mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-16 06:30:05 +00:00
201 lines
5.4 KiB
C++
201 lines
5.4 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
#include "ContinuousConvexCollision.h"
|
|
#include "CollisionShapes/ConvexShape.h"
|
|
#include "CollisionShapes/MinkowskiSumShape.h"
|
|
#include "NarrowPhaseCollision/SimplexSolverInterface.h"
|
|
#include "SimdTransformUtil.h"
|
|
#include "CollisionShapes/SphereShape.h"
|
|
|
|
#include "GjkPairDetector.h"
|
|
#include "PointCollector.h"
|
|
|
|
|
|
|
|
ContinuousConvexCollision::ContinuousConvexCollision ( ConvexShape* convexA,ConvexShape* convexB,SimplexSolverInterface* simplexSolver, ConvexPenetrationDepthSolver* penetrationDepthSolver)
|
|
:m_simplexSolver(simplexSolver),
|
|
m_penetrationDepthSolver(penetrationDepthSolver),
|
|
m_convexA(convexA),m_convexB(convexB)
|
|
{
|
|
}
|
|
|
|
/// This maximum should not be necessary. It allows for untested/degenerate cases in production code.
|
|
/// You don't want your game ever to lock-up.
|
|
#define MAX_ITERATIONS 1000
|
|
|
|
bool ContinuousConvexCollision::calcTimeOfImpact(
|
|
const SimdTransform& fromA,
|
|
const SimdTransform& toA,
|
|
const SimdTransform& fromB,
|
|
const SimdTransform& toB,
|
|
CastResult& result)
|
|
{
|
|
|
|
m_simplexSolver->reset();
|
|
|
|
/// compute linear and angular velocity for this interval, to interpolate
|
|
SimdVector3 linVelA,angVelA,linVelB,angVelB;
|
|
SimdTransformUtil::CalculateVelocity(fromA,toA,1.f,linVelA,angVelA);
|
|
SimdTransformUtil::CalculateVelocity(fromB,toB,1.f,linVelB,angVelB);
|
|
|
|
SimdScalar boundingRadiusA = m_convexA->GetAngularMotionDisc();
|
|
SimdScalar boundingRadiusB = m_convexB->GetAngularMotionDisc();
|
|
|
|
SimdScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB;
|
|
|
|
float radius = 0.001f;
|
|
|
|
SimdScalar lambda = 0.f;
|
|
SimdVector3 v(1,0,0);
|
|
|
|
int maxIter = MAX_ITERATIONS;
|
|
|
|
SimdVector3 n;
|
|
n.setValue(0.f,0.f,0.f);
|
|
bool hasResult = false;
|
|
SimdVector3 c;
|
|
|
|
float lastLambda = lambda;
|
|
//float epsilon = 0.001f;
|
|
|
|
int numIter = 0;
|
|
//first solution, using GJK
|
|
|
|
|
|
SimdTransform identityTrans;
|
|
identityTrans.setIdentity();
|
|
|
|
SphereShape raySphere(0.0f);
|
|
raySphere.SetMargin(0.f);
|
|
|
|
|
|
// result.DrawCoordSystem(sphereTr);
|
|
|
|
PointCollector pointCollector1;
|
|
|
|
{
|
|
|
|
GjkPairDetector gjk(m_convexA,m_convexB,m_simplexSolver,m_penetrationDepthSolver);
|
|
GjkPairDetector::ClosestPointInput input;
|
|
|
|
//we don't use margins during CCD
|
|
gjk.SetIgnoreMargin(true);
|
|
|
|
input.m_transformA = fromA;
|
|
input.m_transformB = fromB;
|
|
gjk.GetClosestPoints(input,pointCollector1,0);
|
|
|
|
hasResult = pointCollector1.m_hasResult;
|
|
c = pointCollector1.m_pointInWorld;
|
|
}
|
|
|
|
if (hasResult)
|
|
{
|
|
SimdScalar dist;
|
|
dist = pointCollector1.m_distance;
|
|
n = pointCollector1.m_normalOnBInWorld;
|
|
|
|
//not close enough
|
|
while (dist > radius)
|
|
{
|
|
numIter++;
|
|
if (numIter > maxIter)
|
|
return false; //todo: report a failure
|
|
|
|
float dLambda = 0.f;
|
|
|
|
//calculate safe moving fraction from distance / (linear+rotational velocity)
|
|
|
|
//float clippedDist = GEN_min(angularConservativeRadius,dist);
|
|
//float clippedDist = dist;
|
|
|
|
float projectedLinearVelocity = (linVelB-linVelA).dot(n);
|
|
|
|
dLambda = dist / (projectedLinearVelocity+ maxAngularProjectedVelocity);
|
|
|
|
lambda = lambda + dLambda;
|
|
|
|
if (lambda > 1.f)
|
|
return false;
|
|
|
|
if (lambda < 0.f)
|
|
return false;
|
|
|
|
//todo: next check with relative epsilon
|
|
if (lambda <= lastLambda)
|
|
break;
|
|
lastLambda = lambda;
|
|
|
|
|
|
|
|
//interpolate to next lambda
|
|
SimdTransform interpolatedTransA,interpolatedTransB,relativeTrans;
|
|
|
|
SimdTransformUtil::IntegrateTransform(fromA,linVelA,angVelA,lambda,interpolatedTransA);
|
|
SimdTransformUtil::IntegrateTransform(fromB,linVelB,angVelB,lambda,interpolatedTransB);
|
|
relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA);
|
|
|
|
result.DebugDraw( lambda );
|
|
|
|
PointCollector pointCollector;
|
|
GjkPairDetector gjk(m_convexA,m_convexB,m_simplexSolver,m_penetrationDepthSolver);
|
|
GjkPairDetector::ClosestPointInput input;
|
|
input.m_transformA = interpolatedTransA;
|
|
input.m_transformB = interpolatedTransB;
|
|
gjk.GetClosestPoints(input,pointCollector,0);
|
|
if (pointCollector.m_hasResult)
|
|
{
|
|
if (pointCollector.m_distance < 0.f)
|
|
{
|
|
//degenerate ?!
|
|
result.m_fraction = lastLambda;
|
|
result.m_normal = n;
|
|
return true;
|
|
}
|
|
c = pointCollector.m_pointInWorld;
|
|
|
|
dist = pointCollector.m_distance;
|
|
} else
|
|
{
|
|
//??
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
result.m_fraction = lambda;
|
|
result.m_normal = n;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
|
|
/*
|
|
//todo:
|
|
//if movement away from normal, discard result
|
|
SimdVector3 move = transBLocalTo.getOrigin() - transBLocalFrom.getOrigin();
|
|
if (result.m_fraction < 1.f)
|
|
{
|
|
if (move.dot(result.m_normal) <= 0.f)
|
|
{
|
|
}
|
|
}
|
|
*/
|
|
|
|
}
|
|
|