bullet3/examples/RoboticsLearning/R2D2GraspExample.cpp
Erwin Coumans 433d11d8cf Add a btIDEbugDraw::clearLines, helps multi-threaded rendering of lines (while updating those lines in a dynamics world in a different thread)
Expose COV_ENABLE_VR_RENDER_CONTROLLERS, to enable/disable rendering of controllers (and some frames) in VR
Expose COV_ENABLE_RENDERING to enable/disable rendering.
Fix some multi-threading issues (potential crashes), related to debug drawing/rendering in one thread, while changing the dynamics world/removing/resetSimulation in a different thread.
2017-05-16 12:19:03 -07:00

213 lines
5.6 KiB
C++

#include "R2D2GraspExample.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/CommonExampleInterface.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "../SharedMemory/PhysicsServerSharedMemory.h"
#include "../SharedMemory/PhysicsClientC_API.h"
#include <string>
#include "../RobotSimulator/b3RobotSimulatorClientAPI.h"
#include "../Utils/b3Clock.h"
///quick demo showing the right-handed coordinate system and positive rotations around each axis
class R2D2GraspExample : public CommonExampleInterface
{
CommonGraphicsApp* m_app;
GUIHelperInterface* m_guiHelper;
b3RobotSimulatorClientAPI m_robotSim;
int m_options;
int m_r2d2Index;
b3AlignedObjectArray<int> m_movingInstances;
enum
{
numCubesX = 20,
numCubesY = 20
};
public:
R2D2GraspExample(GUIHelperInterface* helper, int options)
:m_app(helper->getAppInterface()),
m_guiHelper(helper),
m_options(options),
m_r2d2Index(-1)
{
m_app->setUpAxis(2);
}
virtual ~R2D2GraspExample()
{
m_app->m_renderer->enableBlend(false);
}
virtual void physicsDebugDraw(int debugDrawMode)
{
}
virtual void initPhysics()
{
int mode = eCONNECT_EXISTING_EXAMPLE_BROWSER;
m_robotSim.setGuiHelper(m_guiHelper);
bool connected = m_robotSim.connect(mode);
b3Printf("robotSim connected = %d",connected);
if ((m_options & eROBOTIC_LEARN_GRASP)!=0)
{
{
b3RobotSimulatorLoadUrdfFileArgs args;
args.m_startPosition.setValue(0,0,.5);
m_r2d2Index = m_robotSim.loadURDF("r2d2.urdf",args);
if (m_r2d2Index>=0)
{
int numJoints = m_robotSim.getNumJoints(m_r2d2Index);
b3Printf("numJoints = %d",numJoints);
for (int i=0;i<numJoints;i++)
{
b3JointInfo jointInfo;
m_robotSim.getJointInfo(m_r2d2Index,i,&jointInfo);
b3Printf("joint[%d].m_jointName=%s",i,jointInfo.m_jointName);
}
int wheelJointIndices[4]={2,3,6,7};
int wheelTargetVelocities[4]={-10,-10,-10,-10};
for (int i=0;i<4;i++)
{
b3RobotSimulatorJointMotorArgs controlArgs(CONTROL_MODE_VELOCITY);
controlArgs.m_targetVelocity = wheelTargetVelocities[i];
controlArgs.m_maxTorqueValue = 1e30;
m_robotSim.setJointMotorControl(m_r2d2Index,wheelJointIndices[i],controlArgs);
}
}
}
{
b3RobotSimulatorLoadFileResults results;
m_robotSim.loadSDF("kiva_shelf/model.sdf",results);
}
{
m_robotSim.loadURDF("plane.urdf");
}
m_robotSim.setGravity(b3MakeVector3(0,0,-10));
}
if ((m_options & eROBOTIC_LEARN_COMPLIANT_CONTACT)!=0)
{
b3RobotSimulatorLoadUrdfFileArgs args;
b3RobotSimulatorLoadFileResults results;
{
args.m_startPosition.setValue(0,0,2.5);
args.m_startOrientation.setEulerZYX(0,0.2,0);
m_r2d2Index = m_robotSim.loadURDF("cube_soft.urdf",args);
}
{
args.m_startPosition.setValue(0,2,2.5);
args.m_startOrientation.setEulerZYX(0,0.2,0);
m_robotSim.loadURDF("cube_no_friction.urdf",args);
}
{
args.m_startPosition.setValue(0,0,0);
args.m_startOrientation.setEulerZYX(0,0.2,0);
args.m_forceOverrideFixedBase = true;
m_robotSim.loadURDF("plane.urdf",args);
}
m_robotSim.setGravity(b3MakeVector3(0,0,-10));
}
if ((m_options & eROBOTIC_LEARN_ROLLING_FRICTION)!=0)
{
b3RobotSimulatorLoadUrdfFileArgs args;
b3RobotSimulatorLoadFileResults results;
{
args.m_startPosition.setValue(0,0,2.5);
args.m_startOrientation.setEulerZYX(0,0,0);
args.m_useMultiBody = true;
m_robotSim.loadURDF("sphere2_rolling_friction.urdf",args);
}
{
args.m_startPosition.setValue(0,2,2.5);
args.m_startOrientation.setEulerZYX(0,0,0);
args.m_useMultiBody = true;
m_robotSim.loadURDF("sphere2.urdf", args);
}
{
args.m_startPosition.setValue(0,0,0);
args.m_startOrientation.setEulerZYX(0,0.2,0);
args.m_useMultiBody = true;
args.m_forceOverrideFixedBase = true;
m_robotSim.loadURDF("plane.urdf", args);
}
m_robotSim.setGravity(b3MakeVector3(0,0,-10));
}
}
virtual void exitPhysics()
{
m_robotSim.disconnect();
}
virtual void stepSimulation(float deltaTime)
{
m_robotSim.stepSimulation();
}
virtual void renderScene()
{
m_robotSim.renderScene();
//m_app->m_renderer->renderScene();
}
virtual void physicsDebugDraw()
{
}
virtual bool mouseMoveCallback(float x,float y)
{
return false;
}
virtual bool mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
virtual bool keyboardCallback(int key, int state)
{
return false;
}
virtual void resetCamera()
{
float dist = 3;
float pitch = -75;
float yaw = 30;
float targetPos[3]={-0.2,0.8,0.3};
if (m_app->m_renderer && m_app->m_renderer->getActiveCamera())
{
m_app->m_renderer->getActiveCamera()->setCameraDistance(dist);
m_app->m_renderer->getActiveCamera()->setCameraPitch(pitch);
m_app->m_renderer->getActiveCamera()->setCameraYaw(yaw);
m_app->m_renderer->getActiveCamera()->setCameraTargetPosition(targetPos[0],targetPos[1],targetPos[2]);
}
}
};
class CommonExampleInterface* R2D2GraspExampleCreateFunc(struct CommonExampleOptions& options)
{
return new R2D2GraspExample(options.m_guiHelper, options.m_option);
}