bullet3/Demos3/ImplicitCloth/stan/vecmath.h
erwincoumans 8f3051fdf1 add ImplicitCloth demo, by Stan Melax
add SimpleOpenGL3App, used in ImplicitCloth demo. The Bullet 3.x demos should use this as a template, it will clean up some of the mess.
2013-11-09 12:12:33 -08:00

467 lines
20 KiB
C++

//
//
// Typical 3d vector math code.
// By S Melax 1998-2008
//
//
#ifndef SM_VEC_MATH_H
#define SM_VEC_MATH_H
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <xmmintrin.h>
#define M_PIf (3.1415926535897932384626433832795f)
inline float DegToRad(float angle_degrees) { return angle_degrees * M_PIf / 180.0f; } // returns Radians.
inline float RadToDeg(float angle_radians) { return angle_radians * 180.0f / M_PIf; } // returns Degrees.
#define OFFSET(Class,Member) (((char*) (&(((Class*)NULL)-> Member )))- ((char*)NULL))
int argmin(const float a[],int n);
int argmax(const float a[],int n);
float squared(float a);
float clamp(float a,const float minval=0.0f, const float maxval=1.0f);
int clamp(int a,const int minval,const int maxval) ;
float Round(float a,float precision);
float Interpolate(const float &f0,const float &f1,float alpha) ;
template <class T>
void Swap(T &a,T &b)
{
T tmp = a;
a=b;
b=tmp;
}
template <class T>
T Max(const T &a,const T &b)
{
return (a>b)?a:b;
}
template <class T>
T Min(const T &a,const T &b)
{
return (a<b)?a:b;
}
//for template normalize functions:
inline float squareroot(float a){return sqrtf(a);}
inline double squareroot(double a){return sqrt(a); }
//----------------------------------
//-------- 2D --------
template<class T>
class vec2
{
public:
T x,y;
inline vec2(){x=0;y=0;}
inline vec2(const T &_x, const T &_y){x=_x;y=_y;}
inline T& operator[](int i) {return ((T*)this)[i];}
inline const T& operator[](int i) const {return ((T*)this)[i];}
};
typedef vec2<int> int2;
typedef vec2<float> float2;
template<class T> inline int operator ==(const vec2<T> &a,const vec2<T> &b) {return (a.x==b.x && a.y==b.y);}
template<class T> inline vec2<T> operator-( const vec2<T>& a, const vec2<T>& b ){return vec2<T>(a.x-b.x,a.y-b.y);}
template<class T> inline vec2<T> operator+( const vec2<T>& a, const vec2<T>& b ){return float2(a.x+b.x,a.y+b.y);}
//--------- 3D ---------
template<class T>
class vec3
{
public:
T x,y,z;
inline vec3(){x=0;y=0;z=0;};
inline vec3(const T &_x,const T &_y,const T &_z){x=_x;y=_y;z=_z;};
inline T& operator[](int i) {return ((T*)this)[i];}
inline const T& operator[](int i) const {return ((T*)this)[i];}
};
typedef vec3<int> int3;
typedef vec3<short> short3;
typedef vec3<float> float3;
// due to ambiguity there is no overloaded operators for v3*v3 use dot,cross,outerprod,cmul
template<class T> inline int operator==(const vec3<T> &a,const vec3<T> &b) {return (a.x==b.x && a.y==b.y && a.z==b.z);}
template<class T> inline int operator!=(const vec3<T> &a,const vec3<T> &b) {return !(a==b);}
template<class T> inline vec3<T> operator+(const vec3<T>& a, const vec3<T>& b ){return vec3<T>(a.x+b.x, a.y+b.y, a.z+b.z);}
template<class T> inline vec3<T> operator-(const vec3<T>& a, const vec3<T>& b ){return vec3<T>(a.x-b.x, a.y-b.y, a.z-b.z);}
template<class T> inline vec3<T> operator-(const vec3<T>& v){return vec3<T>(-v.x,-v.y,-v.z );}
template<class T> inline vec3<T> operator*(const vec3<T>& v, const T &s ){ return vec3<T>( v.x*s, v.y*s, v.z*s );}
template<class T> inline vec3<T> operator*(T s, const vec3<T>& v ){return v*s;}
template<class T> inline vec3<T> operator/(const vec3<T>& v, T s ){return vec3<T>( v.x/s, v.y/s, v.z/s );}
template<class T> inline T dot (const vec3<T>& a, const vec3<T>& b){return a.x*b.x + a.y*b.y + a.z*b.z;}
template<class T> inline vec3<T> cmul (const vec3<T>& a, const vec3<T>& b){return vec3<T>(a.x*b.x, a.y*b.y, a.z*b.z);}
template<class T> inline vec3<T> cross(const vec3<T>& a, const vec3<T>& b){return vec3<T>(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);}
template<class T> inline T magnitude( const vec3<T>& v ){return squareroot(dot(v,v));}
template<class T> inline vec3<T> normalize( const vec3<T>& v ){return v/magnitude(v);}
template<class T> inline vec3<T>& operator+=(vec3<T>& a, const vec3<T>& b){a.x+=b.x;a.y+=b.y;a.z+=b.z;return a;}
template<class T> inline vec3<T>& operator-=(vec3<T>& a, const vec3<T>& b){a.x-=b.x;a.y-=b.y;a.z-=b.z;return a;}
template<class T> inline vec3<T>& operator*=(vec3<T>& v, T s){v.x*=s;v.y*=s;v.z*= s;return v;}
template<class T> inline vec3<T>& operator/=(vec3<T>& v, T s){v.x/=s;v.y/=s;v.z/=s;return v;}
float3 safenormalize(const float3 &v);
float3 vabs(const float3 &v);
float3 Interpolate(const float3 &v0,const float3 &v1,float alpha);
float3 Round(const float3& a,float precision);
template<class T> inline vec3<T>VectorMin(const vec3<T> &a,const vec3<T> &b) {return vec3<T>(Min(a.x,b.x),Min(a.y,b.y),Min(a.z,b.z));}
template<class T> inline vec3<T>VectorMax(const vec3<T> &a,const vec3<T> &b) {return vec3<T>(Max(a.x,b.x),Max(a.y,b.y),Max(a.z,b.z));}
int overlap(const float3 &bmina,const float3 &bmaxa,const float3 &bminb,const float3 &bmaxb);
template <class T>
class mat3x3
{
public:
vec3<T> x,y,z; // the 3 rows of the Matrix
inline mat3x3(){}
inline mat3x3(const T &xx,const T &xy,const T &xz,const T &yx,const T &yy,const T &yz,const T &zx,const T &zy,const T &zz):x(xx,xy,xz),y(yx,yy,yz),z(zx,zy,zz){}
inline mat3x3(const vec3<T> &_x,const vec3<T> &_y,const vec3<T> &_z):x(_x),y(_y),z(_z){}
inline vec3<T>& operator[](int i) {return (&x)[i];}
inline const vec3<T>& operator[](int i) const {return (&x)[i];}
inline T& operator()(int r, int c) {return ((&x)[r])[c];}
inline const T& operator()(int r, int c) const {return ((&x)[r])[c];}
};
typedef mat3x3<float> float3x3;
float3x3 Transpose( const float3x3& m );
template<class T> vec3<T> operator*( const vec3<T>& v , const mat3x3<T>& m )
{
return vec3<T>((m.x.x*v.x + m.y.x*v.y + m.z.x*v.z),
(m.x.y*v.x + m.y.y*v.y + m.z.y*v.z),
(m.x.z*v.x + m.y.z*v.y + m.z.z*v.z));
}
float3 operator*( const float3x3& m , const float3& v );
float3x3 operator*( const float3x3& m , const float& s );
float3x3 operator*( const float3x3& ma, const float3x3& mb );
float3x3 operator/( const float3x3& a, const float& s ) ;
float3x3 operator+( const float3x3& a, const float3x3& b );
float3x3 operator-( const float3x3& a, const float3x3& b );
float3x3 &operator+=( float3x3& a, const float3x3& b );
float3x3 &operator-=( float3x3& a, const float3x3& b );
float3x3 &operator*=( float3x3& a, const float& s );
float Determinant(const float3x3& m );
float3x3 Inverse(const float3x3& a); // its just 3x3 so we simply do that cofactor method
float3x3 outerprod(const float3& a,const float3& b);
//-------- 4D Math --------
template<class T>
class vec4
{
public:
T x,y,z,w;
inline vec4(){x=0;y=0;z=0;w=0;};
inline vec4(const T &_x, const T &_y, const T &_z, const T &_w){x=_x;y=_y;z=_z;w=_w;}
inline vec4(const vec3<T> &v,const T &_w){x=v.x;y=v.y;z=v.z;w=_w;}
//operator float *() { return &x;};
T& operator[](int i) {return ((T*)this)[i];}
const T& operator[](int i) const {return ((T*)this)[i];}
inline const vec3<T>& xyz() const { return *((vec3<T>*)this);}
inline vec3<T>& xyz() { return *((vec3<T>*)this);}
};
typedef vec4<float> float4;
typedef vec4<int> int4;
typedef vec4<unsigned char> byte4;
template<class T> inline int operator==(const vec4<T> &a,const vec4<T> &b) {return (a.x==b.x && a.y==b.y && a.z==b.z && a.w==b.w);}
template<class T> inline int operator!=(const vec4<T> &a,const vec4<T> &b) {return !(a==b);}
template<class T> inline vec4<T> operator+(const vec4<T>& a, const vec4<T>& b ){return vec4<T>(a.x+b.x,a.y+b.y,a.z+b.z,a.w+b.w);}
template<class T> inline vec4<T> operator-(const vec4<T>& a, const vec4<T>& b ){return vec4<T>(a.x-b.x,a.y-b.y,a.z-b.z,a.w-b.w);}
template<class T> inline vec4<T> operator-(const vec4<T>& v){return vec4<T>(-v.x,-v.y,-v.z,-v.w);}
template<class T> inline vec4<T> operator*(const vec4<T>& v, const T &s ){ return vec4<T>( v.x*s, v.y*s, v.z*s,v.w*s);}
template<class T> inline vec4<T> operator*(T s, const vec4<T>& v ){return v*s;}
template<class T> inline vec4<T> operator/(const vec4<T>& v, T s ){return vec4<T>( v.x/s, v.y/s, v.z/s,v.w/s );}
template<class T> inline T dot(const vec4<T>& a, const vec4<T>& b ){return a.x*b.x + a.y*b.y + a.z*b.z+a.w*b.w;}
template<class T> inline vec4<T> cmul(const vec4<T> &a, const vec4<T> &b) {return vec4<T>(a.x*b.x, a.y*b.y, a.z*b.z,a.w*b.w);}
template<class T> inline vec4<T>& operator+=(vec4<T>& a, const vec4<T>& b ){a.x+=b.x;a.y+=b.y;a.z+=b.z;a.w+=b.w;return a;}
template<class T> inline vec4<T>& operator-=(vec4<T>& a, const vec4<T>& b ){a.x-=b.x;a.y-=b.y;a.z-=b.z;a.w-=b.w;return a;}
template<class T> inline vec4<T>& operator*=(vec4<T>& v, T s){v.x*=s;v.y*=s;v.z*=s;v.w*=s;return v;}
template<class T> inline vec4<T>& operator/=(vec4<T>& v, T s){v.x/=s;v.y/=s;v.z/=s;v.w/=s;return v;}
template<class T> inline T magnitude( const vec4<T>& v ){return squareroot(dot(v,v));}
template<class T> inline vec4<T> normalize( const vec4<T>& v ){return v/magnitude(v);}
struct D3DXMATRIX;
template<class T>
class mat4x4
{
public:
vec4<T> x,y,z,w; // the 4 rows
inline mat4x4(){}
inline mat4x4(const vec4<T> &_x, const vec4<T> &_y, const vec4<T> &_z, const vec4<T> &_w):x(_x),y(_y),z(_z),w(_w){}
inline mat4x4(const T& m00, const T& m01, const T& m02, const T& m03,
const T& m10, const T& m11, const T& m12, const T& m13,
const T& m20, const T& m21, const T& m22, const T& m23,
const T& m30, const T& m31, const T& m32, const T& m33 )
:x(m00,m01,m02,m03),y(m10,m11,m12,m13),z(m20,m21,m22,m23),w(m30,m31,m32,m33){}
inline vec4<T>& operator[](int i) {assert(i>=0&&i<4);return (&x)[i];}
inline const vec4<T>& operator[](int i) const {assert(i>=0&&i<4);return (&x)[i];}
inline T& operator()(int r, int c) {assert(r>=0&&r<4&&c>=0&&c<4);return ((&x)[r])[c];}
inline const T& operator()(int r, int c) const {assert(r>=0&&r<4&&c>=0&&c<4);return ((&x)[r])[c];}
inline operator T* () {return &x.x;}
inline operator const T* () const {return &x.x;}
operator struct D3DXMATRIX* () { return (struct D3DXMATRIX*) this;}
operator const struct D3DXMATRIX* () const { return (struct D3DXMATRIX*) this;}
};
typedef mat4x4<float> float4x4;
float4x4 operator*( const float4x4& a, const float4x4& b );
float4 operator*( const float4& v, const float4x4& m );
float4x4 Inverse(const float4x4 &m);
float4x4 MatrixRigidInverse(const float4x4 &m);
float4x4 MatrixTranspose(const float4x4 &m);
float4x4 MatrixPerspectiveFov(float fovy, float Aspect, float zn, float zf );
float4x4 MatrixTranslation(const float3 &t);
float4x4 MatrixRotationZ(const float angle_radians);
float4x4 MatrixLookAt(const float3& eye, const float3& at, const float3& up);
int operator==( const float4x4 &a, const float4x4 &b );
//-------- Quaternion ------------
template<class T>
class quaternion : public vec4<T>
{
public:
inline quaternion() { this->x = this->y = this->z = 0.0f; this->w = 1.0f; }
inline quaternion(const T &_x, const T &_y, const T &_z, const T &_w){this->x=_x;this->y=_y;this->z=_z;this->w=_w;}
inline explicit quaternion(const vec4<T> &v):vec4<T>(v){}
T angle() const { return acosf(this->w)*2.0f; }
vec3<T> axis() const { vec3<T> a(this->x,this->y,this->z); if(fabsf(angle())<0.0000001f) return vec3<T>(1,0,0); return a*(1/sinf(angle()/2.0f)); }
inline vec3<T> xdir() const { return vec3<T>( 1-2*(this->y*this->y+this->z*this->z), 2*(this->x*this->y+this->w*this->z),
2*(this->x*this->z-this->w*this->y) ); }
inline vec3<T> ydir() const { return vec3<T>( 2*(this->x*this->y-this->w*this->z),1-2*(this->x*this->x+this->z*this->z), 2*(this->y*this->z+this->w*this->x) ); }
inline vec3<T> zdir() const { return vec3<T>( 2*(this->x*this->z+this->w*this->y),
2*(this->y*this->z-this->w*this->x),1-
2*(this->x*this->x+this->y*this->y) ); }
inline mat3x3<T> getmatrix() const { return mat3x3<T>( xdir(), ydir(), zdir() ); }
//operator float3x3() { return getmatrix(); }
void Normalize();
};
template<class T>
inline quaternion<T> quatfrommat(const mat3x3<T> &m)
{
T magw = m[0 ][ 0] + m[1 ][ 1] + m[2 ][ 2];
T magxy;
T magzw;
vec3<T> pre;
vec3<T> prexy;
vec3<T> prezw;
quaternion<T> postxy;
quaternion<T> postzw;
quaternion<T> post;
int wvsz = (magw > m[2][2] ) ;
magzw = (wvsz) ? magw : m[2][2];
prezw = (wvsz) ? vec3<T>(1.0f,1.0f,1.0f) : vec3<T>(-1.0f,-1.0f,1.0f) ;
postzw = (wvsz) ? quaternion<T>(0.0f,0.0f,0.0f,1.0f): quaternion<T>(0.0f,0.0f,1.0f,0.0f);
int xvsy = (m[0][0]>m[1][1]);
magxy = (xvsy) ? m[0][0] : m[1][1];
prexy = (xvsy) ? vec3<T>(1.0f,-1.0f,-1.0f) : vec3<T>(-1.0f,1.0f,-1.0f) ;
postxy = (xvsy) ? quaternion<T>(1.0f,0.0f,0.0f,0.0f): quaternion<T>(0.0f,1.0f,0.0f,0.0f);
int zwvsxy = (magzw > magxy);
pre = (zwvsxy) ? prezw : prexy ;
post = (zwvsxy) ? postzw : postxy;
T t = pre.x * m[0 ][ 0] + pre.y * m[1 ][ 1] + pre.z * m[2 ][ 2] + 1.0f;
T s = 1/sqrt(t) * 0.5f;
quaternion<T> qp;
qp.x = ( pre.y * m[1][2] - pre.z * m[2][1] ) * s;
qp.y = ( pre.z * m[2][0] - pre.x * m[0][2] ) * s;
qp.z = ( pre.x * m[0][1] - pre.y * m[1][0] ) * s;
qp.w = t * s ;
return qp * post ;
}
typedef quaternion<float> Quaternion;
inline Quaternion QuatFromAxisAngle(const float3 &_v, float angle_radians )
{
float3 v = normalize(_v)*sinf(angle_radians/2.0f);
return Quaternion(v.x,v.y,v.z,cosf(angle_radians/2.0f));
}
template<class T> inline quaternion<T> Conjugate(const quaternion<T> &q){return quaternion<T>(-q.x,-q.y,-q.z,q.w);}
template<class T> inline quaternion<T> Inverse(const quaternion<T> &q){return Conjugate(q);}
template<class T> inline quaternion<T> normalize( const quaternion<T> & a ){return quaternion<T> (normalize((vec4<T>&)a));}
template<class T> inline quaternion<T>& operator*=(quaternion<T>& a, T s ){return (quaternion<T>&)((vec4<T>&)a *=s);}
template<class T> inline quaternion<T> operator*( const quaternion<T>& a, float s ){return quaternion<T>((vec4<T>&)a*s);}
template<class T> inline quaternion<T> operator+( const quaternion<T>& a, const quaternion<T>& b){return quaternion<T>((vec4<T>&)a+(vec4<T>&)b);}
template<class T> inline quaternion<T> operator-( const quaternion<T>& a, const quaternion<T>& b){return quaternion<T>((vec4<T>&)a-(vec4<T>&)b);}
template<class T> inline quaternion<T> operator-( const quaternion<T>& b){return quaternion<T>(-(vec4<T>&)b);}
template<class T> inline quaternion<T> operator*( const quaternion<T>& a, const quaternion<T>& b)
{
return quaternion<T>(
a.w*b.x + a.x*b.w + a.y*b.z - a.z*b.y, //x
a.w*b.y - a.x*b.z + a.y*b.w + a.z*b.x, //y
a.w*b.z + a.x*b.y - a.y*b.x + a.z*b.w, //z
a.w*b.w - a.x*b.x - a.y*b.y - a.z*b.z ); //w
}
float3 rotate( const Quaternion& q, const float3& v );
//float3 operator*( const Quaternion& q, const float3& v );
//float3 operator*( const float3& v, const Quaternion& q );
Quaternion slerp(const Quaternion &a, const Quaternion& b, float t );
Quaternion Interpolate(const Quaternion &q0,const Quaternion &q1,float t);
Quaternion RotationArc(float3 v0, float3 v1 ); // returns quat q where q*v0*q^-1=v1
float4x4 MatrixFromQuatVec(const Quaternion &q, const float3 &v);
inline Quaternion QuatFromMat(const float3 &t, const float3 &b, const float3 &n)
{
return normalize(quatfrommat<float>(float3x3(t,b,n)));
}
//---------------- Pose ------------------
class Pose
{
public:
float3 position;
Quaternion orientation;
Pose(){}
Pose(const float3 &p,const Quaternion &q):position(p),orientation(q){}
Pose &pose(){return *this;}
const Pose &pose() const {return *this;}
};
inline float3 operator*(const Pose &a,const float3 &v)
{
return a.position + rotate(a.orientation,v);
}
inline Pose operator*(const Pose &a,const Pose &b)
{
return Pose(a.position + rotate(a.orientation,b.position),a.orientation*b.orientation);
}
inline Pose Inverse(const Pose &a)
{
Quaternion q = Inverse(a.orientation);
return Pose(rotate(q,-a.position),q);
}
inline Pose slerp(const Pose &p0,const Pose &p1,float t)
{
return Pose(p0.position * (1.0f-t) + p1.position * t,slerp(p0.orientation,p1.orientation,t));
}
inline float4x4 MatrixFromPose(const Pose &pose)
{
return MatrixFromQuatVec(pose.orientation,pose.position);
}
//------ Euler Angle -----
Quaternion YawPitchRoll( float yaw, float pitch, float roll );
float Yaw( const Quaternion& q );
float Pitch( const Quaternion& q );
float Roll( const Quaternion &q );
float Yaw( const float3& v );
float Pitch( const float3& v );
//------- Plane ----------
class Plane : public float4
{
public:
float3& normal(){ return xyz(); }
const float3& normal() const { return xyz(); }
float& dist(){return w;} // distance below origin - the D from plane equasion Ax+By+Cz+D=0
const float& dist() const{return w;} // distance below origin - the D from plane equasion Ax+By+Cz+D=0
Plane(const float3 &n,float d):float4(n,d){}
Plane(){dist()=0;}
explicit Plane(const float4 &v):float4(v){}
};
Plane Transform(const Plane &p, const float3 &translation, const Quaternion &rotation);
inline Plane PlaneFlip(const Plane &p){return Plane(-p.normal(),-p.dist());}
inline int operator==( const Plane &a, const Plane &b ) { return (a.normal()==b.normal() && a.dist()==b.dist()); }
inline int coplanar( const Plane &a, const Plane &b ) { return (a==b || a==PlaneFlip(b)); }
float3 PlaneLineIntersection(const Plane &plane, const float3 &p0, const float3 &p1);
float3 PlaneProject(const Plane &plane, const float3 &point);
float3 PlanesIntersection(const Plane &p0,const Plane &p1, const Plane &p2);
float3 PlanesIntersection(const Plane *planes,int planes_count,const float3 &seed=float3(0,0,0));
int Clip(const Plane &p,const float3 *verts_in,int count,float* verts_out); // verts_out must be preallocated with sufficient size >= count+1 or more if concave
int ClipPolyPoly(const float3 &normal,const float3 *clipper,int clipper_count,const float3 *verts_in, int in_count,float3 *scratch); //scratch must be preallocated
//--------- Utility Functions ------
float3 PlaneLineIntersection(const float3 &normal,const float dist, const float3 &p0, const float3 &p1);
float3 LineProject(const float3 &p0, const float3 &p1, const float3 &a); // projects a onto infinite line p0p1
float LineProjectTime(const float3 &p0, const float3 &p1, const float3 &a);
int BoxInside(const float3 &p,const float3 &bmin, const float3 &bmax) ;
int BoxIntersect(const float3 &v0, const float3 &v1, const float3 &bmin, const float3 &bmax, float3 *impact);
float DistanceBetweenLines(const float3 &ustart, const float3 &udir, const float3 &vstart, const float3 &vdir, float3 *upoint=NULL, float3 *vpoint=NULL);
float3 TriNormal(const float3 &v0, const float3 &v1, const float3 &v2);
float3 NormalOf(const float3 *vert, const int n);
Quaternion VirtualTrackBall(const float3 &cop, const float3 &cor, const float3 &dir0, const float3 &dir1);
int Clip(const float3 &plane_normal,float plane_dist,const float3 *verts_in,int count,float* verts_out); // verts_out must be preallocated with sufficient size >= count+1 or more if concave
int ClipPolyPoly(const float3 &normal,const float3 *clipper,int clipper_count,const float3 *verts_in, int in_count,float3 *scratch); //scratch must be preallocated
float3 Diagonal(const float3x3 &M);
Quaternion Diagonalizer(const float3x3 &A);
float3 Orth(const float3& v);
int SolveQuadratic(float a,float b,float c,float *ta,float *tb); // if true returns roots ta,tb where ta<=tb
int HitCheckPoly(const float3 *vert,const int n,const float3 &v0, const float3 &v1, float3 *impact=NULL, float3 *normal=NULL);
int HitCheckRaySphere(const float3& sphereposition,float radius, const float3& _v0, const float3& _v1, float3 *impact,float3 *normal);
int HitCheckRayCylinder(const float3 &p0,const float3 &p1,float radius,const float3& _v0,const float3& _v1, float3 *impact,float3 *normal);
int HitCheckSweptSphereTri(const float3 &p0,const float3 &p1,const float3 &p2,float radius, const float3& v0,const float3& _v1, float3 *impact,float3 *normal);
void BoxLimits(const float3 *verts,int verts_count, float3 &bmin_out,float3 &bmax_out);
void BoxLimits(const float4 *verts,int verts_count, float3 &bmin_out,float3 &bmax_out);
template<class T>
inline int maxdir(const T *p,int count,const T &dir)
{
assert(count);
int m=0;
for(int i=1;i<count;i++)
{
if(dot(p[i],dir)>dot(p[m],dir)) m=i;
}
return m;
}
float3 CenterOfMass(const float3 *vertices, const int3 *tris, const int count) ;
float3x3 Inertia(const float3 *vertices, const int3 *tris, const int count, const float3& com=float3(0,0,0)) ;
float Volume(const float3 *vertices, const int3 *tris, const int count) ;
int calchull(float3 *verts,int verts_count, int3 *&tris_out, int &tris_count,int vlimit); // computes convex hull see hull.cpp
#endif // VEC_MATH_H