bullet3/examples/TinyRenderer/TinyRenderer.cpp
2017-04-23 07:35:13 -07:00

583 lines
20 KiB
C++

#include "TinyRenderer.h"
#include <vector>
#include <limits>
#include <iostream>
#include "tgaimage.h"
#include "model.h"
#include "geometry.h"
#include "our_gl.h"
#include "../Utils/b3ResourcePath.h"
#include "Bullet3Common/b3MinMax.h"
#include "../OpenGLWindow/ShapeData.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "LinearMath/btVector3.h"
struct DepthShader : public IShader {
Model* m_model;
Matrix& m_modelMat;
Matrix m_invModelMat;
Matrix& m_projectionMat;
Vec3f m_localScaling;
Matrix& m_lightModelView;
float m_lightDistance;
mat<2,3,float> varying_uv; // triangle uv coordinates, written by the vertex shader, read by the fragment shader
mat<4,3,float> varying_tri; // triangle coordinates (clip coordinates), written by VS, read by FS
mat<3,3,float> varying_nrm; // normal per vertex to be interpolated by FS
DepthShader(Model* model, Matrix& lightModelView, Matrix& projectionMat, Matrix& modelMat, Vec3f localScaling, float lightDistance)
:m_model(model),
m_modelMat(modelMat),
m_projectionMat(projectionMat),
m_localScaling(localScaling),
m_lightModelView(lightModelView),
m_lightDistance(lightDistance)
{
m_invModelMat = m_modelMat.invert_transpose();
}
virtual Vec4f vertex(int iface, int nthvert) {
Vec2f uv = m_model->uv(iface, nthvert);
varying_uv.set_col(nthvert, uv);
varying_nrm.set_col(nthvert, proj<3>(m_invModelMat*embed<4>(m_model->normal(iface, nthvert), 0.f)));
Vec3f unScaledVert = m_model->vert(iface, nthvert);
Vec3f scaledVert=Vec3f(unScaledVert[0]*m_localScaling[0],
unScaledVert[1]*m_localScaling[1],
unScaledVert[2]*m_localScaling[2]);
Vec4f gl_Vertex = m_projectionMat*m_lightModelView*embed<4>(scaledVert);
varying_tri.set_col(nthvert, gl_Vertex);
return gl_Vertex;
}
virtual bool fragment(Vec3f bar, TGAColor &color) {
Vec4f p = varying_tri*bar;
color = TGAColor(255, 255, 255)*(p[2]/m_lightDistance);
return false;
}
};
struct Shader : public IShader {
Model* m_model;
Vec3f m_light_dir_local;
Vec3f m_light_color;
Matrix& m_modelMat;
Matrix m_invModelMat;
Matrix& m_modelView1;
Matrix& m_projectionMat;
Vec3f m_localScaling;
Matrix& m_lightModelView;
Vec4f m_colorRGBA;
Matrix& m_viewportMat;
float m_ambient_coefficient;
float m_diffuse_coefficient;
float m_specular_coefficient;
b3AlignedObjectArray<float>* m_shadowBuffer;
int m_width;
int m_height;
int m_index;
mat<2,3,float> varying_uv; // triangle uv coordinates, written by the vertex shader, read by the fragment shader
mat<4,3,float> varying_tri; // triangle coordinates (clip coordinates), written by VS, read by FS
mat<4,3,float> varying_tri_light_view;
mat<3,3,float> varying_nrm; // normal per vertex to be interpolated by FS
Shader(Model* model, Vec3f light_dir_local, Vec3f light_color, Matrix& modelView, Matrix& lightModelView, Matrix& projectionMat, Matrix& modelMat, Matrix& viewportMat, Vec3f localScaling, const Vec4f& colorRGBA, int width, int height, b3AlignedObjectArray<float>* shadowBuffer, float ambient_coefficient=0.6, float diffuse_coefficient=0.35, float specular_coefficient=0.05)
:m_model(model),
m_light_dir_local(light_dir_local),
m_light_color(light_color),
m_modelMat(modelMat),
m_modelView1(modelView),
m_projectionMat(projectionMat),
m_localScaling(localScaling),
m_lightModelView(lightModelView),
m_colorRGBA(colorRGBA),
m_viewportMat(viewportMat),
m_ambient_coefficient(ambient_coefficient),
m_diffuse_coefficient(diffuse_coefficient),
m_specular_coefficient(specular_coefficient),
m_shadowBuffer(shadowBuffer),
m_width(width),
m_height(height)
{
m_invModelMat = m_modelMat.invert_transpose();
}
virtual Vec4f vertex(int iface, int nthvert) {
Vec2f uv = m_model->uv(iface, nthvert);
varying_uv.set_col(nthvert, uv);
varying_nrm.set_col(nthvert, proj<3>(m_invModelMat*embed<4>(m_model->normal(iface, nthvert), 0.f)));
Vec3f unScaledVert = m_model->vert(iface, nthvert);
Vec3f scaledVert=Vec3f(unScaledVert[0]*m_localScaling[0],
unScaledVert[1]*m_localScaling[1],
unScaledVert[2]*m_localScaling[2]);
Vec4f gl_Vertex = m_projectionMat*m_modelView1*embed<4>(scaledVert);
varying_tri.set_col(nthvert, gl_Vertex);
Vec4f gl_VertexLightView = m_projectionMat*m_lightModelView*embed<4>(scaledVert);
varying_tri_light_view.set_col(nthvert, gl_VertexLightView);
return gl_Vertex;
}
virtual bool fragment(Vec3f bar, TGAColor &color) {
Vec4f p = m_viewportMat*(varying_tri_light_view*bar);
float depth = p[2];
p = p/p[3];
int index_x = b3Max(0, b3Min(m_width-1, int(p[0])));
int index_y = b3Max(0, b3Min(m_height-1, int(p[1])));
int idx = index_x + index_y*m_width; // index in the shadowbuffer array
float shadow = 0.8+0.2*(m_shadowBuffer->at(idx)<-depth+0.05); // magic coeff to avoid z-fighting
Vec3f bn = (varying_nrm*bar).normalize();
Vec2f uv = varying_uv*bar;
Vec3f reflection_direction = (bn * (bn * m_light_dir_local * 2.f) - m_light_dir_local).normalize();
float specular = pow(b3Max(reflection_direction.z, 0.f), m_model->specular(uv));
float diffuse = b3Max(0.f, bn * m_light_dir_local);
color = m_model->diffuse(uv);
color[0] *= m_colorRGBA[0];
color[1] *= m_colorRGBA[1];
color[2] *= m_colorRGBA[2];
color[3] *= m_colorRGBA[3];
for (int i = 0; i < 3; ++i)
{
color[i] = b3Min(int(m_ambient_coefficient*color[i] + shadow*(m_diffuse_coefficient*diffuse+m_specular_coefficient*specular)*color[i]*m_light_color[i]), 255);
}
return false;
}
};
TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer,b3AlignedObjectArray<float>&depthBuffer,b3AlignedObjectArray<float>* shadowBuffer)
:
m_model(0),
m_rgbColorBuffer(rgbColorBuffer),
m_depthBuffer(depthBuffer),
m_shadowBuffer(shadowBuffer),
m_segmentationMaskBufferPtr(0),
m_userData(0),
m_userIndex(-1),
m_objectIndex(-1)
{
Vec3f eye(1,1,3);
Vec3f center(0,0,0);
Vec3f up(0,0,1);
m_lightDirWorld.setValue(0,0,0);
m_lightColor.setValue(1, 1, 1);
m_localScaling.setValue(1,1,1);
m_modelMatrix = Matrix::identity();
m_lightAmbientCoeff = 0.6;
m_lightDiffuseCoeff = 0.35;
m_lightSpecularCoeff = 0.05;
}
TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer,b3AlignedObjectArray<float>&depthBuffer, b3AlignedObjectArray<float>* shadowBuffer, b3AlignedObjectArray<int>* segmentationMaskBuffer, int objectIndex)
:m_model(0),
m_rgbColorBuffer(rgbColorBuffer),
m_depthBuffer(depthBuffer),
m_shadowBuffer(shadowBuffer),
m_segmentationMaskBufferPtr(segmentationMaskBuffer),
m_userData(0),
m_userIndex(-1),
m_objectIndex(objectIndex)
{
Vec3f eye(1,1,3);
Vec3f center(0,0,0);
Vec3f up(0,0,1);
m_lightDirWorld.setValue(0,0,0);
m_lightColor.setValue(1, 1, 1);
m_localScaling.setValue(1,1,1);
m_modelMatrix = Matrix::identity();
m_lightAmbientCoeff = 0.6;
m_lightDiffuseCoeff = 0.35;
m_lightSpecularCoeff = 0.05;
}
TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer,b3AlignedObjectArray<float>&depthBuffer)
:m_model(0),
m_rgbColorBuffer(rgbColorBuffer),
m_depthBuffer(depthBuffer),
m_segmentationMaskBufferPtr(0),
m_userData(0),
m_userIndex(-1),
m_objectIndex(-1)
{
Vec3f eye(1,1,3);
Vec3f center(0,0,0);
Vec3f up(0,0,1);
m_lightDirWorld.setValue(0,0,0);
m_lightColor.setValue(1, 1, 1);
m_localScaling.setValue(1,1,1);
m_modelMatrix = Matrix::identity();
m_lightAmbientCoeff = 0.6;
m_lightDiffuseCoeff = 0.35;
m_lightSpecularCoeff = 0.05;
}
TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer,b3AlignedObjectArray<float>&depthBuffer, b3AlignedObjectArray<int>* segmentationMaskBuffer, int objectIndex)
:m_model(0),
m_rgbColorBuffer(rgbColorBuffer),
m_depthBuffer(depthBuffer),
m_segmentationMaskBufferPtr(segmentationMaskBuffer),
m_userData(0),
m_userIndex(-1),
m_objectIndex(objectIndex)
{
Vec3f eye(1,1,3);
Vec3f center(0,0,0);
Vec3f up(0,0,1);
m_lightDirWorld.setValue(0,0,0);
m_lightColor.setValue(1, 1, 1);
m_localScaling.setValue(1,1,1);
m_modelMatrix = Matrix::identity();
m_lightAmbientCoeff = 0.6;
m_lightDiffuseCoeff = 0.35;
m_lightSpecularCoeff = 0.05;
}
void TinyRenderObjectData::loadModel(const char* fileName)
{
//todo(erwincoumans) move the file loading out of here
char relativeFileName[1024];
if (!b3ResourcePath::findResourcePath(fileName, relativeFileName, 1024))
{
printf("Cannot find file %s\n", fileName);
} else
{
m_model = new Model(relativeFileName);
}
}
void TinyRenderObjectData::registerMeshShape(const float* vertices, int numVertices,const int* indices, int numIndices, const float rgbaColor[4],
unsigned char* textureImage, int textureWidth, int textureHeight)
{
if (0==m_model)
{
m_model = new Model();
m_model->setColorRGBA(rgbaColor);
if (textureImage)
{
m_model->setDiffuseTextureFromData(textureImage,textureWidth,textureHeight);
} else
{
/*char relativeFileName[1024];
if (b3ResourcePath::findResourcePath("floor_diffuse.tga", relativeFileName, 1024))
{
m_model->loadDiffuseTexture(relativeFileName);
}
*/
}
m_model->reserveMemory(numVertices,numIndices);
for (int i=0;i<numVertices;i++)
{
m_model->addVertex(vertices[i*9],
vertices[i*9+1],
vertices[i*9+2],
vertices[i*9+4],
vertices[i*9+5],
vertices[i*9+6],
vertices[i*9+7],
vertices[i*9+8]);
}
for (int i=0;i<numIndices;i+=3)
{
m_model->addTriangle(indices[i],indices[i],indices[i],
indices[i+1],indices[i+1],indices[i+1],
indices[i+2],indices[i+2],indices[i+2]);
}
}
}
void TinyRenderObjectData::registerMesh2(btAlignedObjectArray<btVector3>& vertices, btAlignedObjectArray<btVector3>& normals,btAlignedObjectArray<int>& indices)
{
if (0==m_model)
{
int numVertices = vertices.size();
int numIndices = indices.size();
m_model = new Model();
char relativeFileName[1024];
if (b3ResourcePath::findResourcePath("floor_diffuse.tga", relativeFileName, 1024))
{
m_model->loadDiffuseTexture(relativeFileName);
}
for (int i=0;i<numVertices;i++)
{
m_model->addVertex(vertices[i].x(),
vertices[i].y(),
vertices[i].z(),
normals[i].x(),
normals[i].y(),
normals[i].z(),
0.5,0.5);
}
for (int i=0;i<numIndices;i+=3)
{
m_model->addTriangle(indices[i],indices[i],indices[i],
indices[i+1],indices[i+1],indices[i+1],
indices[i+2],indices[i+2],indices[i+2]);
}
}
}
void TinyRenderObjectData::createCube(float halfExtentsX,float halfExtentsY,float halfExtentsZ)
{
m_model = new Model();
char relativeFileName[1024];
if (b3ResourcePath::findResourcePath("floor_diffuse.tga", relativeFileName, 1024))
{
m_model->loadDiffuseTexture(relativeFileName);
}
int strideInBytes = 9*sizeof(float);
int numVertices = sizeof(cube_vertices_textured)/strideInBytes;
int numIndices = sizeof(cube_indices)/sizeof(int);
for (int i=0;i<numVertices;i++)
{
m_model->addVertex(halfExtentsX*cube_vertices_textured[i*9],
halfExtentsY*cube_vertices_textured[i*9+1],
halfExtentsY*cube_vertices_textured[i*9+2],
cube_vertices_textured[i*9+4],
cube_vertices_textured[i*9+5],
cube_vertices_textured[i*9+6],
cube_vertices_textured[i*9+7],
cube_vertices_textured[i*9+8]);
}
for (int i=0;i<numIndices;i+=3)
{
m_model->addTriangle(cube_indices[i],cube_indices[i],cube_indices[i],
cube_indices[i+1],cube_indices[i+1],cube_indices[i+1],
cube_indices[i+2],cube_indices[i+2],cube_indices[i+2]);
}
}
TinyRenderObjectData::~TinyRenderObjectData()
{
delete m_model;
}
static bool equals(const Vec4f& vA, const Vec4f& vB)
{
return false;
}
static void clipEdge(const mat<4,3,float>& triangleIn, int vertexIndexA, int vertexIndexB, b3AlignedObjectArray<Vec4f>& vertices)
{
Vec4f v0New = triangleIn.col(vertexIndexA);
Vec4f v1New = triangleIn.col(vertexIndexB);
bool v0Inside = v0New[3] > 0.f && v0New[2] > -v0New[3];
bool v1Inside= v1New[3] > 0.f && v1New[2] > -v1New[3];
if (v0Inside && v1Inside)
{
} else if (v0Inside || v1Inside)
{
float d0 = v0New[2]+v0New[3];
float d1 = v1New[2]+v1New[3];
float factor = 1.0 / (d1-d0);
Vec4f newVertex =(v0New*d1-v1New*d0)*factor;
if (v0Inside)
{
v1New = newVertex;
} else
{
v0New = newVertex;
}
} else
{
return;
}
if (vertices.size()==0 || !(equals(vertices[vertices.size()-1],v0New)))
{
vertices.push_back(v0New);
}
vertices.push_back(v1New);
}
static bool clipTriangleAgainstNearplane(const mat<4,3,float>& triangleIn, b3AlignedObjectArray<mat<4,3,float> >& clippedTrianglesOut)
{
//discard triangle if all vertices are behind near-plane
if (triangleIn[3][0]<0 && triangleIn[3][1] <0 && triangleIn[3][2] <0)
{
return true;
}
//accept triangle if all vertices are in front of the near-plane
if (triangleIn[3][0]>=0 && triangleIn[3][1] >=0 && triangleIn[3][2] >=0)
{
clippedTrianglesOut.push_back(triangleIn);
return false;
}
Vec4f vtxCache[5];
b3AlignedObjectArray<Vec4f> vertices;
vertices.initializeFromBuffer(vtxCache,0,5);
clipEdge(triangleIn,0,1,vertices);
clipEdge(triangleIn,1,2,vertices);
clipEdge(triangleIn,2,0,vertices);
if (vertices.size()<3)
return true;
if (equals(vertices[0],vertices[vertices.size()-1]))
{
vertices.pop_back();
}
//create a fan of triangles
for (int i=1;i<vertices.size()-1;i++)
{
mat<4,3,float>& vtx = clippedTrianglesOut.expand();
vtx.set_col(0,vertices[0]);
vtx.set_col(1,vertices[i]);
vtx.set_col(2,vertices[i+1]);
}
return true;
}
void TinyRenderer::renderObject(TinyRenderObjectData& renderData)
{
int width = renderData.m_rgbColorBuffer.get_width();
int height = renderData.m_rgbColorBuffer.get_height();
Vec3f light_dir_local = Vec3f(renderData.m_lightDirWorld[0],renderData.m_lightDirWorld[1],renderData.m_lightDirWorld[2]);
Vec3f light_color = Vec3f(renderData.m_lightColor[0],renderData.m_lightColor[1],renderData.m_lightColor[2]);
float light_distance = renderData.m_lightDistance;
Model* model = renderData.m_model;
if (0==model)
return;
renderData.m_viewportMatrix = viewport(0,0,width, height);
b3AlignedObjectArray<float>& zbuffer = renderData.m_depthBuffer;
b3AlignedObjectArray<float>* shadowBufferPtr = renderData.m_shadowBuffer;
int* segmentationMaskBufferPtr = (renderData.m_segmentationMaskBufferPtr && renderData.m_segmentationMaskBufferPtr->size())?&renderData.m_segmentationMaskBufferPtr->at(0):0;
TGAImage& frame = renderData.m_rgbColorBuffer;
{
// light target is set to be the origin, and the up direction is set to be vertical up.
Matrix lightViewMatrix = lookat(light_dir_local*light_distance, Vec3f(0.0,0.0,0.0), Vec3f(0.0,0.0,1.0));
Matrix lightModelViewMatrix = lightViewMatrix*renderData.m_modelMatrix;
Matrix modelViewMatrix = renderData.m_viewMatrix*renderData.m_modelMatrix;
Vec3f localScaling(renderData.m_localScaling[0],renderData.m_localScaling[1],renderData.m_localScaling[2]);
Shader shader(model, light_dir_local, light_color, modelViewMatrix, lightModelViewMatrix, renderData.m_projectionMatrix,renderData.m_modelMatrix, renderData.m_viewportMatrix, localScaling, model->getColorRGBA(), width, height, shadowBufferPtr, renderData.m_lightAmbientCoeff, renderData.m_lightDiffuseCoeff, renderData.m_lightSpecularCoeff);
for (int i=0; i<model->nfaces(); i++)
{
for (int j=0; j<3; j++) {
shader.vertex(i, j);
}
mat<4,3,float> stackTris[3];
b3AlignedObjectArray< mat<4,3,float> > clippedTriangles;
clippedTriangles.initializeFromBuffer(stackTris,0,3);
bool hasClipped = clipTriangleAgainstNearplane(shader.varying_tri,clippedTriangles);
if (hasClipped)
{
for (int t=0;t<clippedTriangles.size();t++)
{
triangleClipped(clippedTriangles[t], shader.varying_tri, shader, frame, &zbuffer[0], segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex);
}
}
else
{
triangle(shader.varying_tri, shader, frame, &zbuffer[0], segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex);
}
}
}
}
void TinyRenderer::renderObjectDepth(TinyRenderObjectData& renderData)
{
int width = renderData.m_rgbColorBuffer.get_width();
int height = renderData.m_rgbColorBuffer.get_height();
Vec3f light_dir_local = Vec3f(renderData.m_lightDirWorld[0],renderData.m_lightDirWorld[1],renderData.m_lightDirWorld[2]);
float light_distance = renderData.m_lightDistance;
Model* model = renderData.m_model;
if (0==model)
return;
renderData.m_viewportMatrix = viewport(0,0,width, height);
float* shadowBufferPtr = (renderData.m_shadowBuffer && renderData.m_shadowBuffer->size())?&renderData.m_shadowBuffer->at(0):0;
int* segmentationMaskBufferPtr = 0;
TGAImage depthFrame(width, height, TGAImage::RGB);
{
// light target is set to be the origin, and the up direction is set to be vertical up.
Matrix lightViewMatrix = lookat(light_dir_local*light_distance, Vec3f(0.0,0.0,0.0), Vec3f(0.0,0.0,1.0));
Matrix lightModelViewMatrix = lightViewMatrix*renderData.m_modelMatrix;
Matrix lightViewProjectionMatrix = renderData.m_projectionMatrix;
Vec3f localScaling(renderData.m_localScaling[0],renderData.m_localScaling[1],renderData.m_localScaling[2]);
DepthShader shader(model, lightModelViewMatrix, lightViewProjectionMatrix,renderData.m_modelMatrix, localScaling, light_distance);
for (int i=0; i<model->nfaces(); i++)
{
for (int j=0; j<3; j++) {
shader.vertex(i, j);
}
mat<4,3,float> stackTris[3];
b3AlignedObjectArray< mat<4,3,float> > clippedTriangles;
clippedTriangles.initializeFromBuffer(stackTris,0,3);
bool hasClipped = clipTriangleAgainstNearplane(shader.varying_tri,clippedTriangles);
if (hasClipped)
{
for (int t=0;t<clippedTriangles.size();t++)
{
triangleClipped(clippedTriangles[t], shader.varying_tri, shader, depthFrame, shadowBufferPtr, segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex);
}
} else
{
triangle(shader.varying_tri, shader, depthFrame, shadowBufferPtr, segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex);
}
}
}
}