bullet3/examples/RoboticsLearning/KukaGraspExample.cpp
Erwin Coumans ef7a7f9004 Potential fix for Linux slow performance (usleep(0) takes a lot of time)
Remove b3RobotSimAPI, use RobotSimulator/b3RobotSimulatorClientAPI.h instead
2017-05-13 13:37:49 -07:00

308 lines
10 KiB
C++

#include "KukaGraspExample.h"
#include "../SharedMemory/IKTrajectoryHelper.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/CommonExampleInterface.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "../SharedMemory/PhysicsServerSharedMemory.h"
#include "../SharedMemory/PhysicsClientC_API.h"
#include <string>
#include "../RobotSimulator/b3RobotSimulatorClientAPI.h"
#include "../Utils/b3Clock.h"
///quick demo showing the right-handed coordinate system and positive rotations around each axis
class KukaGraspExample : public CommonExampleInterface
{
CommonGraphicsApp* m_app;
GUIHelperInterface* m_guiHelper;
b3RobotSimulatorClientAPI m_robotSim;
int m_kukaIndex;
IKTrajectoryHelper m_ikHelper;
int m_targetSphereInstance;
b3Vector3 m_targetPos;
b3Vector3 m_worldPos;
b3Vector4 m_targetOri;
b3Vector4 m_worldOri;
double m_time;
// int m_options;
b3AlignedObjectArray<int> m_movingInstances;
enum
{
numCubesX = 20,
numCubesY = 20
};
public:
KukaGraspExample(GUIHelperInterface* helper, int /* options */)
:m_app(helper->getAppInterface()),
m_guiHelper(helper),
// m_options(options),
m_kukaIndex(-1),
m_time(0)
{
m_targetPos.setValue(0.5,0,1);
m_worldPos.setValue(0, 0, 0);
m_app->setUpAxis(2);
}
virtual ~KukaGraspExample()
{
m_app->m_renderer->enableBlend(false);
}
virtual void initPhysics()
{
///create some graphics proxy for the tracking target
///the endeffector tries to track it using Inverse Kinematics
{
int sphereId = m_app->registerGraphicsUnitSphereShape(SPHERE_LOD_MEDIUM);
b3Quaternion orn(0, 0, 0, 1);
b3Vector4 color = b3MakeVector4(1., 0.3, 0.3, 1);
b3Vector3 scaling = b3MakeVector3(.02, .02, .02);
m_targetSphereInstance = m_app->m_renderer->registerGraphicsInstance(sphereId, m_targetPos, orn, color, scaling);
}
m_app->m_renderer->writeTransforms();
int mode = eCONNECT_EXISTING_EXAMPLE_BROWSER;
m_robotSim.setGuiHelper(m_guiHelper);
bool connected = m_robotSim.connect(mode);
// 0;//m_robotSim.connect(m_guiHelper);
b3Printf("robotSim connected = %d",connected);
{
m_kukaIndex = m_robotSim.loadURDF("kuka_iiwa/model.urdf");
if (m_kukaIndex >=0)
{
int numJoints = m_robotSim.getNumJoints(m_kukaIndex);
b3Printf("numJoints = %d",numJoints);
for (int i=0;i<numJoints;i++)
{
b3JointInfo jointInfo;
m_robotSim.getJointInfo(m_kukaIndex,i,&jointInfo);
b3Printf("joint[%d].m_jointName=%s",i,jointInfo.m_jointName);
}
/*
int wheelJointIndices[4]={2,3,6,7};
int wheelTargetVelocities[4]={-10,-10,-10,-10};
for (int i=0;i<4;i++)
{
b3JointMotorArgs controlArgs(CONTROL_MODE_VELOCITY);
controlArgs.m_targetVelocity = wheelTargetVelocities[i];
controlArgs.m_maxTorqueValue = 1e30;
m_robotSim.setJointMotorControl(m_kukaIndex,wheelJointIndices[i],controlArgs);
}
*/
}
{
m_robotSim.loadURDF("plane.urdf");
m_robotSim.setGravity(b3MakeVector3(0,0,0));
}
}
}
virtual void exitPhysics()
{
m_robotSim.disconnect();
}
virtual void stepSimulation(float deltaTime)
{
float dt = deltaTime;
btClamp(dt,0.0001f,0.01f);
m_time+=dt;
m_targetPos.setValue(0.4-0.4*b3Cos( m_time), 0, 0.8+0.4*b3Cos( m_time));
m_targetOri.setValue(0, 1.0, 0, 0);
m_targetPos.setValue(0.2*b3Cos( m_time), 0.2*b3Sin( m_time), 1.1);
int numJoints = m_robotSim.getNumJoints(m_kukaIndex);
if (numJoints==7)
{
double q_current[7]={0,0,0,0,0,0,0};
b3JointStates2 jointStates;
if (m_robotSim.getJointStates(m_kukaIndex,jointStates))
{
//skip the base positions (7 values)
b3Assert(7+numJoints == jointStates.m_numDegreeOfFreedomQ);
for (int i=0;i<numJoints;i++)
{
q_current[i] = jointStates.m_actualStateQ[i+7];
}
}
// compute body position and orientation
b3LinkState linkState;
m_robotSim.getLinkState(0, 6, &linkState);
m_worldPos.setValue(linkState.m_worldLinkFramePosition[0], linkState.m_worldLinkFramePosition[1], linkState.m_worldLinkFramePosition[2]);
m_worldOri.setValue(linkState.m_worldLinkFrameOrientation[0], linkState.m_worldLinkFrameOrientation[1], linkState.m_worldLinkFrameOrientation[2], linkState.m_worldLinkFrameOrientation[3]);
b3Vector3DoubleData targetPosDataOut;
m_targetPos.serializeDouble(targetPosDataOut);
b3Vector3DoubleData worldPosDataOut;
m_worldPos.serializeDouble(worldPosDataOut);
b3Vector3DoubleData targetOriDataOut;
m_targetOri.serializeDouble(targetOriDataOut);
b3Vector3DoubleData worldOriDataOut;
m_worldOri.serializeDouble(worldOriDataOut);
b3RobotSimulatorInverseKinematicArgs ikargs;
b3RobotSimulatorInverseKinematicsResults ikresults;
ikargs.m_bodyUniqueId = m_kukaIndex;
// ikargs.m_currentJointPositions = q_current;
// ikargs.m_numPositions = 7;
ikargs.m_endEffectorTargetPosition[0] = targetPosDataOut.m_floats[0];
ikargs.m_endEffectorTargetPosition[1] = targetPosDataOut.m_floats[1];
ikargs.m_endEffectorTargetPosition[2] = targetPosDataOut.m_floats[2];
//ikargs.m_flags |= B3_HAS_IK_TARGET_ORIENTATION;
ikargs.m_flags |= B3_HAS_JOINT_DAMPING;
ikargs.m_endEffectorTargetOrientation[0] = targetOriDataOut.m_floats[0];
ikargs.m_endEffectorTargetOrientation[1] = targetOriDataOut.m_floats[1];
ikargs.m_endEffectorTargetOrientation[2] = targetOriDataOut.m_floats[2];
ikargs.m_endEffectorTargetOrientation[3] = targetOriDataOut.m_floats[3];
ikargs.m_endEffectorLinkIndex = 6;
// Settings based on default KUKA arm setting
ikargs.m_lowerLimits.resize(numJoints);
ikargs.m_upperLimits.resize(numJoints);
ikargs.m_jointRanges.resize(numJoints);
ikargs.m_restPoses.resize(numJoints);
ikargs.m_jointDamping.resize(numJoints,0.5);
ikargs.m_lowerLimits[0] = -2.32;
ikargs.m_lowerLimits[1] = -1.6;
ikargs.m_lowerLimits[2] = -2.32;
ikargs.m_lowerLimits[3] = -1.6;
ikargs.m_lowerLimits[4] = -2.32;
ikargs.m_lowerLimits[5] = -1.6;
ikargs.m_lowerLimits[6] = -2.4;
ikargs.m_upperLimits[0] = 2.32;
ikargs.m_upperLimits[1] = 1.6;
ikargs.m_upperLimits[2] = 2.32;
ikargs.m_upperLimits[3] = 1.6;
ikargs.m_upperLimits[4] = 2.32;
ikargs.m_upperLimits[5] = 1.6;
ikargs.m_upperLimits[6] = 2.4;
ikargs.m_jointRanges[0] = 5.8;
ikargs.m_jointRanges[1] = 4;
ikargs.m_jointRanges[2] = 5.8;
ikargs.m_jointRanges[3] = 4;
ikargs.m_jointRanges[4] = 5.8;
ikargs.m_jointRanges[5] = 4;
ikargs.m_jointRanges[6] = 6;
ikargs.m_restPoses[0] = 0;
ikargs.m_restPoses[1] = 0;
ikargs.m_restPoses[2] = 0;
ikargs.m_restPoses[3] = SIMD_HALF_PI;
ikargs.m_restPoses[4] = 0;
ikargs.m_restPoses[5] = -SIMD_HALF_PI*0.66;
ikargs.m_restPoses[6] = 0;
ikargs.m_jointDamping[0] = 10.0;
ikargs.m_numDegreeOfFreedom = numJoints;
if (m_robotSim.calculateInverseKinematics(ikargs,ikresults))
{
//copy the IK result to the desired state of the motor/actuator
for (int i=0;i<numJoints;i++)
{
b3RobotSimulatorJointMotorArgs t(CONTROL_MODE_POSITION_VELOCITY_PD);
t.m_targetPosition = ikresults.m_calculatedJointPositions[i];
t.m_maxTorqueValue = 100.0;
t.m_kp= 1.0;
t.m_targetVelocity = 0;
t.m_kd = 1.0;
m_robotSim.setJointMotorControl(m_kukaIndex,i,t);
}
}
}
m_robotSim.stepSimulation();
}
virtual void renderScene()
{
m_robotSim.renderScene();
b3Quaternion orn(0, 0, 0, 1);
m_app->m_renderer->writeSingleInstanceTransformToCPU(m_targetPos, orn, m_targetSphereInstance);
m_app->m_renderer->writeTransforms();
//draw the end-effector target sphere
//m_app->m_renderer->renderScene();
}
virtual void physicsDebugDraw(int debugDrawMode)
{
m_robotSim.debugDraw(debugDrawMode);
}
virtual bool mouseMoveCallback(float x,float y)
{
return false;
}
virtual bool mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
virtual bool keyboardCallback(int key, int state)
{
return false;
}
virtual void resetCamera()
{
float dist = 3;
float pitch = 0;
float yaw = 30;
float targetPos[3]={-0.2,0.8,0.3};
if (m_app->m_renderer && m_app->m_renderer->getActiveCamera())
{
m_app->m_renderer->getActiveCamera()->setCameraDistance(dist);
m_app->m_renderer->getActiveCamera()->setCameraPitch(pitch);
m_app->m_renderer->getActiveCamera()->setCameraYaw(yaw);
m_app->m_renderer->getActiveCamera()->setCameraTargetPosition(targetPos[0],targetPos[1],targetPos[2]);
}
}
};
class CommonExampleInterface* KukaGraspExampleCreateFunc(struct CommonExampleOptions& options)
{
return new KukaGraspExample(options.m_guiHelper, options.m_option);
}