bullet3/Demos/InternalEdgeDemo/InternalEdgeDemo.cpp
erwin.coumans 4fcea85c01 Changed options to BT_TRIANGLE_CONVEX_BACKFACE_MODE ,BT_TRIANGLE_CONCAVE_DOUBLE_SIDED and BT_TRIANGLE_CONVEX_DOUBLE_SIDED.
Note that double sided options are experimental, single sided is recommended, and backfacing is default
2010-01-30 10:44:16 +00:00

569 lines
15 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
//#define SHIFT_INDICES 1
#define SWAP_WINDING 1
//#define ROTATE_GROUND 1
bool enable=true;
#if defined (SHIFT_INDICES) && !defined (SWAP_WINDING)
//#define TEST_INCONSISTENT_WINDING
#endif
#include "btBulletDynamicsCommon.h"
#include "BulletCollision/CollisionDispatch/btInternalEdgeUtility.h"
#include "LinearMath/btIDebugDraw.h"
#include "GLDebugDrawer.h"
#include "InternalEdgeDemo.h"
#include "GL_ShapeDrawer.h"
#include "GlutStuff.h"
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
#include "GLDebugDrawer.h"
GLDebugDrawer gDebugDrawer;
static btVector3* gVertices=0;
static int* gIndices=0;
static btBvhTriangleMeshShape* trimeshShape =0;
static btRigidBody* staticBody = 0;
static float waveheight = 0.f;
const float TRIANGLE_SIZE=20.f;
///User can override this material combiner by implementing gContactAddedCallback and setting body0->m_collisionFlags |= btCollisionObject::customMaterialCallback;
inline btScalar calculateCombinedFriction(float friction0,float friction1)
{
return 0.f;
btScalar friction = friction0 * friction1;
const btScalar MAX_FRICTION = 10.f;
if (friction < -MAX_FRICTION)
friction = -MAX_FRICTION;
if (friction > MAX_FRICTION)
friction = MAX_FRICTION;
return friction;
}
inline btScalar calculateCombinedRestitution(float restitution0,float restitution1)
{
return restitution0 * restitution1;
}
///////////////////////////////////////////////////////////////
static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObject* colObj0,int partId0,int index0,const btCollisionObject* colObj1,int partId1,int index1)
{
if (enable)
{
btAdjustInternalEdgeContacts(cp,colObj1,colObj0, partId1,index1);
//btAdjustInternalEdgeContacts(cp,colObj1,colObj0, partId1,index1, BT_TRIANGLE_CONVEX_BACKFACE_MODE);
//btAdjustInternalEdgeContacts(cp,colObj1,colObj0, partId1,index1, BT_TRIANGLE_CONVEX_DOUBLE_SIDED+BT_TRIANGLE_CONCAVE_DOUBLE_SIDED);
}
float friction0 = colObj0->getFriction();
float friction1 = colObj1->getFriction();
float restitution0 = colObj0->getRestitution();
float restitution1 = colObj1->getRestitution();
if (colObj0->getCollisionFlags() & btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK)
{
friction0 = 1.0;//partId0,index0
restitution0 = 0.f;
}
if (colObj1->getCollisionFlags() & btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK)
{
if (index1&1)
{
friction1 = 1.0f;//partId1,index1
} else
{
friction1 = 0.f;
}
restitution1 = 0.f;
}
cp.m_combinedFriction = calculateCombinedFriction(friction0,friction1);
cp.m_combinedRestitution = calculateCombinedRestitution(restitution0,restitution1);
//this return value is currently ignored, but to be on the safe side: return false if you don't calculate friction
return true;
}
extern ContactAddedCallback gContactAddedCallback;
const int NUM_VERTS_X = 2;
const int NUM_VERTS_Y = 2;
const int totalVerts = NUM_VERTS_X*NUM_VERTS_Y;
void InternalEdgeDemo::setVertexPositions(float waveheight, float offset)
{
int i;
int j;
for ( i=0;i<NUM_VERTS_X;i++)
{
for (j=0;j<NUM_VERTS_Y;j++)
{
gVertices[i+j*NUM_VERTS_X].setValue(
(i-NUM_VERTS_X*0.5f)*TRIANGLE_SIZE,
//0.f,
waveheight*sinf((float)i+offset)*cosf((float)j+offset),
(j-NUM_VERTS_Y*0.5f)*TRIANGLE_SIZE);
}
}
}
void InternalEdgeDemo::keyboardCallback(unsigned char key, int x, int y)
{
if (key=='n')
{
enable = !enable;
}
if (key == 'g')
{
m_animatedMesh = !m_animatedMesh;
if (m_animatedMesh)
{
staticBody->setCollisionFlags( staticBody->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
staticBody->setActivationState(DISABLE_DEACTIVATION);
} else
{
staticBody->setCollisionFlags( staticBody->getCollisionFlags() & ~btCollisionObject::CF_KINEMATIC_OBJECT);
staticBody->forceActivationState(ACTIVE_TAG);
}
}
DemoApplication::keyboardCallback(key,x,y);
}
void InternalEdgeDemo::initPhysics()
{
setTexturing(true);
setShadows(false);//true);
#define TRISIZE 10.f
gContactAddedCallback = CustomMaterialCombinerCallback;
#define USE_TRIMESH_SHAPE 1
#ifdef USE_TRIMESH_SHAPE
int vertStride = sizeof(btVector3);
int indexStride = 3*sizeof(int);
const int totalTriangles = 2*(NUM_VERTS_X-1)*(NUM_VERTS_Y-1);
gVertices = new btVector3[totalVerts];
gIndices = new int[totalTriangles*3];
int i;
setVertexPositions(waveheight,0.f);
//gVertices[1].setY(21.1);
//gVertices[1].setY(121.1);
gVertices[1].setY(.1f);
#ifdef ROTATE_GROUND
//gVertices[1].setY(-1.1);
#else
//gVertices[1].setY(0.1);
//gVertices[1].setY(-0.1);
//gVertices[1].setY(-20.1);
//gVertices[1].setY(-20);
#endif
int index=0;
for ( i=0;i<NUM_VERTS_X-1;i++)
{
for (int j=0;j<NUM_VERTS_Y-1;j++)
{
#ifdef SWAP_WINDING
#ifdef SHIFT_INDICES
gIndices[index++] = j*NUM_VERTS_X+i;
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
gIndices[index++] = j*NUM_VERTS_X+i+1;
gIndices[index++] = j*NUM_VERTS_X+i;
gIndices[index++] = (j+1)*NUM_VERTS_X+i;
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
#else
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
gIndices[index++] = j*NUM_VERTS_X+i+1;
gIndices[index++] = j*NUM_VERTS_X+i;
gIndices[index++] = (j+1)*NUM_VERTS_X+i;
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
gIndices[index++] = j*NUM_VERTS_X+i;
#endif //SHIFT_INDICES
#else //SWAP_WINDING
#ifdef SHIFT_INDICES
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
gIndices[index++] = j*NUM_VERTS_X+i;
gIndices[index++] = j*NUM_VERTS_X+i+1;
#ifdef TEST_INCONSISTENT_WINDING
gIndices[index++] = j*NUM_VERTS_X+i;
gIndices[index++] = (j+1)*NUM_VERTS_X+i;
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
#else //TEST_INCONSISTENT_WINDING
gIndices[index++] = (j+1)*NUM_VERTS_X+i;
gIndices[index++] = j*NUM_VERTS_X+i;
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
#endif //TEST_INCONSISTENT_WINDING
#else //SHIFT_INDICES
gIndices[index++] = j*NUM_VERTS_X+i;
gIndices[index++] = j*NUM_VERTS_X+i+1;
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
gIndices[index++] = j*NUM_VERTS_X+i;
gIndices[index++] = (j+1)*NUM_VERTS_X+i+1;
gIndices[index++] = (j+1)*NUM_VERTS_X+i;
#endif //SHIFT_INDICES
#endif //SWAP_WINDING
}
}
m_indexVertexArrays = new btTriangleIndexVertexArray(totalTriangles,
gIndices,
indexStride,
totalVerts,(btScalar*) &gVertices[0].x(),vertStride);
bool useQuantizedAabbCompression = true;
//comment out the next line to read the BVH from disk (first run the demo once to create the BVH)
#define SERIALIZE_TO_DISK 1
#ifdef SERIALIZE_TO_DISK
btVector3 aabbMin(-1000,-1000,-1000),aabbMax(1000,1000,1000);
trimeshShape = new btBvhTriangleMeshShape(m_indexVertexArrays,useQuantizedAabbCompression,aabbMin,aabbMax);
m_collisionShapes.push_back(trimeshShape);
///we can serialize the BVH data
void* buffer = 0;
int numBytes = trimeshShape->getOptimizedBvh()->calculateSerializeBufferSize();
buffer = btAlignedAlloc(numBytes,16);
bool swapEndian = false;
trimeshShape->getOptimizedBvh()->serialize(buffer,numBytes,swapEndian);
FILE* file = fopen("bvh.bin","wb");
fwrite(buffer,1,numBytes,file);
fclose(file);
btAlignedFree(buffer);
#else
trimeshShape = new btBvhTriangleMeshShape(m_indexVertexArrays,useQuantizedAabbCompression,false);
char* fileName = "bvh.bin";
FILE* file = fopen(fileName,"rb");
int size=0;
btOptimizedBvh* bvh = 0;
if (fseek(file, 0, SEEK_END) || (size = ftell(file)) == EOF || fseek(file, 0, SEEK_SET)) { /* File operations denied? ok, just close and return failure */
printf("Error: cannot get filesize from %s\n", fileName);
exit(0);
} else
{
fseek(file, 0, SEEK_SET);
int buffersize = size+btOptimizedBvh::getAlignmentSerializationPadding();
void* buffer = btAlignedAlloc(buffersize,16);
int read = fread(buffer,1,size,file);
fclose(file);
bool swapEndian = false;
bvh = btOptimizedBvh::deSerializeInPlace(buffer,buffersize,swapEndian);
}
trimeshShape->setOptimizedBvh(bvh);
#endif
btCollisionShape* groundShape = trimeshShape;
btTriangleInfoMap* triangleInfoMap = new btTriangleInfoMap();
btGenerateInternalEdgeInfo(trimeshShape,triangleInfoMap);
#else
btCollisionShape* groundShape = new btBoxShape(btVector3(50,3,50));
m_collisionShapes.push_back(groundShape);
#endif //USE_TRIMESH_SHAPE
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_collisionConfiguration->setConvexConvexMultipointIterations(10,5);
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
btVector3 worldMin(-1000,-1000,-1000);
btVector3 worldMax(1000,1000,1000);
m_broadphase = new btAxisSweep3(worldMin,worldMax);
m_solver = new btSequentialImpulseConstraintSolver();
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld->getSolverInfo().m_splitImpulse = true;
m_dynamicsWorld->getSolverInfo().m_splitImpulsePenetrationThreshold = 1e30f;
m_dynamicsWorld->getSolverInfo().m_maxErrorReduction = 1e30f;
m_dynamicsWorld->getSolverInfo().m_erp =1.f;
m_dynamicsWorld->getSolverInfo().m_erp2 = 1.f;
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
float mass = 0.f;
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3(0,-2,0));
btCollisionShape* colShape = new btBoxShape(btVector3(1,1,1));
//colShape->setMargin(0.f);
colShape->setMargin(0.1f);
m_collisionShapes.push_back(colShape);
{
for (int i=0;i<1;i++)
{
startTransform.setOrigin(btVector3(-10.f+i*3.f,1.f+btScalar(i)*0.1f,-1.3f));
btRigidBody* body = localCreateRigidBody(100, startTransform,colShape);
body->setActivationState(DISABLE_DEACTIVATION);
body->setLinearVelocity(btVector3(0,0,-1));
}
}
startTransform.setIdentity();
#ifdef ROTATE_GROUND
btQuaternion orn(btVector3(0,0,1),SIMD_PI);
startTransform.setOrigin(btVector3(-20,0,0));
startTransform.setRotation(orn);
#endif //ROTATE_GROUND
staticBody = localCreateRigidBody(mass, startTransform,groundShape);
//staticBody->setContactProcessingThreshold(-0.031f);
staticBody->setCollisionFlags(staticBody->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);//STATIC_OBJECT);
//enable custom material callback
staticBody->setCollisionFlags(staticBody->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
getDynamicsWorld()->setDebugDrawer(&gDebugDrawer);
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
btSetDebugDrawer(&gDebugDrawer);
#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
}
void InternalEdgeDemo::clientResetScene()
{
DemoApplication::clientResetScene();
for (int i=0;i<m_dynamicsWorld->getNumCollisionObjects();i++)
{
btCollisionObject* colobj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(colobj);
if (body && body->getInvMass() != 0.f)
{
body->setLinearVelocity(btVector3(0,0,-1));
}
}
}
void InternalEdgeDemo::clientMoveAndDisplay()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
float dt = getDeltaTimeMicroseconds() * 0.000001f;
if (m_animatedMesh)
{
static float offset=0.f;
offset+=0.01f;
// setVertexPositions(waveheight,offset);
#if 0 ///not currently supported, we need to update the btInternalTriangleInfoMap
int i;
int j;
btVector3 aabbMin(BT_LARGE_FLOAT,BT_LARGE_FLOAT,BT_LARGE_FLOAT);
btVector3 aabbMax(-BT_LARGE_FLOAT,-BT_LARGE_FLOAT,-BT_LARGE_FLOAT);
for ( i=NUM_VERTS_X/2-3;i<NUM_VERTS_X/2+2;i++)
{
for (j=NUM_VERTS_X/2-3;j<NUM_VERTS_Y/2+2;j++)
{
aabbMax.setMax(gVertices[i+j*NUM_VERTS_X]);
aabbMin.setMin(gVertices[i+j*NUM_VERTS_X]);
gVertices[i+j*NUM_VERTS_X].setValue((i-NUM_VERTS_X*0.5f)*TRIANGLE_SIZE,
0.f,
//waveheight*sinf((float)i+offset)*cosf((float)j+offset),
(j-NUM_VERTS_Y*0.5f)*TRIANGLE_SIZE);
aabbMin.setMin(gVertices[i+j*NUM_VERTS_X]);
aabbMax.setMax(gVertices[i+j*NUM_VERTS_X]);
}
}
trimeshShape->partialRefitTree(aabbMin,aabbMax);
#else
btVector3 aabbMin,aabbMax;
trimeshShape->getMeshInterface()->calculateAabbBruteForce(aabbMin,aabbMax);
trimeshShape->refitTree(aabbMin,aabbMax);
#endif
//clear all contact points involving mesh proxy. Note: this is a slow/unoptimized operation.
m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(staticBody->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher());
}
m_dynamicsWorld->stepSimulation(dt);
///enable one of the following to debug (render debug lines each frame)
//m_dynamicsWorld->stepSimulation(1./800.,0);
//m_dynamicsWorld->stepSimulation(1./60.,100,1./800.);
//m_dynamicsWorld->stepSimulation(1./60.,0);
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
renderme();
glFlush();
swapBuffers();
}
void InternalEdgeDemo::displayCallback(void) {
clientMoveAndDisplay();
/*
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderme();
//optional but useful: debug drawing
if (m_dynamicsWorld)
m_dynamicsWorld->debugDrawWorld();
glFlush();
glutSwapBuffers();
*/
}
void InternalEdgeDemo::exitPhysics()
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
int i;
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
{
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject( obj );
delete obj;
}
//delete collision shapes
for (int j=0;j<m_collisionShapes.size();j++)
{
btCollisionShape* shape = m_collisionShapes[j];
delete shape;
}
//delete dynamics world
delete m_dynamicsWorld;
if (m_indexVertexArrays)
delete m_indexVertexArrays;
//delete solver
delete m_solver;
//delete broadphase
delete m_broadphase;
//delete dispatcher
delete m_dispatcher;
delete m_collisionConfiguration;
}