bullet3/examples/pybullet/gym/pybullet_envs/agents/visualize_ppo.py

152 lines
4.8 KiB
Python

# Copyright 2017 The TensorFlow Agents Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Script to render videos of the Proximal Policy Gradient algorithm.
Command line:
python3 -m agents.scripts.visualize \
--logdir=/path/to/logdir/<time>-<config> --outdir=/path/to/outdir/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import gym
import tensorflow as tf
from . import tools
from . import utility
def _create_environment(config, outdir):
"""Constructor for an instance of the environment.
Args:
config: Object providing configurations via attributes.
outdir: Directory to store videos in.
Returns:
Wrapped OpenAI Gym environment.
"""
if isinstance(config.env, str):
env = gym.make(config.env)
else:
env = config.env()
# Ensure that the environment has the specification attribute set as expected
# by the monitor wrapper.
if not hasattr(env, 'spec'):
setattr(env, 'spec', getattr(env, 'spec', None))
if config.max_length:
env = tools.wrappers.LimitDuration(env, config.max_length)
env = gym.wrappers.Monitor(
env, outdir, lambda unused_episode_number: True)
env = tools.wrappers.RangeNormalize(env)
env = tools.wrappers.ClipAction(env)
env = tools.wrappers.ConvertTo32Bit(env)
return env
def _define_loop(graph, eval_steps):
"""Create and configure an evaluation loop.
Args:
graph: Object providing graph elements via attributes.
eval_steps: Number of evaluation steps per epoch.
Returns:
Loop object.
"""
loop = tools.Loop(
None, graph.step, graph.should_log, graph.do_report, graph.force_reset)
loop.add_phase(
'eval', graph.done, graph.score, graph.summary, eval_steps,
report_every=eval_steps,
log_every=None,
checkpoint_every=None,
feed={graph.is_training: False})
return loop
def visualize(
logdir, outdir, num_agents, num_episodes, checkpoint=None,
env_processes=True):
"""Recover checkpoint and render videos from it.
Args:
logdir: Logging directory of the trained algorithm.
outdir: Directory to store rendered videos in.
num_agents: Number of environments to simulate in parallel.
num_episodes: Total number of episodes to simulate.
checkpoint: Checkpoint name to load; defaults to most recent.
env_processes: Whether to step environments in separate processes.
"""
config = utility.load_config(logdir)
with tf.device('/cpu:0'):
batch_env = utility.define_batch_env(
lambda: _create_environment(config, outdir),
num_agents, env_processes)
graph = utility.define_simulation_graph(
batch_env, config.algorithm, config)
total_steps = num_episodes * config.max_length
loop = _define_loop(graph, total_steps)
saver = utility.define_saver(
exclude=(r'.*_temporary/.*', r'global_step'))
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
utility.initialize_variables(
sess, saver, config.logdir, checkpoint, resume=True)
for unused_score in loop.run(sess, saver, total_steps):
pass
batch_env.close()
def main(_):
"""Load a trained algorithm and render videos."""
utility.set_up_logging()
if not FLAGS.logdir or not FLAGS.outdir:
raise KeyError('You must specify logging and outdirs directories.')
FLAGS.logdir = os.path.expanduser(FLAGS.logdir)
FLAGS.outdir = os.path.expanduser(FLAGS.outdir)
visualize(
FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents, FLAGS.num_episodes,
FLAGS.checkpoint, FLAGS.env_processes)
if __name__ == '__main__':
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'logdir', None,
'Directory to the checkpoint of a training run.')
tf.app.flags.DEFINE_string(
'outdir', None,
'Local directory for storing the monitoring outdir.')
tf.app.flags.DEFINE_string(
'checkpoint', None,
'Checkpoint name to load; defaults to most recent.')
tf.app.flags.DEFINE_integer(
'num_agents', 1,
'How many environments to step in parallel.')
tf.app.flags.DEFINE_integer(
'num_episodes', 5,
'Minimum number of episodes to render.')
tf.app.flags.DEFINE_boolean(
'env_processes', True,
'Step environments in separate processes to circumvent the GIL.')
tf.app.run()