bullet3/Demos3/BasicGpuDemo/b3GpuDynamicsWorld.cpp
2014-04-09 08:59:09 -07:00

711 lines
21 KiB
C++

#include "b3GpuDynamicsWorld.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
//#include "../../../opencl/gpu_rigidbody_pipeline2/CLPhysicsDemo.h"
//#include "../../../opencl/gpu_rigidbody_pipeline/b3GpuNarrowPhaseAndSolver.h"
#include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
#include "BulletCollision/CollisionShapes/btConvexHullShape.h"
#include "BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h"
#include "BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h"
#include "LinearMath/btQuickprof.h"
//#include "Bullet3Common/b3Logging.h"
#include "Bullet3OpenCL/BroadphaseCollision/b3GpuSapBroadphase.h"
#include "Bullet3OpenCL/RigidBody/b3GpuNarrowPhase.h"
#include "Bullet3OpenCL/RigidBody/b3GpuRigidBodyPipeline.h"
#include "Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.h"
#include "Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3RigidBodyCL.h"
#ifdef _WIN32
#include <windows.h>
#endif
//#if (BT_BULLET_VERSION >= 282)
//#define BT_USE_BODY_UPDATE_REVISION
//#endif
b3GpuDynamicsWorld::b3GpuDynamicsWorld(class b3GpuSapBroadphase* bp,class b3GpuNarrowPhase* np, class b3GpuRigidBodyPipeline* rigidBodyPipeline)
:btDynamicsWorld(0,0,0),
m_gravity(0,-10,0),
m_cpuGpuSync(true),
m_bp(bp),
m_np(np),
m_rigidBodyPipeline(rigidBodyPipeline),
m_localTime(0.f),
m_staticBody(0)
{
btConvexHullShape* nullShape = new btConvexHullShape();
m_staticBody = new btRigidBody(0,0,nullShape);
addRigidBody(m_staticBody,0,0);
}
b3GpuDynamicsWorld::~b3GpuDynamicsWorld()
{
}
#include <windows.h>
int b3GpuDynamicsWorld::stepSimulation( btScalar timeStepUnused, int maxSubStepsUnused, btScalar fixedTimeStep)
{
///Don't use more than 1 simulation step, it destroys the performance having to copy the data between CPU and GPU multiple times per frame
///Please use the CPU version in btDiscreteDynamicsWorld if you don't like this
CProfileManager::Reset();
BT_PROFILE("stepSimulation");
{
BT_PROFILE("sync constraints CPU");
//todo: determine what data has changed, or perform copy on GPU?
for (int i=0;i<m_constraints.size();i++)
{
btTypedConstraint* constraint = m_constraints[i];
b3TypedConstraint* c = (b3TypedConstraint*) constraint->getUserConstraintPtr();
if (c)
{
switch (constraint->getConstraintType())
{
case POINT2POINT_CONSTRAINT_TYPE:
{
btPoint2PointConstraint* p2 = (btPoint2PointConstraint*) constraint;
b3Point2PointConstraint* p3 = (b3Point2PointConstraint*) c;
p3->setPivotA((const b3Vector3&)p2->getPivotInA());
p3->setPivotB((const b3Vector3&)p2->getPivotInB());
p3->m_setting.m_damping = p2->m_setting.m_damping;
p3->m_setting.m_impulseClamp = p2->m_setting.m_impulseClamp;
p3->m_setting.m_tau = p2->m_setting.m_tau;
break;
};
case D6_CONSTRAINT_TYPE:
{
btGeneric6DofConstraint* dof2 = (btGeneric6DofConstraint*) constraint;
b3Generic6DofConstraint* dof3 = (b3Generic6DofConstraint*) c;
const b3RigidBodyData* bodiesCL = m_np->getBodiesCpu();
b3Transform frameInA = (b3Transform&) dof2->getFrameOffsetA();
b3Transform frameInB = (b3Transform&) dof2->getFrameOffsetB();
dof3->setFrames(frameInA,frameInB,bodiesCL);
break;
}
default:
{
}
};
}
}
}
// detect any change (very simple)
{
B3_PROFILE("body update revision detection (CPU)");
#ifdef BT_USE_BODY_UPDATE_REVISION
b3Assert(m_bodyUpdateRevisions.size() == m_collisionObjects.size());
b3Assert(m_np->getNumRigidBodies() == m_bodyUpdateRevisions.size());
#endif //BT_USE_BODY_UPDATE_REVISION
b3RigidBodyData* bodiesCL = (b3RigidBodyData*)m_np->getBodiesCpu();
for (int i=0;i<this->m_collisionObjects.size();i++)
{
if (i>=m_np->getNumRigidBodies())
{
b3Error("bodiesCL out-of-range\n");
continue;
}
#ifdef BT_USE_BODY_UPDATE_REVISION
if (m_bodyUpdateRevisions[i] != m_collisionObjects[i]->getUpdateRevisionInternal())
#endif//BT_USE_BODY_UPDATE_REVISION
{
m_cpuGpuSync = true;
#ifdef BT_USE_BODY_UPDATE_REVISION
m_bodyUpdateRevisions[i] = m_collisionObjects[i]->getUpdateRevisionInternal();
#endif
btRigidBody* body = btRigidBody::upcast(m_collisionObjects[i]);
if (body)
{
b3Vector3 pos = (const b3Vector3&)m_collisionObjects[i]->getWorldTransform().getOrigin();
btQuaternion orn2 = m_collisionObjects[i]->getWorldTransform().getRotation();
b3Quaternion orn(orn2[0],orn2[1],orn2[2],orn2[3]);
body->integrateVelocities(fixedTimeStep);
m_np->setObjectTransformCpu(&pos[0],&orn[0],i);
b3Vector3 linVel = (const b3Vector3&)body->getLinearVelocity();
b3Vector3 angVel = (const b3Vector3&)body->getAngularVelocity();
m_np->setObjectVelocityCpu(&linVel[0],&angVel[0],i);
}
}
}
}
if (m_cpuGpuSync)
{
BT_PROFILE("cpuGpuSync");
m_cpuGpuSync = false;
m_np->writeAllBodiesToGpu();
m_bp->writeAabbsToGpu();
m_rigidBodyPipeline->writeAllInstancesToGpu();
}
//internalSingleStepSimulation(fixedTimeStep);
// dispatch preTick callback
if(0 != m_internalPreTickCallback)
{
BT_PROFILE("internalPreTickCallback");
(*m_internalPreTickCallback)(this, fixedTimeStep);
}
{
BT_PROFILE("m_rigidBodyPipeline->stepSimulation");
m_rigidBodyPipeline->stepSimulation(fixedTimeStep);
}
{
BT_PROFILE("readbackBodiesToCpu");
//now copy info back to rigid bodies....
m_np->readbackAllBodiesToCpu();
}
{
BT_PROFILE("scatter transforms into rigidbody (CPU)");
const b3RigidBodyData* bodiesCL = m_np->getBodiesCpu();
for (int i=0;i<this->m_collisionObjects.size();i++)
{
btVector3 pos;
btQuaternion orn;
if (m_np->getObjectTransformFromCpu(&pos[0],&orn[0],i))
{
btTransform newTrans;
newTrans.setOrigin(pos);
newTrans.setRotation(orn);
btCollisionObject* colObj = this->m_collisionObjects[i];
colObj->setWorldTransform(newTrans);
btRigidBody* body = btRigidBody::upcast(m_collisionObjects[i]);
if (body)
{
body->setLinearVelocity((btVector3&)bodiesCL[i].m_linVel);
body->setAngularVelocity((btVector3&)bodiesCL[i].m_angVel);
}
}
#ifdef BT_USE_BODY_UPDATE_REVISION
//ignore this revision update
m_bodyUpdateRevisions[i] = m_collisionObjects[i]->getUpdateRevisionInternal();
#endif //BT_USE_BODY_UPDATE_REVISION
}
{
BT_PROFILE("synchronizeMotionStates");
synchronizeMotionStates();
}
}
{
B3_PROFILE("clearForces");
clearForces();
}
#ifndef BT_NO_PROFILE
CProfileManager::Increment_Frame_Counter();
// CProfileManager::dumpAll();
#endif //BT_NO_PROFILE
return 1;
}
void b3GpuDynamicsWorld::clearForces()
{
///@todo: iterate over awake simulation islands!
for ( int i=0;i<m_collisionObjects.size();i++)
{
btRigidBody* body = btRigidBody::upcast(m_collisionObjects[i]);
//need to check if next line is ok
//it might break backward compatibility (people applying forces on sleeping objects get never cleared and accumulate on wake-up
if (body)
body->clearForces();
}
}
void b3GpuDynamicsWorld::setGravity(const btVector3& gravity)
{
m_gravity = gravity;
m_rigidBodyPipeline->setGravity(gravity);
}
int b3GpuDynamicsWorld::findOrRegisterCollisionShape(const btCollisionShape* colShape)
{
int index = m_uniqueShapes.findLinearSearch(colShape);
if (index==m_uniqueShapes.size())
{
if (colShape->isPolyhedral())
{
m_uniqueShapes.push_back(colShape);
btPolyhedralConvexShape* convex = (btPolyhedralConvexShape*)colShape;
int numVertices=convex->getNumVertices();
int strideInBytes=sizeof(btVector3);
btAlignedObjectArray<btVector3> tmpVertices;
tmpVertices.resize(numVertices);
for (int i=0;i<numVertices;i++)
convex->getVertex(i,tmpVertices[i]);
const float scaling[4]={1,1,1,1};
//bool noHeightField=true;
//int gpuShapeIndex = m_np->registerConvexHullShape(&tmpVertices[0].getX(), strideInBytes, numVertices, scaling);
const float* verts = numVertices? &tmpVertices[0].getX() : 0;
int gpuShapeIndex = m_np->registerConvexHullShape(verts,strideInBytes, numVertices, scaling);
m_uniqueShapeMapping.push_back(gpuShapeIndex);
} else
{
if (colShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
m_uniqueShapes.push_back(colShape);
btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*) colShape;
btStridingMeshInterface* meshInterface = trimesh->getMeshInterface();
b3AlignedObjectArray<b3Vector3> vertices;
b3AlignedObjectArray<int> indices;
btVector3 trimeshScaling(1,1,1);
for (int partId=0;partId<meshInterface->getNumSubParts();partId++)
{
const unsigned char *vertexbase = 0;
int numverts = 0;
PHY_ScalarType type = PHY_INTEGER;
int stride = 0;
const unsigned char *indexbase = 0;
int indexstride = 0;
int numfaces = 0;
PHY_ScalarType indicestype = PHY_INTEGER;
//PHY_ScalarType indexType=0;
b3Vector3 triangleVerts[3];
meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,partId);
btVector3 aabbMin,aabbMax;
for (int triangleIndex = 0 ; triangleIndex < numfaces;triangleIndex++)
{
unsigned int* gfxbase = (unsigned int*)(indexbase+triangleIndex*indexstride);
for (int j=2;j>=0;j--)
{
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
if (type == PHY_FLOAT)
{
float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
triangleVerts[j] = b3MakeVector3(
graphicsbase[0]*trimeshScaling.getX(),
graphicsbase[1]*trimeshScaling.getY(),
graphicsbase[2]*trimeshScaling.getZ());
}
else
{
double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
triangleVerts[j] = b3MakeVector3( btScalar(graphicsbase[0]*trimeshScaling.getX()),
btScalar(graphicsbase[1]*trimeshScaling.getY()),
btScalar(graphicsbase[2]*trimeshScaling.getZ()));
}
}
vertices.push_back(triangleVerts[0]);
vertices.push_back(triangleVerts[1]);
vertices.push_back(triangleVerts[2]);
indices.push_back(indices.size());
indices.push_back(indices.size());
indices.push_back(indices.size());
}
}
//GraphicsShape* gfxShape = 0;//b3BulletDataExtractor::createGraphicsShapeFromWavefrontObj(objData);
//GraphicsShape* gfxShape = b3BulletDataExtractor::createGraphicsShapeFromConvexHull(&sUnitSpherePoints[0],MY_UNITSPHERE_POINTS);
float meshScaling[4] = {1,1,1,1};
//int shapeIndex = renderer.registerShape(gfxShape->m_vertices,gfxShape->m_numvertices,gfxShape->m_indices,gfxShape->m_numIndices);
//float groundPos[4] = {0,0,0,0};
//renderer.registerGraphicsInstance(shapeIndex,groundPos,rotOrn,color,meshScaling);
if (vertices.size() && indices.size())
{
int gpuShapeIndex = m_np->registerConcaveMesh(&vertices,&indices, meshScaling);
m_uniqueShapeMapping.push_back(gpuShapeIndex);
} else
{
printf("Error: no vertices in mesh in b3GpuDynamicsWorld::addRigidBody\n");
index = -1;
b3Assert(0);
}
} else
{
if (colShape->getShapeType()==COMPOUND_SHAPE_PROXYTYPE)
{
btCompoundShape* compound = (btCompoundShape*) colShape;
b3AlignedObjectArray<b3GpuChildShape> childShapes;
for (int i=0;i<compound->getNumChildShapes();i++)
{
//for now, only support polyhedral child shapes
b3Assert(compound->getChildShape(i)->isPolyhedral());
b3GpuChildShape child;
child.m_shapeIndex = findOrRegisterCollisionShape(compound->getChildShape(i));
btVector3 pos = compound->getChildTransform(i).getOrigin();
btQuaternion orn = compound->getChildTransform(i).getRotation();
for (int v=0;v<4;v++)
{
child.m_childPosition[v] = pos[v];
child.m_childOrientation[v] = orn[v];
}
childShapes.push_back(child);
}
index = m_uniqueShapes.size();
m_uniqueShapes.push_back(colShape);
int gpuShapeIndex = m_np->registerCompoundShape(&childShapes);
m_uniqueShapeMapping.push_back(gpuShapeIndex);
/*printf("Error: unsupported compound type (%d) in b3GpuDynamicsWorld::addRigidBody\n",colShape->getShapeType());
index = -1;
b3Assert(0);
*/
} else
{
if (colShape->getShapeType()==SPHERE_SHAPE_PROXYTYPE)
{
m_uniqueShapes.push_back(colShape);
btSphereShape* sphere = (btSphereShape*)colShape;
int gpuShapeIndex = m_np->registerSphereShape(sphere->getRadius());
m_uniqueShapeMapping.push_back(gpuShapeIndex);
} else
{
if (colShape->getShapeType()==STATIC_PLANE_PROXYTYPE)
{
m_uniqueShapes.push_back(colShape);
btStaticPlaneShape* plane = (btStaticPlaneShape*)colShape;
int gpuShapeIndex = m_np->registerPlaneShape((b3Vector3&)plane->getPlaneNormal(),plane->getPlaneConstant());
m_uniqueShapeMapping.push_back(gpuShapeIndex);
} else
{
printf("Error: unsupported shape type (%d) in b3GpuDynamicsWorld::addRigidBody\n",colShape->getShapeType());
index = -1;
b3Assert(0);
}
}
}
}
}
}
return index;
}
void b3GpuDynamicsWorld::addRigidBody(btRigidBody* body)
{
m_cpuGpuSync = true;
//body->setMotionState(0);
int index = findOrRegisterCollisionShape(body->getCollisionShape());
if (index>=0)
{
int gpuShapeIndex= m_uniqueShapeMapping[index];
float mass = body->getInvMass() ? 1.f/body->getInvMass() : 0.f;
btVector3 pos = body->getWorldTransform().getOrigin();
btQuaternion orn = body->getWorldTransform().getRotation();
int bodyIndex = m_rigidBodyPipeline->registerPhysicsInstance(mass,&pos.getX(),&orn.getX(),gpuShapeIndex,m_collisionObjects.size(),false);
body->setUserIndex(bodyIndex);
m_collisionObjects.push_back(body);
m_bodyUpdateRevisions.push_back(-1);
}
}
void b3GpuDynamicsWorld::removeRigidBody(btRigidBody* colObj)
{
m_cpuGpuSync = true;
btDynamicsWorld::removeCollisionObject(colObj);
m_bodyUpdateRevisions.resize(this->m_collisionObjects.size());
for (int i=0;i<m_bodyUpdateRevisions.size();i++)
{
m_bodyUpdateRevisions[i] = -1;
}
int bodyIndex = colObj->getUserIndex();
if (getNumCollisionObjects()==0)
{
m_uniqueShapes.resize(0);
m_uniqueShapeMapping.resize(0);
m_np->reset();
m_bp->reset();
m_rigidBodyPipeline->reset();
#ifdef BT_USE_BODY_UPDATE_REVISION
m_bodyUpdateRevisions.resize(0);
#endif //BT_USE_BODY_UPDATE_REVISION
}
}
void b3GpuDynamicsWorld::reset()
{
m_staticBody = 0;
if (m_collisionObjects.size())
b3Warning("m_collisionObjects should be empty before calling b3GpuDynamicsWorld::reset");
m_collisionObjects.clear();
if (m_bodyUpdateRevisions.size())
b3Warning("world (m_bodyUpdateRevisions) should be empty before calling b3GpuDynamicsWorld::reset");
m_bodyUpdateRevisions.clear();
if (m_constraints.size())
b3Warning("m_constraints should be empty before calling b3GpuDynamicsWorld::reset");
m_constraints.clear();
m_uniqueShapes.resize(0);
m_uniqueShapeMapping.resize(0);
m_np->reset();
m_bp->reset();
m_rigidBodyPipeline->reset();
#ifdef BT_USE_BODY_UPDATE_REVISION
m_bodyUpdateRevisions.resize(0);
#endif
btConvexHullShape* nullShape = new btConvexHullShape();
m_staticBody = new btRigidBody(0,0,nullShape);
addRigidBody(m_staticBody,0,0);
}
void b3GpuDynamicsWorld::removeCollisionObject(btCollisionObject* colObj)
{
m_cpuGpuSync = true;
btDynamicsWorld::removeCollisionObject(colObj);
m_bodyUpdateRevisions.resize(this->m_collisionObjects.size());
for (int i=0;i<m_bodyUpdateRevisions.size();i++)
{
m_bodyUpdateRevisions[i] = -1;
}
if (getNumCollisionObjects()==0)
{
reset();
}
}
void b3GpuDynamicsWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
{
b3AlignedObjectArray<b3RayInfo> rays;
b3RayInfo ray;
ray.m_from = (const b3Vector3&)rayFromWorld;
ray.m_to = (const b3Vector3&)rayToWorld;
rays.push_back(ray);
b3AlignedObjectArray<b3RayHit> hitResults;
b3RayHit hit;
hit.m_hitFraction = 1.f;
hitResults.push_back(hit);
m_rigidBodyPipeline->castRays(rays,hitResults);
b3Printf("hit = %f\n", hitResults[0].m_hitFraction);
if (hitResults[0].m_hitFraction<1.f)
{
b3Assert(hitResults[0].m_hitBody >=0);
b3Assert(hitResults[0].m_hitBody < m_collisionObjects.size());
b3Vector3 hitNormalLocal = hitResults[0].m_hitNormal;
btCollisionObject* colObj = m_collisionObjects[hitResults[0].m_hitBody];
LocalRayResult rayResult(colObj,0,(btVector3&)hitNormalLocal,hitResults[0].m_hitFraction);
rayResult.m_hitFraction = hitResults[0].m_hitFraction;
resultCallback.addSingleResult(rayResult,true);
}
}
void b3GpuDynamicsWorld::synchronizeMotionStates()
{
//iterate over all collision objects
for ( int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
btRigidBody* body = btRigidBody::upcast(colObj);
if (body)
synchronizeSingleMotionState(body);
}
}
void b3GpuDynamicsWorld::synchronizeSingleMotionState(btRigidBody* body)
{
btAssert(body);
if (body->getMotionState() && !body->isStaticOrKinematicObject())
{
//we need to call the update at least once, even for sleeping objects
//otherwise the 'graphics' transform never updates properly
const btTransform& centerOfMassWorldTrans = body->getWorldTransform();
body->getMotionState()->setWorldTransform(centerOfMassWorldTrans);
}
}
void b3GpuDynamicsWorld::debugDrawWorld()
{
BT_PROFILE("debugDrawWorld");
btCollisionWorld::debugDrawWorld();
}
void b3GpuDynamicsWorld::addConstraint(btTypedConstraint* constraint, bool disableCollisionsBetweenLinkedBodies)
{
constraint->setUserConstraintPtr(0);
m_constraints.push_back(constraint);
switch (constraint->getConstraintType())
{
case POINT2POINT_CONSTRAINT_TYPE:
{
btPoint2PointConstraint* p = (btPoint2PointConstraint*) constraint;
int rbA = p->getRigidBodyA().getUserIndex();
int rbB = p->getRigidBodyB().getUserIndex();
btVector3 pivotInB = p->getPivotInB();
if (rbB<=0)
{
pivotInB = p->getRigidBodyA().getWorldTransform()*p->getPivotInA();
rbB = m_staticBody->getUserIndex();
}
if (rbA>=0 && rbB>=0)
{
b3Point2PointConstraint* p2p = new b3Point2PointConstraint(rbA,rbB, (const b3Vector3&)p->getPivotInA(),(const b3Vector3&)pivotInB);
p2p->setBreakingImpulseThreshold(p->getBreakingImpulseThreshold());
constraint->setUserConstraintPtr(p2p);
m_rigidBodyPipeline->addConstraint(p2p);
} else
{
b3Error("invalid body index in addConstraint,b3Point2PointConstraint\n");
}
break;
}
case D6_CONSTRAINT_TYPE:
{
btGeneric6DofConstraint* dof2 = (btGeneric6DofConstraint*) constraint;
const b3RigidBodyData* bodiesCL = m_np->getBodiesCpu();
int rbA = dof2->getRigidBodyA().getUserIndex();
int rbB = dof2->getRigidBodyB().getUserIndex();
btTransform frameInA = dof2->getFrameOffsetB();
btTransform frameInB = dof2->getFrameOffsetB();
if (rbA<=0)
{
frameInA = dof2->getRigidBodyB().getWorldTransform()*dof2->getFrameOffsetB();
rbA = m_staticBody->getUserIndex();
}
if (rbB<=0)
{
frameInB = dof2->getRigidBodyA().getWorldTransform()*dof2->getFrameOffsetA();
rbB = m_staticBody->getUserIndex();
}
if (rbA>=0 && rbB>=0)
{
b3Generic6DofConstraint* dof3 = new b3Generic6DofConstraint(rbA,rbB,(b3Transform&)frameInA,(b3Transform&)frameInB,false,bodiesCL);//(();//(rbA,rbB, (const b3Vector3&)p->getPivotInA(),(const b3Vector3&)pivotInB);
{
btVector3 limit(0,0,0);
dof2->getLinearLowerLimit(limit);
dof3->setLinearLowerLimit((const b3Vector3&)limit);
dof2->setLinearUpperLimit(limit);
dof3->setLinearUpperLimit((const b3Vector3&)limit);
dof2->setAngularLowerLimit(limit);
dof3->setAngularLowerLimit((const b3Vector3&)limit);
dof2->setAngularUpperLimit(limit);
dof3->setAngularUpperLimit((const b3Vector3&)limit);
/* for (int i=0;i<6;i++)
{
dof3->setParam(BT_CONSTRAINT_STOP_CFM,dof2->getParam(BT_CONSTRAINT_STOP_CFM,i),i);
dof3->setParam(BT_CONSTRAINT_STOP_ERP,dof2->getParam(BT_CONSTRAINT_STOP_ERP,i),i);
}
*/
dof3->setBreakingImpulseThreshold(dof2->getBreakingImpulseThreshold());
}
// p2p->setBreakingImpulseThreshold(p->getBreakingImpulseThreshold());
constraint->setUserConstraintPtr(dof3);
m_rigidBodyPipeline->addConstraint(dof3);
} else
{
b3Error("invalid body index in addConstraint, btGeneric6DofConstraint.\n");
}
// b3Generic6DofConstraint
break;
}
default:
b3Warning("Warning: b3GpuDynamicsWorld::addConstraint with unsupported constraint type\n");
};
}
void b3GpuDynamicsWorld::removeConstraint(btTypedConstraint* constraint)
{
b3TypedConstraint* c = (b3TypedConstraint*) constraint->getUserConstraintPtr();
if (c)
{
this->m_rigidBodyPipeline->removeConstraint(c);
delete c;
}
m_constraints.remove(constraint);
}