallback(filterCallback);
|
|
|
|
m_timeSeriesCanvas = new TimeSeriesCanvas(m_guiHelper->getAppInterface()->m_2dCanvasInterface, 300, 200, "Fitness Performance");
|
|
m_timeSeriesCanvas->setupTimeSeries(40, NUM_WALKERS * EVALUATION_TIME, 0);
|
|
for (int i = 0; i < NUM_WALKERS; i++)
|
|
{
|
|
m_timeSeriesCanvas->addDataSource(" ", 100 * i / NUM_WALKERS, 100 * (NUM_WALKERS - i) / NUM_WALKERS, 100 * (i) / NUM_WALKERS);
|
|
}
|
|
}
|
|
|
|
void NN3DWalkersExample::spawnWalker(int index, const btVector3& startOffset, bool bFixed)
|
|
{
|
|
NNWalker* walker = new NNWalker(index, m_dynamicsWorld, startOffset, bFixed);
|
|
m_walkersInPopulation.push_back(walker);
|
|
}
|
|
|
|
bool NN3DWalkersExample::detectCollisions()
|
|
{
|
|
bool collisionDetected = false;
|
|
if (m_dynamicsWorld)
|
|
{
|
|
m_dynamicsWorld->performDiscreteCollisionDetection(); // let the collisions be calculated
|
|
}
|
|
|
|
int numManifolds = m_dynamicsWorld->getDispatcher()->getNumManifolds();
|
|
for (int i = 0; i < numManifolds; i++)
|
|
{
|
|
btPersistentManifold* contactManifold = m_dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
|
|
const btCollisionObject* obA = contactManifold->getBody0();
|
|
const btCollisionObject* obB = contactManifold->getBody1();
|
|
|
|
if (obA->getUserPointer() != GROUND_ID && obB->getUserPointer() != GROUND_ID)
|
|
{
|
|
int numContacts = contactManifold->getNumContacts();
|
|
for (int j = 0; j < numContacts; j++)
|
|
{
|
|
collisionDetected = true;
|
|
btManifoldPoint& pt = contactManifold->getContactPoint(j);
|
|
if (pt.getDistance() < 0.f)
|
|
{
|
|
//const btVector3& ptA = pt.getPositionWorldOnA();
|
|
//const btVector3& ptB = pt.getPositionWorldOnB();
|
|
//const btVector3& normalOnB = pt.m_normalWorldOnB;
|
|
|
|
if (!DRAW_INTERPENETRATIONS)
|
|
{
|
|
return collisionDetected;
|
|
}
|
|
|
|
if (m_dynamicsWorld->getDebugDrawer())
|
|
{
|
|
m_dynamicsWorld->getDebugDrawer()->drawSphere(pt.getPositionWorldOnA(), 0.1, btVector3(0., 0., 1.));
|
|
m_dynamicsWorld->getDebugDrawer()->drawSphere(pt.getPositionWorldOnB(), 0.1, btVector3(0., 0., 1.));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return collisionDetected;
|
|
}
|
|
|
|
bool NN3DWalkersExample::keyboardCallback(int key, int state)
|
|
{
|
|
switch (key)
|
|
{
|
|
case '[':
|
|
m_motorStrength /= 1.1f;
|
|
return true;
|
|
case ']':
|
|
m_motorStrength *= 1.1f;
|
|
return true;
|
|
case 'l':
|
|
printWalkerConfigs();
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NN3DWalkersTimeWarpBase::keyboardCallback(key, state);
|
|
}
|
|
|
|
void NN3DWalkersExample::exitPhysics()
|
|
{
|
|
gContactProcessedCallback = NULL; // clear contact processed callback on exiting
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_WALKERS; i++)
|
|
{
|
|
NNWalker* walker = m_walkersInPopulation[i];
|
|
delete walker;
|
|
}
|
|
|
|
CommonRigidBodyBase::exitPhysics();
|
|
}
|
|
|
|
class CommonExampleInterface* ET_NN3DWalkersCreateFunc(struct CommonExampleOptions& options)
|
|
{
|
|
nn3DWalkers = new NN3DWalkersExample(options.m_guiHelper);
|
|
return nn3DWalkers;
|
|
}
|
|
|
|
bool fitnessComparator(const NNWalker* a, const NNWalker* b)
|
|
{
|
|
return a->getFitness() > b->getFitness(); // sort walkers descending
|
|
}
|
|
|
|
void NN3DWalkersExample::rateEvaluations()
|
|
{
|
|
m_walkersInPopulation.quickSort(fitnessComparator); // Sort walkers by fitness
|
|
|
|
b3Printf("Best performing walker: %f meters", btSqrt(m_walkersInPopulation[0]->getDistanceFitness()));
|
|
|
|
for (int i = 0; i < NUM_WALKERS; i++)
|
|
{
|
|
m_timeSeriesCanvas->insertDataAtCurrentTime(btSqrt(m_walkersInPopulation[i]->getDistanceFitness()), 0, true);
|
|
}
|
|
m_timeSeriesCanvas->nextTick();
|
|
|
|
for (int i = 0; i < NUM_WALKERS; i++)
|
|
{
|
|
m_walkersInPopulation[i]->setEvaluationTime(0);
|
|
}
|
|
m_nextReaped = 0;
|
|
}
|
|
|
|
void NN3DWalkersExample::reap()
|
|
{
|
|
int reaped = 0;
|
|
for (int i = NUM_WALKERS - 1; i >= (NUM_WALKERS - 1) * (1 - REAP_QTY); i--)
|
|
{ // reap a certain percentage
|
|
m_walkersInPopulation[i]->setReaped(true);
|
|
reaped++;
|
|
b3Printf("%i Walker(s) reaped.", reaped);
|
|
}
|
|
}
|
|
|
|
NNWalker* NN3DWalkersExample::getRandomElite()
|
|
{
|
|
return m_walkersInPopulation[((NUM_WALKERS - 1) * SOW_ELITE_QTY) * (rand() / RAND_MAX)];
|
|
}
|
|
|
|
NNWalker* NN3DWalkersExample::getRandomNonElite()
|
|
{
|
|
return m_walkersInPopulation[(NUM_WALKERS - 1) * SOW_ELITE_QTY + (NUM_WALKERS - 1) * (1.0f - SOW_ELITE_QTY) * (rand() / RAND_MAX)];
|
|
}
|
|
|
|
NNWalker* NN3DWalkersExample::getNextReaped()
|
|
{
|
|
if ((NUM_WALKERS - 1) - m_nextReaped >= (NUM_WALKERS - 1) * (1 - REAP_QTY))
|
|
{
|
|
m_nextReaped++;
|
|
}
|
|
|
|
if (m_walkersInPopulation[(NUM_WALKERS - 1) - m_nextReaped + 1]->isReaped())
|
|
{
|
|
return m_walkersInPopulation[(NUM_WALKERS - 1) - m_nextReaped + 1];
|
|
}
|
|
else
|
|
{
|
|
return NULL; // we asked for too many
|
|
}
|
|
}
|
|
|
|
void NN3DWalkersExample::sow()
|
|
{
|
|
int sow = 0;
|
|
for (int i = 0; i < NUM_WALKERS * (SOW_CROSSOVER_QTY); i++)
|
|
{ // create number of new crossover creatures
|
|
sow++;
|
|
b3Printf("%i Walker(s) sown.", sow);
|
|
NNWalker* mother = getRandomElite(); // Get elite partner (mother)
|
|
NNWalker* father = (SOW_ELITE_PARTNER < rand() / RAND_MAX) ? getRandomElite() : getRandomNonElite(); //Get elite or random partner (father)
|
|
NNWalker* offspring = getNextReaped();
|
|
crossover(mother, father, offspring);
|
|
}
|
|
|
|
for (int i = NUM_WALKERS * SOW_ELITE_QTY; i < NUM_WALKERS * (SOW_ELITE_QTY + SOW_MUTATION_QTY); i++)
|
|
{ // create mutants
|
|
mutate(m_walkersInPopulation[i], btScalar(MUTATION_RATE / (NUM_WALKERS * SOW_MUTATION_QTY) * (i - NUM_WALKERS * SOW_ELITE_QTY)));
|
|
}
|
|
|
|
for (int i = 0; i < (NUM_WALKERS - 1) * (REAP_QTY - SOW_CROSSOVER_QTY); i++)
|
|
{
|
|
sow++;
|
|
b3Printf("%i Walker(s) sown.", sow);
|
|
NNWalker* reaped = getNextReaped();
|
|
reaped->setReaped(false);
|
|
reaped->randomizeSensoryMotorWeights();
|
|
}
|
|
}
|
|
|
|
void NN3DWalkersExample::crossover(NNWalker* mother, NNWalker* father, NNWalker* child)
|
|
{
|
|
for (int i = 0; i < BODYPART_COUNT * JOINT_COUNT; i++)
|
|
{
|
|
btScalar random = ((double)rand() / (RAND_MAX));
|
|
|
|
if (random >= 0.5f)
|
|
{
|
|
child->getSensoryMotorWeights()[i] = mother->getSensoryMotorWeights()[i];
|
|
}
|
|
else
|
|
{
|
|
child->getSensoryMotorWeights()[i] = father->getSensoryMotorWeights()[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
void NN3DWalkersExample::mutate(NNWalker* mutant, btScalar mutationRate)
|
|
{
|
|
for (int i = 0; i < BODYPART_COUNT * JOINT_COUNT; i++)
|
|
{
|
|
btScalar random = ((double)rand() / (RAND_MAX));
|
|
|
|
if (random >= mutationRate)
|
|
{
|
|
mutant->getSensoryMotorWeights()[i] = ((double)rand() / (RAND_MAX)) * 2.0f - 1.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void evaluationUpdatePreTickCallback(btDynamicsWorld* world, btScalar timeStep)
|
|
{
|
|
NN3DWalkersExample* nnWalkersDemo = (NN3DWalkersExample*)world->getWorldUserInfo();
|
|
|
|
nnWalkersDemo->update(timeStep);
|
|
}
|
|
|
|
void NN3DWalkersExample::update(const btScalar timeSinceLastTick)
|
|
{
|
|
updateEvaluations(timeSinceLastTick); /**!< We update all evaluations that are in the loop */
|
|
|
|
scheduleEvaluations(); /**!< Start new evaluations and finish the old ones. */
|
|
|
|
drawMarkings(); /**!< Draw markings on the ground */
|
|
|
|
if (m_Time > m_SpeedupTimestamp + 2.0f)
|
|
{ // print effective speedup
|
|
b3Printf("Avg Effective speedup: %f real time", calculatePerformedSpeedup());
|
|
m_SpeedupTimestamp = m_Time;
|
|
}
|
|
}
|
|
|
|
void NN3DWalkersExample::updateEvaluations(const btScalar timeSinceLastTick)
|
|
{
|
|
btScalar delta = timeSinceLastTick;
|
|
btScalar minFPS = 1.f / 60.f;
|
|
if (delta > minFPS)
|
|
{
|
|
delta = minFPS;
|
|
}
|
|
|
|
m_Time += delta;
|
|
|
|
m_targetAccumulator += delta;
|
|
|
|
for (int i = 0; i < NUM_WALKERS; i++) // evaluation time passes
|
|
{
|
|
if (m_walkersInPopulation[i]->isInEvaluation())
|
|
{
|
|
m_walkersInPopulation[i]->setEvaluationTime(m_walkersInPopulation[i]->getEvaluationTime() + delta); // increase evaluation time
|
|
}
|
|
}
|
|
|
|
if (m_targetAccumulator >= 1.0f / ((double)m_targetFrequency))
|
|
{
|
|
m_targetAccumulator = 0;
|
|
|
|
for (int r = 0; r < NUM_WALKERS; r++)
|
|
{
|
|
if (m_walkersInPopulation[r]->isInEvaluation())
|
|
{
|
|
for (int i = 0; i < 2 * NUM_LEGS; i++)
|
|
{
|
|
btScalar targetAngle = 0;
|
|
btHingeConstraint* hingeC = static_cast<btHingeConstraint*>(m_walkersInPopulation[r]->getJoints()[i]);
|
|
|
|
if (RANDOM_MOVEMENT)
|
|
{
|
|
targetAngle = ((double)rand() / (RAND_MAX));
|
|
}
|
|
else
|
|
{ // neural network movement
|
|
|
|
// accumulate sensor inputs with weights
|
|
for (int j = 0; j < JOINT_COUNT; j++)
|
|
{
|
|
targetAngle += m_walkersInPopulation[r]->getSensoryMotorWeights()[i + j * BODYPART_COUNT] * m_walkersInPopulation[r]->getTouchSensor(i);
|
|
}
|
|
|
|
// apply the activation function
|
|
targetAngle = (std::tanh(targetAngle) + 1.0f) * 0.5f;
|
|
}
|
|
btScalar targetLimitAngle = hingeC->getLowerLimit() + targetAngle * (hingeC->getUpperLimit() - hingeC->getLowerLimit());
|
|
btScalar currentAngle = hingeC->getHingeAngle();
|
|
btScalar angleError = targetLimitAngle - currentAngle;
|
|
btScalar desiredAngularVel = 0;
|
|
if (delta)
|
|
{
|
|
desiredAngularVel = angleError / delta;
|
|
}
|
|
else
|
|
{
|
|
desiredAngularVel = angleError / 0.0001f;
|
|
}
|
|
hingeC->enableAngularMotor(true, desiredAngularVel, m_motorStrength);
|
|
}
|
|
|
|
// clear sensor signals after usage
|
|
m_walkersInPopulation[r]->clearTouchSensors();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NN3DWalkersExample::scheduleEvaluations()
|
|
{
|
|
for (int i = 0; i < NUM_WALKERS; i++)
|
|
{
|
|
if (m_walkersInPopulation[i]->isInEvaluation() && m_walkersInPopulation[i]->getEvaluationTime() >= EVALUATION_TIME)
|
|
{ /**!< tear down evaluations */
|
|
b3Printf("An evaluation finished at %f s. Distance: %f m", m_Time, btSqrt(m_walkersInPopulation[i]->getDistanceFitness()));
|
|
m_walkersInPopulation[i]->setInEvaluation(false);
|
|
m_walkersInPopulation[i]->removeFromWorld();
|
|
m_evaluationsQty--;
|
|
}
|
|
|
|
if (m_evaluationsQty < gParallelEvaluations && !m_walkersInPopulation[i]->isInEvaluation() && m_walkersInPopulation[i]->getEvaluationTime() == 0)
|
|
{ /**!< Setup the new evaluations */
|
|
b3Printf("An evaluation started at %f s.", m_Time);
|
|
m_evaluationsQty++;
|
|
m_walkersInPopulation[i]->setInEvaluation(true);
|
|
|
|
if (m_walkersInPopulation[i]->getEvaluationTime() == 0)
|
|
{ // reset to origin if the evaluation did not yet run
|
|
m_walkersInPopulation[i]->resetAt(btVector3(0, 0, 0));
|
|
}
|
|
|
|
m_walkersInPopulation[i]->addToWorld();
|
|
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
|
|
}
|
|
}
|
|
|
|
if (m_evaluationsQty == 0)
|
|
{ // if there are no more evaluations possible
|
|
rateEvaluations(); // rate evaluations by sorting them based on their fitness
|
|
|
|
reap(); // reap worst performing walkers
|
|
|
|
sow(); // crossover & mutate and sow new walkers
|
|
b3Printf("### A new generation started. ###");
|
|
}
|
|
}
|
|
|
|
void NN3DWalkersExample::drawMarkings()
|
|
{
|
|
if (!mIsHeadless)
|
|
{
|
|
for (int i = 0; i < NUM_WALKERS; i++) // draw current distance plates of moving walkers
|
|
{
|
|
if (m_walkersInPopulation[i]->isInEvaluation())
|
|
{
|
|
btVector3 walkerPosition = m_walkersInPopulation[i]->getPosition();
|
|
char performance[20];
|
|
sprintf(performance, "%.2f m", btSqrt(m_walkersInPopulation[i]->getDistanceFitness()));
|
|
m_guiHelper->drawText3D(performance, walkerPosition.x(), walkerPosition.y() + 1, walkerPosition.z(), 1);
|
|
}
|
|
}
|
|
|
|
for (int i = 2; i < 50; i += 2)
|
|
{ // draw distance circles
|
|
if (m_dynamicsWorld->getDebugDrawer())
|
|
{
|
|
m_dynamicsWorld->getDebugDrawer()->drawArc(btVector3(0, 0, 0), btVector3(0, 1, 0), btVector3(1, 0, 0), btScalar(i), btScalar(i), btScalar(0), btScalar(SIMD_2_PI), btVector3(10 * i, 0, 0), false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NN3DWalkersExample::printWalkerConfigs()
|
|
{
|
|
#if 0
|
|
char configString[25 + NUM_WALKERS*BODYPART_COUNT*JOINT_COUNT*(3+15+1) + NUM_WALKERS*4 + 1]; // 15 precision + [],\n
|
|
char* runner = configString;
|
|
sprintf(runner,"Population configuration:");
|
|
runner +=25;
|
|
for(int i = 0;i < NUM_WALKERS;i++) {
|
|
runner[0] = '\n';
|
|
runner++;
|
|
runner[0] = '[';
|
|
runner++;
|
|
for(int j = 0; j < BODYPART_COUNT*JOINT_COUNT;j++) {
|
|
sprintf(runner,"%.15f", m_walkersInPopulation[i]->getSensoryMotorWeights()[j]);
|
|
runner +=15;
|
|
if(j + 1 < BODYPART_COUNT*JOINT_COUNT){
|
|
runner[0] = ',';
|
|
}
|
|
else{
|
|
runner[0] = ']';
|
|
}
|
|
runner++;
|
|
}
|
|
}
|
|
runner[0] = '\0';
|
|
b3Printf(configString);
|
|
#endif
|
|
}
|