bullet3/examples/SharedMemory/PhysicsServerCommandProcessor.cpp
erwin coumans 60d2b99151 Physics runs in a separate thread from rendering in PhysicsServerExample (preliminary)
Improve rendering performance. OpenVR experience is smooth now.
commit needs a bit more testing before pushing in main repo.
2016-07-07 19:24:44 -07:00

2340 lines
85 KiB
C++

#include "PhysicsServerCommandProcessor.h"
#include "../Importers/ImportURDFDemo/BulletUrdfImporter.h"
#include "../Importers/ImportURDFDemo/MyMultiBodyCreator.h"
#include "../Importers/ImportURDFDemo/URDF2Bullet.h"
#include "TinyRendererVisualShapeConverter.h"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h"
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btTransform.h"
#include "../Extras/Serialize/BulletWorldImporter/btBulletWorldImporter.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "LinearMath/btSerializer.h"
#include "Bullet3Common/b3Logging.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "SharedMemoryCommands.h"
struct UrdfLinkNameMapUtil
{
btMultiBody* m_mb;
btDefaultSerializer* m_memSerializer;
UrdfLinkNameMapUtil():m_mb(0),m_memSerializer(0)
{
}
};
struct SharedMemoryDebugDrawer : public btIDebugDraw
{
int m_debugMode;
btAlignedObjectArray<SharedMemLines> m_lines2;
SharedMemoryDebugDrawer ()
:m_debugMode(0)
{
}
virtual void drawContactPoint(const btVector3& PointOnB,const btVector3& normalOnB,btScalar distance,int lifeTime,const btVector3& color)
{
}
virtual void reportErrorWarning(const char* warningString)
{
}
virtual void draw3dText(const btVector3& location,const char* textString)
{
}
virtual void setDebugMode(int debugMode)
{
m_debugMode = debugMode;
}
virtual int getDebugMode() const
{
return m_debugMode;
}
virtual void drawLine(const btVector3& from,const btVector3& to,const btVector3& color)
{
SharedMemLines line;
line.m_from = from;
line.m_to = to;
line.m_color = color;
m_lines2.push_back(line);
}
};
struct InteralBodyData
{
btMultiBody* m_multiBody;
btRigidBody* m_rigidBody;
int m_testData;
btTransform m_rootLocalInertialFrame;
btAlignedObjectArray<btTransform> m_linkLocalInertialFrames;
InteralBodyData()
:m_multiBody(0),
m_rigidBody(0),
m_testData(0)
{
m_rootLocalInertialFrame.setIdentity();
}
};
///todo: templatize this
struct InternalBodyHandle : public InteralBodyData
{
BT_DECLARE_ALIGNED_ALLOCATOR();
int m_nextFreeHandle;
void SetNextFree(int next)
{
m_nextFreeHandle = next;
}
int GetNextFree() const
{
return m_nextFreeHandle;
}
};
class btCommandChunk
{
public:
int m_chunkCode;
int m_length;
void *m_oldPtr;
int m_dna_nr;
int m_number;
};
class bCommandChunkPtr4
{
public:
bCommandChunkPtr4(){}
int code;
int len;
union
{
int m_uniqueInt;
};
int dna_nr;
int nr;
};
// ----------------------------------------------------- //
class bCommandChunkPtr8
{
public:
bCommandChunkPtr8(){}
int code, len;
union
{
int m_uniqueInts[2];
};
int dna_nr, nr;
};
struct CommandLogger
{
FILE* m_file;
void writeHeader(unsigned char* buffer) const
{
#ifdef BT_USE_DOUBLE_PRECISION
memcpy(buffer, "BT3CMDd", 7);
#else
memcpy(buffer, "BT3CMDf", 7);
#endif //BT_USE_DOUBLE_PRECISION
int littleEndian= 1;
littleEndian= ((char*)&littleEndian)[0];
if (sizeof(void*)==8)
{
buffer[7] = '-';
} else
{
buffer[7] = '_';
}
if (littleEndian)
{
buffer[8]='v';
} else
{
buffer[8]='V';
}
buffer[9] = 0;
buffer[10] = 0;
buffer[11] = 0;
int ver = btGetVersion();
if (ver>=0 && ver<999)
{
sprintf((char*)&buffer[9],"%d",ver);
}
}
void logCommand(const SharedMemoryCommand& command)
{
btCommandChunk chunk;
chunk.m_chunkCode = command.m_type;
chunk.m_oldPtr = 0;
chunk.m_dna_nr = 0;
chunk.m_length = sizeof(SharedMemoryCommand);
chunk.m_number = 1;
fwrite((const char*)&chunk,sizeof(btCommandChunk), 1,m_file);
fwrite((const char*)&command,sizeof(SharedMemoryCommand),1,m_file);
}
CommandLogger(const char* fileName)
{
m_file = fopen(fileName,"wb");
unsigned char buf[15];
buf[12] = 12;
buf[13] = 13;
buf[14] = 14;
writeHeader(buf);
fwrite(buf,12,1,m_file);
}
virtual ~CommandLogger()
{
fclose(m_file);
}
};
struct CommandLogPlayback
{
unsigned char m_header[12];
FILE* m_file;
bool m_bitsVary;
bool m_fileIs64bit;
CommandLogPlayback(const char* fileName)
{
m_file = fopen(fileName,"rb");
if (m_file)
{
fread(m_header,12,1,m_file);
}
unsigned char c = m_header[7];
m_fileIs64bit = (c=='-');
const bool VOID_IS_8 = ((sizeof(void*)==8));
m_bitsVary = (VOID_IS_8 != m_fileIs64bit);
}
virtual ~CommandLogPlayback()
{
if (m_file)
{
fclose(m_file);
m_file=0;
}
}
bool processNextCommand(SharedMemoryCommand* cmd)
{
if (m_file)
{
size_t s = 0;
if (m_fileIs64bit)
{
bCommandChunkPtr8 chunk8;
s = fread((void*)&chunk8,sizeof(bCommandChunkPtr8),1,m_file);
} else
{
bCommandChunkPtr4 chunk4;
s = fread((void*)&chunk4,sizeof(bCommandChunkPtr4),1,m_file);
}
if (s==1)
{
s = fread(cmd,sizeof(SharedMemoryCommand),1,m_file);
return (s==1);
}
}
return false;
}
};
struct PhysicsServerCommandProcessorInternalData
{
///handle management
btAlignedObjectArray<InternalBodyHandle> m_bodyHandles;
int m_numUsedHandles; // number of active handles
int m_firstFreeHandle; // free handles list
InternalBodyHandle* getHandle(int handle)
{
btAssert(handle>=0);
btAssert(handle<m_bodyHandles.size());
if ((handle<0) || (handle>=m_bodyHandles.size()))
{
return 0;
}
return &m_bodyHandles[handle];
}
const InternalBodyHandle* getHandle(int handle) const
{
return &m_bodyHandles[handle];
}
void increaseHandleCapacity(int extraCapacity)
{
int curCapacity = m_bodyHandles.size();
btAssert(curCapacity == m_numUsedHandles);
int newCapacity = curCapacity + extraCapacity;
m_bodyHandles.resize(newCapacity);
{
for (int i = curCapacity; i < newCapacity; i++)
m_bodyHandles[i].SetNextFree(i + 1);
m_bodyHandles[newCapacity - 1].SetNextFree(-1);
}
m_firstFreeHandle = curCapacity;
}
void initHandles()
{
m_numUsedHandles = 0;
m_firstFreeHandle = -1;
increaseHandleCapacity(1);
}
void exitHandles()
{
m_bodyHandles.resize(0);
m_firstFreeHandle = -1;
m_numUsedHandles = 0;
}
int allocHandle()
{
btAssert(m_firstFreeHandle>=0);
int handle = m_firstFreeHandle;
m_firstFreeHandle = getHandle(handle)->GetNextFree();
m_numUsedHandles++;
if (m_firstFreeHandle<0)
{
int curCapacity = m_bodyHandles.size();
int additionalCapacity= m_bodyHandles.size();
increaseHandleCapacity(additionalCapacity);
getHandle(handle)->SetNextFree(m_firstFreeHandle);
}
return handle;
}
void freeHandle(int handle)
{
btAssert(handle >= 0);
getHandle(handle)->SetNextFree(m_firstFreeHandle);
m_firstFreeHandle = handle;
m_numUsedHandles--;
}
///end handle management
CommandLogger* m_commandLogger;
CommandLogPlayback* m_logPlayback;
btScalar m_physicsDeltaTime;
btAlignedObjectArray<btMultiBodyJointFeedback*> m_multiBodyJointFeedbacks;
btAlignedObjectArray<btBulletWorldImporter*> m_worldImporters;
btAlignedObjectArray<UrdfLinkNameMapUtil*> m_urdfLinkNameMapper;
btAlignedObjectArray<std::string*> m_strings;
btAlignedObjectArray<btCollisionShape*> m_collisionShapes;
btBroadphaseInterface* m_broadphase;
btCollisionDispatcher* m_dispatcher;
btMultiBodyConstraintSolver* m_solver;
btDefaultCollisionConfiguration* m_collisionConfiguration;
btMultiBodyDynamicsWorld* m_dynamicsWorld;
SharedMemoryDebugDrawer* m_remoteDebugDrawer;
btAlignedObjectArray<int> m_sdfRecentLoadedBodies;
struct GUIHelperInterface* m_guiHelper;
int m_sharedMemoryKey;
bool m_verboseOutput;
//data for picking objects
class btRigidBody* m_pickedBody;
class btTypedConstraint* m_pickedConstraint;
class btMultiBodyPoint2Point* m_pickingMultiBodyPoint2Point;
btVector3 m_oldPickingPos;
btVector3 m_hitPos;
btScalar m_oldPickingDist;
bool m_prevCanSleep;
TinyRendererVisualShapeConverter m_visualConverter;
PhysicsServerCommandProcessorInternalData()
:
m_commandLogger(0),
m_logPlayback(0),
m_physicsDeltaTime(1./240.),
m_dynamicsWorld(0),
m_remoteDebugDrawer(0),
m_guiHelper(0),
m_sharedMemoryKey(SHARED_MEMORY_KEY),
m_verboseOutput(false),
m_pickedBody(0),
m_pickedConstraint(0),
m_pickingMultiBodyPoint2Point(0)
{
initHandles();
#if 0
btAlignedObjectArray<int> bla;
for (int i=0;i<1024;i++)
{
int handle = allocHandle();
bla.push_back(handle);
InternalBodyHandle* body = getHandle(handle);
InteralBodyData* body2 = body;
}
for (int i=0;i<bla.size();i++)
{
freeHandle(bla[i]);
}
bla.resize(0);
for (int i=0;i<1024;i++)
{
int handle = allocHandle();
bla.push_back(handle);
InternalBodyHandle* body = getHandle(handle);
InteralBodyData* body2 = body;
}
for (int i=0;i<bla.size();i++)
{
freeHandle(bla[i]);
}
bla.resize(0);
for (int i=0;i<1024;i++)
{
int handle = allocHandle();
bla.push_back(handle);
InternalBodyHandle* body = getHandle(handle);
InteralBodyData* body2 = body;
}
for (int i=0;i<bla.size();i++)
{
freeHandle(bla[i]);
}
#endif
}
};
void PhysicsServerCommandProcessor::setGuiHelper(struct GUIHelperInterface* guiHelper)
{
if (guiHelper)
{
guiHelper->createPhysicsDebugDrawer(m_data->m_dynamicsWorld);
} else
{
if (m_data->m_guiHelper && m_data->m_dynamicsWorld && m_data->m_dynamicsWorld->getDebugDrawer())
{
m_data->m_dynamicsWorld->setDebugDrawer(0);
}
}
m_data->m_guiHelper = guiHelper;
}
PhysicsServerCommandProcessor::PhysicsServerCommandProcessor()
{
m_data = new PhysicsServerCommandProcessorInternalData();
createEmptyDynamicsWorld();
}
PhysicsServerCommandProcessor::~PhysicsServerCommandProcessor()
{
deleteDynamicsWorld();
if (m_data->m_commandLogger)
{
delete m_data->m_commandLogger;
m_data->m_commandLogger = 0;
}
delete m_data;
}
void PhysicsServerCommandProcessor::createEmptyDynamicsWorld()
{
///collision configuration contains default setup for memory, collision setup
m_data->m_collisionConfiguration = new btDefaultCollisionConfiguration();
//m_collisionConfiguration->setConvexConvexMultipointIterations();
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_data->m_dispatcher = new btCollisionDispatcher(m_data->m_collisionConfiguration);
m_data->m_broadphase = new btDbvtBroadphase();
m_data->m_solver = new btMultiBodyConstraintSolver;
m_data->m_dynamicsWorld = new btMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration);
m_data->m_remoteDebugDrawer = new SharedMemoryDebugDrawer();
m_data->m_dynamicsWorld->setGravity(btVector3(0, 0, 0));
}
void PhysicsServerCommandProcessor::deleteDynamicsWorld()
{
for (int i=0;i<m_data->m_multiBodyJointFeedbacks.size();i++)
{
delete m_data->m_multiBodyJointFeedbacks[i];
}
m_data->m_multiBodyJointFeedbacks.clear();
for (int i=0;i<m_data->m_worldImporters.size();i++)
{
delete m_data->m_worldImporters[i];
}
m_data->m_worldImporters.clear();
for (int i=0;i<m_data->m_urdfLinkNameMapper.size();i++)
{
delete m_data->m_urdfLinkNameMapper[i];
}
m_data->m_urdfLinkNameMapper.clear();
for (int i=0;i<m_data->m_strings.size();i++)
{
delete m_data->m_strings[i];
}
m_data->m_strings.clear();
btAlignedObjectArray<btTypedConstraint*> constraints;
btAlignedObjectArray<btMultiBodyConstraint*> mbconstraints;
if (m_data->m_dynamicsWorld)
{
int i;
for (i = m_data->m_dynamicsWorld->getNumConstraints() - 1; i >= 0; i--)
{
btTypedConstraint* constraint =m_data->m_dynamicsWorld->getConstraint(i);
constraints.push_back(constraint);
m_data->m_dynamicsWorld->removeConstraint(constraint);
}
for (i=m_data->m_dynamicsWorld->getNumMultiBodyConstraints()-1;i>=0;i--)
{
btMultiBodyConstraint* mbconstraint = m_data->m_dynamicsWorld->getMultiBodyConstraint(i);
mbconstraints.push_back(mbconstraint);
m_data->m_dynamicsWorld->removeMultiBodyConstraint(mbconstraint);
}
for (i = m_data->m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--)
{
btCollisionObject* obj = m_data->m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_data->m_dynamicsWorld->removeCollisionObject(obj);
delete obj;
}
for (i=m_data->m_dynamicsWorld->getNumMultibodies()-1;i>=0;i--)
{
btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(i);
m_data->m_dynamicsWorld->removeMultiBody(mb);
delete mb;
}
}
for (int i=0;i<constraints.size();i++)
{
delete constraints[i];
}
constraints.clear();
for (int i=0;i<mbconstraints.size();i++)
{
delete mbconstraints[i];
}
mbconstraints.clear();
//delete collision shapes
for (int j = 0; j<m_data->m_collisionShapes.size(); j++)
{
btCollisionShape* shape = m_data->m_collisionShapes[j];
delete shape;
}
m_data->m_collisionShapes.clear();
delete m_data->m_dynamicsWorld;
m_data->m_dynamicsWorld=0;
delete m_data->m_remoteDebugDrawer;
m_data->m_remoteDebugDrawer =0;
delete m_data->m_solver;
m_data->m_solver=0;
delete m_data->m_broadphase;
m_data->m_broadphase=0;
delete m_data->m_dispatcher;
m_data->m_dispatcher=0;
delete m_data->m_collisionConfiguration;
m_data->m_collisionConfiguration=0;
}
bool PhysicsServerCommandProcessor::supportsJointMotor(btMultiBody* mb, int mbLinkIndex)
{
bool canHaveMotor = (mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::eRevolute
||mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::ePrismatic);
return canHaveMotor;
}
//for testing, create joint motors for revolute and prismatic joints
void PhysicsServerCommandProcessor::createJointMotors(btMultiBody* mb)
{
int numLinks = mb->getNumLinks();
for (int i=0;i<numLinks;i++)
{
int mbLinkIndex = i;
if (supportsJointMotor(mb,mbLinkIndex))
{
float maxMotorImpulse = 0.f;
int dof = 0;
btScalar desiredVelocity = 0.f;
btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb,mbLinkIndex,dof,desiredVelocity,maxMotorImpulse);
//motor->setMaxAppliedImpulse(0);
mb->getLink(mbLinkIndex).m_userPtr = motor;
m_data->m_dynamicsWorld->addMultiBodyConstraint(motor);
motor->finalizeMultiDof();
}
}
}
bool PhysicsServerCommandProcessor::loadSdf(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes)
{
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadSdf: No valid m_dynamicsWorld");
return false;
}
m_data->m_sdfRecentLoadedBodies.clear();
BulletURDFImporter u2b(m_data->m_guiHelper, &m_data->m_visualConverter);
bool useFixedBase = false;
bool loadOk = u2b.loadSDF(fileName, useFixedBase);
if (loadOk)
{
for (int i=0;i<u2b.getNumAllocatedCollisionShapes();i++)
{
btCollisionShape* shape =u2b.getAllocatedCollisionShape(i);
m_data->m_collisionShapes.push_back(shape);
if (shape->isCompound())
{
btCompoundShape* compound = (btCompoundShape*) shape;
for (int childIndex=0;childIndex<compound->getNumChildShapes();childIndex++)
{
m_data->m_collisionShapes.push_back(compound->getChildShape(childIndex));
}
}
}
btTransform rootTrans;
rootTrans.setIdentity();
if (m_data->m_verboseOutput)
{
b3Printf("loaded %s OK!", fileName);
}
for (int m =0; m<u2b.getNumModels();m++)
{
u2b.activateModel(m);
btMultiBody* mb = 0;
//get a body index
int bodyUniqueId = m_data->allocHandle();
InternalBodyHandle* bodyHandle = m_data->getHandle(bodyUniqueId);
{
btScalar mass = 0;
bodyHandle->m_rootLocalInertialFrame.setIdentity();
btVector3 localInertiaDiagonal(0,0,0);
int urdfLinkIndex = u2b.getRootLinkIndex();
u2b.getMassAndInertia(urdfLinkIndex, mass,localInertiaDiagonal,bodyHandle->m_rootLocalInertialFrame);
}
//todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user
int rootLinkIndex = u2b.getRootLinkIndex();
b3Printf("urdf root link index = %d\n",rootLinkIndex);
MyMultiBodyCreator creation(m_data->m_guiHelper);
u2b.getRootTransformInWorld(rootTrans);
bool useMultiBody = true;
ConvertURDF2Bullet(u2b,creation, rootTrans,m_data->m_dynamicsWorld,useMultiBody,u2b.getPathPrefix(),true);
mb = creation.getBulletMultiBody();
if (mb)
{
bodyHandle->m_multiBody = mb;
m_data->m_sdfRecentLoadedBodies.push_back(bodyUniqueId);
createJointMotors(mb);
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks());
for (int i=0;i<mb->getNumLinks();i++)
{
//disable serialization of the collision objects
int urdfLinkIndex = creation.m_mb2urdfLink[i];
btScalar mass;
btVector3 localInertiaDiagonal(0,0,0);
btTransform localInertialFrame;
u2b.getMassAndInertia(urdfLinkIndex, mass,localInertiaDiagonal,localInertialFrame);
bodyHandle->m_linkLocalInertialFrames.push_back(localInertialFrame);
std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(linkName);
mb->getLink(i).m_linkName = linkName->c_str();
std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(jointName);
mb->getLink(i).m_jointName = jointName->c_str();
}
std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex()));
m_data->m_strings.push_back(baseName);
mb->setBaseName(baseName->c_str());
} else
{
b3Warning("No multibody loaded from URDF. Could add btRigidBody+btTypedConstraint solution later.");
}
}
}
return loadOk;
}
bool PhysicsServerCommandProcessor::loadUrdf(const char* fileName, const btVector3& pos, const btQuaternion& orn,
bool useMultiBody, bool useFixedBase, int* bodyUniqueIdPtr, char* bufferServerToClient, int bufferSizeInBytes)
{
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadUrdf: No valid m_dynamicsWorld");
return false;
}
BulletURDFImporter u2b(m_data->m_guiHelper, &m_data->m_visualConverter);
bool loadOk = u2b.loadURDF(fileName, useFixedBase);
if (loadOk)
{
//get a body index
int bodyUniqueId = m_data->allocHandle();
if (bodyUniqueIdPtr)
*bodyUniqueIdPtr= bodyUniqueId;
InternalBodyHandle* bodyHandle = m_data->getHandle(bodyUniqueId);
{
btScalar mass = 0;
bodyHandle->m_rootLocalInertialFrame.setIdentity();
btVector3 localInertiaDiagonal(0,0,0);
int urdfLinkIndex = u2b.getRootLinkIndex();
u2b.getMassAndInertia(urdfLinkIndex, mass,localInertiaDiagonal,bodyHandle->m_rootLocalInertialFrame);
}
if (m_data->m_verboseOutput)
{
b3Printf("loaded %s OK!", fileName);
}
btTransform tr;
tr.setIdentity();
tr.setOrigin(pos);
tr.setRotation(orn);
//int rootLinkIndex = u2b.getRootLinkIndex();
// printf("urdf root link index = %d\n",rootLinkIndex);
MyMultiBodyCreator creation(m_data->m_guiHelper);
ConvertURDF2Bullet(u2b,creation, tr,m_data->m_dynamicsWorld,useMultiBody,u2b.getPathPrefix());
for (int i=0;i<u2b.getNumAllocatedCollisionShapes();i++)
{
btCollisionShape* shape =u2b.getAllocatedCollisionShape(i);
m_data->m_collisionShapes.push_back(shape);
if (shape->isCompound())
{
btCompoundShape* compound = (btCompoundShape*) shape;
for (int childIndex=0;childIndex<compound->getNumChildShapes();childIndex++)
{
m_data->m_collisionShapes.push_back(compound->getChildShape(childIndex));
}
}
}
btMultiBody* mb = creation.getBulletMultiBody();
if (useMultiBody)
{
if (mb)
{
bodyHandle->m_multiBody = mb;
createJointMotors(mb);
//serialize the btMultiBody and send the data to the client. This is one way to get the link/joint names across the (shared memory) wire
UrdfLinkNameMapUtil* util = new UrdfLinkNameMapUtil;
m_data->m_urdfLinkNameMapper.push_back(util);
util->m_mb = mb;
util->m_memSerializer = new btDefaultSerializer(bufferSizeInBytes ,(unsigned char*)bufferServerToClient);
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
util->m_memSerializer->m_skipPointers.insert(mb->getBaseCollider(),0);
bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks());
for (int i=0;i<mb->getNumLinks();i++)
{
//disable serialization of the collision objects
util->m_memSerializer->m_skipPointers.insert(mb->getLink(i).m_collider,0);
int urdfLinkIndex = creation.m_mb2urdfLink[i];
btScalar mass;
btVector3 localInertiaDiagonal(0,0,0);
btTransform localInertialFrame;
u2b.getMassAndInertia(urdfLinkIndex, mass,localInertiaDiagonal,localInertialFrame);
bodyHandle->m_linkLocalInertialFrames.push_back(localInertialFrame);
std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(linkName);
util->m_memSerializer->registerNameForPointer(linkName->c_str(),linkName->c_str());
mb->getLink(i).m_linkName = linkName->c_str();
std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(jointName);
util->m_memSerializer->registerNameForPointer(jointName->c_str(),jointName->c_str());
mb->getLink(i).m_jointName = jointName->c_str();
}
std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex()));
m_data->m_strings.push_back(baseName);
util->m_memSerializer->registerNameForPointer(baseName->c_str(),baseName->c_str());
mb->setBaseName(baseName->c_str());
util->m_memSerializer->insertHeader();
int len = mb->calculateSerializeBufferSize();
btChunk* chunk = util->m_memSerializer->allocate(len,1);
const char* structType = mb->serialize(chunk->m_oldPtr, util->m_memSerializer);
util->m_memSerializer->finalizeChunk(chunk,structType,BT_MULTIBODY_CODE,mb);
return true;
} else
{
b3Warning("No multibody loaded from URDF. Could add btRigidBody+btTypedConstraint solution later.");
return false;
}
} else
{
btAssert(0);
return true;
}
}
return false;
}
void PhysicsServerCommandProcessor::replayLogCommand(char* bufferServerToClient, int bufferSizeInBytes)
{
if (m_data->m_logPlayback)
{
SharedMemoryCommand clientCmd;
SharedMemoryStatus serverStatus;
bool hasCommand = m_data->m_logPlayback->processNextCommand(&clientCmd);
if (hasCommand)
{
processCommand(clientCmd,serverStatus,bufferServerToClient,bufferSizeInBytes);
}
}
}
int PhysicsServerCommandProcessor::createBodyInfoStream(int bodyUniqueId, char* bufferServerToClient, int bufferSizeInBytes)
{
int streamSizeInBytes = 0;
//serialize the btMultiBody and send the data to the client. This is one way to get the link/joint names across the (shared memory) wire
InternalBodyHandle* bodyHandle = m_data->getHandle(bodyUniqueId);
btMultiBody* mb = bodyHandle->m_multiBody;
if (mb)
{
UrdfLinkNameMapUtil* util = new UrdfLinkNameMapUtil;
m_data->m_urdfLinkNameMapper.push_back(util);
util->m_mb = mb;
util->m_memSerializer = new btDefaultSerializer(bufferSizeInBytes ,(unsigned char*)bufferServerToClient);
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
util->m_memSerializer->m_skipPointers.insert(mb->getBaseCollider(),0);
bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks());
for (int i=0;i<mb->getNumLinks();i++)
{
//disable serialization of the collision objects
util->m_memSerializer->m_skipPointers.insert(mb->getLink(i).m_collider,0);
util->m_memSerializer->registerNameForPointer(mb->getLink(i).m_linkName,mb->getLink(i).m_linkName);
util->m_memSerializer->registerNameForPointer(mb->getLink(i).m_jointName,mb->getLink(i).m_jointName);
}
util->m_memSerializer->registerNameForPointer(mb->getBaseName(),mb->getBaseName());
util->m_memSerializer->insertHeader();
int len = mb->calculateSerializeBufferSize();
btChunk* chunk = util->m_memSerializer->allocate(len,1);
const char* structType = mb->serialize(chunk->m_oldPtr, util->m_memSerializer);
util->m_memSerializer->finalizeChunk(chunk,structType,BT_MULTIBODY_CODE,mb);
streamSizeInBytes = util->m_memSerializer->getCurrentBufferSize();
}
return streamSizeInBytes;
}
bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes )
{
bool hasStatus = false;
{
///we ignore overflow of integer for now
{
//until we implement a proper ring buffer, we assume always maximum of 1 outstanding commands
//const SharedMemoryCommand& clientCmd =m_data->m_testBlock1->m_clientCommands[0];
#if 1
if (m_data->m_commandLogger)
{
m_data->m_commandLogger->logCommand(clientCmd);
}
#endif
//m_data->m_testBlock1->m_numProcessedClientCommands++;
//no timestamp yet
int timeStamp = 0;
//consume the command
switch (clientCmd.m_type)
{
#if 0
case CMD_SEND_BULLET_DATA_STREAM:
{
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_SEND_BULLET_DATA_STREAM length %d",clientCmd.m_dataStreamArguments.m_streamChunkLength);
}
btBulletWorldImporter* worldImporter = new btBulletWorldImporter(m_data->m_dynamicsWorld);
m_data->m_worldImporters.push_back(worldImporter);
bool completedOk = worldImporter->loadFileFromMemory(m_data->m_testBlock1->m_bulletStreamDataClientToServer,clientCmd.m_dataStreamArguments.m_streamChunkLength);
if (completedOk)
{
SharedMemoryStatus& status = m_data->createServerStatus(CMD_BULLET_DATA_STREAM_RECEIVED_COMPLETED,clientCmd.m_sequenceNumber,timeStamp);
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
m_data->submitServerStatus(status);
} else
{
SharedMemoryStatus& status = m_data->createServerStatus(CMD_BULLET_DATA_STREAM_RECEIVED_FAILED,clientCmd.m_sequenceNumber,timeStamp);
m_data->submitServerStatus(status);
}
break;
}
#endif
case CMD_REQUEST_DEBUG_LINES:
{
int curFlags =m_data->m_remoteDebugDrawer->getDebugMode();
int debugMode = clientCmd.m_requestDebugLinesArguments.m_debugMode;//clientCmd.btIDebugDraw::DBG_DrawWireframe|btIDebugDraw::DBG_DrawAabb;
int startingLineIndex = clientCmd.m_requestDebugLinesArguments.m_startingLineIndex;
if (startingLineIndex<0)
{
b3Warning("startingLineIndex should be non-negative");
startingLineIndex = 0;
}
if (clientCmd.m_requestDebugLinesArguments.m_startingLineIndex==0)
{
m_data->m_remoteDebugDrawer->m_lines2.resize(0);
//|btIDebugDraw::DBG_DrawAabb|
// btIDebugDraw::DBG_DrawConstraints |btIDebugDraw::DBG_DrawConstraintLimits ;
m_data->m_remoteDebugDrawer->setDebugMode(debugMode);
btIDebugDraw* oldDebugDrawer = m_data->m_dynamicsWorld->getDebugDrawer();
m_data->m_dynamicsWorld->setDebugDrawer(m_data->m_remoteDebugDrawer);
m_data->m_dynamicsWorld->debugDrawWorld();
m_data->m_dynamicsWorld->setDebugDrawer(oldDebugDrawer);
m_data->m_remoteDebugDrawer->setDebugMode(curFlags);
}
//9 floats per line: 3 floats for 'from', 3 floats for 'to' and 3 floats for 'color'
int maxNumLines = bufferSizeInBytes/(sizeof(float)*9)-1;
if (startingLineIndex >m_data->m_remoteDebugDrawer->m_lines2.size())
{
b3Warning("m_startingLineIndex exceeds total number of debug lines");
startingLineIndex =m_data->m_remoteDebugDrawer->m_lines2.size();
}
int numLines = btMin(maxNumLines,m_data->m_remoteDebugDrawer->m_lines2.size()-startingLineIndex);
if (numLines)
{
float* linesFrom = (float*)bufferServerToClient;
float* linesTo = (float*)(bufferServerToClient+numLines*3*sizeof(float));
float* linesColor = (float*)(bufferServerToClient+2*numLines*3*sizeof(float));
for (int i=0;i<numLines;i++)
{
linesFrom[i*3] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_from.x();
linesTo[i*3] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_to.x();
linesColor[i*3] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_color.x();
linesFrom[i*3+1] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_from.y();
linesTo[i*3+1] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_to.y();
linesColor[i*3+1] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_color.y();
linesFrom[i*3+2] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_from.z();
linesTo[i*3+2] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_to.z();
linesColor[i*3+2] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_color.z();
}
}
serverStatusOut.m_type = CMD_DEBUG_LINES_COMPLETED;
serverStatusOut.m_sendDebugLinesArgs.m_numDebugLines = numLines;
serverStatusOut.m_sendDebugLinesArgs.m_startingLineIndex = startingLineIndex;
serverStatusOut.m_sendDebugLinesArgs.m_numRemainingDebugLines = m_data->m_remoteDebugDrawer->m_lines2.size()-(startingLineIndex+numLines);
hasStatus = true;
break;
}
case CMD_REQUEST_CAMERA_IMAGE_DATA:
{
int startPixelIndex = clientCmd.m_requestPixelDataArguments.m_startPixelIndex;
int width, height;
int numPixelsCopied = 0;
if (
(clientCmd.m_requestPixelDataArguments.m_startPixelIndex==0) &&
(clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT)!=0)
{
m_data->m_visualConverter.setWidthAndHeight(clientCmd.m_requestPixelDataArguments.m_pixelWidth,
clientCmd.m_requestPixelDataArguments.m_pixelHeight);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_USE_HARDWARE_OPENGL)!=0)
{
m_data->m_guiHelper->copyCameraImageData(0,0,0,0,0,&width,&height,0);
}
else
{
m_data->m_visualConverter.getWidthAndHeight(width,height);
}
int numTotalPixels = width*height;
int numRemainingPixels = numTotalPixels - startPixelIndex;
if (numRemainingPixels>0)
{
int maxNumPixels = bufferSizeInBytes/8-1;
unsigned char* pixelRGBA = (unsigned char*)bufferServerToClient;
int numRequestedPixels = btMin(maxNumPixels,numRemainingPixels);
float* depthBuffer = (float*)(bufferServerToClient+numRequestedPixels*4);
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_USE_HARDWARE_OPENGL)!=0)
{
m_data->m_guiHelper->copyCameraImageData(pixelRGBA,numRequestedPixels,depthBuffer,numRequestedPixels,startPixelIndex,&width,&height,&numPixelsCopied);
} else
{
if (clientCmd.m_requestPixelDataArguments.m_startPixelIndex==0)
{
// printf("-------------------------------\nRendering\n");
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES)!=0)
{
m_data->m_visualConverter.render(
clientCmd.m_requestPixelDataArguments.m_viewMatrix,
clientCmd.m_requestPixelDataArguments.m_projectionMatrix);
} else
{
m_data->m_visualConverter.render();
}
}
m_data->m_visualConverter.copyCameraImageData(pixelRGBA,numRequestedPixels,depthBuffer,numRequestedPixels,startPixelIndex,&width,&height,&numPixelsCopied);
}
//each pixel takes 4 RGBA values and 1 float = 8 bytes
} else
{
}
serverStatusOut.m_type = CMD_CAMERA_IMAGE_COMPLETED;
serverStatusOut.m_sendPixelDataArguments.m_numPixelsCopied = numPixelsCopied;
serverStatusOut.m_sendPixelDataArguments.m_numRemainingPixels = numRemainingPixels - numPixelsCopied;
serverStatusOut.m_sendPixelDataArguments.m_startingPixelIndex = startPixelIndex;
serverStatusOut.m_sendPixelDataArguments.m_imageWidth = width;
serverStatusOut.m_sendPixelDataArguments.m_imageHeight= height;
hasStatus = true;
break;
}
case CMD_REQUEST_BODY_INFO:
{
const SdfRequestInfoArgs& sdfInfoArgs = clientCmd.m_sdfRequestInfoArgs;
//stream info into memory
int streamSizeInBytes = createBodyInfoStream(sdfInfoArgs.m_bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
serverStatusOut.m_type = CMD_BODY_INFO_COMPLETED;
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = sdfInfoArgs.m_bodyUniqueId;
serverStatusOut.m_dataStreamArguments.m_streamChunkLength = streamSizeInBytes;
hasStatus = true;
break;
}
case CMD_LOAD_SDF:
{
const SdfArgs& sdfArgs = clientCmd.m_sdfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_SDF:%s", sdfArgs.m_sdfFileName);
}
bool completedOk = loadSdf(sdfArgs.m_sdfFileName,bufferServerToClient, bufferSizeInBytes);
//serverStatusOut.m_type = CMD_SDF_LOADING_FAILED;
serverStatusOut.m_sdfLoadedArgs.m_numBodies = m_data->m_sdfRecentLoadedBodies.size();
int maxBodies = btMin(MAX_SDF_BODIES, serverStatusOut.m_sdfLoadedArgs.m_numBodies);
for (int i=0;i<maxBodies;i++)
{
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = m_data->m_sdfRecentLoadedBodies[i];
}
serverStatusOut.m_type = CMD_SDF_LOADING_COMPLETED;
hasStatus = true;
break;
}
case CMD_LOAD_URDF:
{
const UrdfArgs& urdfArgs = clientCmd.m_urdfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_URDF:%s", urdfArgs.m_urdfFileName);
}
btAssert((clientCmd.m_updateFlags&URDF_ARGS_FILE_NAME) !=0);
btAssert(urdfArgs.m_urdfFileName);
btVector3 initialPos(0,0,0);
btQuaternion initialOrn(0,0,0,1);
if (clientCmd.m_updateFlags & URDF_ARGS_INITIAL_POSITION)
{
initialPos[0] = urdfArgs.m_initialPosition[0];
initialPos[1] = urdfArgs.m_initialPosition[1];
initialPos[2] = urdfArgs.m_initialPosition[2];
}
if (clientCmd.m_updateFlags & URDF_ARGS_INITIAL_ORIENTATION)
{
initialOrn[0] = urdfArgs.m_initialOrientation[0];
initialOrn[1] = urdfArgs.m_initialOrientation[1];
initialOrn[2] = urdfArgs.m_initialOrientation[2];
initialOrn[3] = urdfArgs.m_initialOrientation[3];
}
bool useMultiBody=(clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? urdfArgs.m_useMultiBody : true;
bool useFixedBase = (clientCmd.m_updateFlags & URDF_ARGS_USE_FIXED_BASE) ? urdfArgs.m_useFixedBase: false;
int bodyUniqueId;
//load the actual URDF and send a report: completed or failed
bool completedOk = loadUrdf(urdfArgs.m_urdfFileName,
initialPos,initialOrn,
useMultiBody, useFixedBase,&bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
if (completedOk)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
serverStatusOut.m_type = CMD_URDF_LOADING_COMPLETED;
serverStatusOut.m_dataStreamArguments.m_streamChunkLength = 0;
if (m_data->m_urdfLinkNameMapper.size())
{
serverStatusOut.m_dataStreamArguments.m_streamChunkLength = m_data->m_urdfLinkNameMapper.at(m_data->m_urdfLinkNameMapper.size()-1)->m_memSerializer->getCurrentBufferSize();
}
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = bodyUniqueId;
hasStatus = true;
} else
{
serverStatusOut.m_type = CMD_URDF_LOADING_FAILED;
hasStatus = true;
}
break;
}
case CMD_CREATE_SENSOR:
{
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_CREATE_SENSOR");
}
int bodyUniqueId = clientCmd.m_createSensorArguments.m_bodyUniqueId;
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btAssert(mb);
for (int i=0;i<clientCmd.m_createSensorArguments.m_numJointSensorChanges;i++)
{
int jointIndex = clientCmd.m_createSensorArguments.m_jointIndex[i];
if (clientCmd.m_createSensorArguments.m_enableJointForceSensor[i])
{
if (mb->getLink(jointIndex).m_jointFeedback)
{
b3Warning("CMD_CREATE_SENSOR: sensor for joint [%d] already enabled", jointIndex);
} else
{
btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
fb->m_reactionForces.setZero();
mb->getLink(jointIndex).m_jointFeedback = fb;
m_data->m_multiBodyJointFeedbacks.push_back(fb);
};
} else
{
if (mb->getLink(jointIndex).m_jointFeedback)
{
m_data->m_multiBodyJointFeedbacks.remove(mb->getLink(jointIndex).m_jointFeedback);
delete mb->getLink(jointIndex).m_jointFeedback;
mb->getLink(jointIndex).m_jointFeedback=0;
} else
{
b3Warning("CMD_CREATE_SENSOR: cannot perform sensor removal request, no sensor on joint [%d]", jointIndex);
};
}
}
} else
{
b3Warning("No btMultiBody in the world. btRigidBody/btTypedConstraint sensor not hooked up yet");
}
#if 0
//todo(erwincoumans) here is some sample code to hook up a force/torque sensor for btTypedConstraint/btRigidBody
/*
for (int i=0;i<m_data->m_dynamicsWorld->getNumConstraints();i++)
{
btTypedConstraint* c = m_data->m_dynamicsWorld->getConstraint(i);
btJointFeedback* fb = new btJointFeedback();
m_data->m_jointFeedbacks.push_back(fb);
c->setJointFeedback(fb);
}
*/
#endif
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_SEND_DESIRED_STATE:
{
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_SEND_DESIRED_STATE");
}
int bodyUniqueId = clientCmd.m_sendDesiredStateCommandArgument.m_bodyUniqueId;
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btAssert(mb);
switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
case CONTROL_MODE_TORQUE:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_TORQUE");
}
// mb->clearForcesAndTorques();
int torqueIndex = 0;
if ((clientCmd.m_updateFlags&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
for (int link=0;link<mb->getNumLinks();link++)
{
for (int dof=0;dof<mb->getLink(link).m_dofCount;dof++)
{
double torque = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[torqueIndex]&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[torqueIndex];
mb->addJointTorqueMultiDof(link,dof,torque);
}
torqueIndex++;
}
}
}
break;
}
case CONTROL_MODE_VELOCITY:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_VELOCITY");
}
int numMotors = 0;
//find the joint motors and apply the desired velocity and maximum force/torque
{
int dofIndex = 6;//skip the 3 linear + 3 angular degree of freedom entries of the base
for (int link=0;link<mb->getNumLinks();link++)
{
if (supportsJointMotor(mb,link))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr;
if (motor)
{
btScalar desiredVelocity = 0.f;
bool hasDesiredVelocity = false;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex]&SIM_DESIRED_STATE_HAS_QDOT)!=0)
{
desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[dofIndex];
btScalar kd = 0.1f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] & SIM_DESIRED_STATE_HAS_KD)!=0)
{
kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[dofIndex];
}
motor->setVelocityTarget(desiredVelocity,kd);
btScalar kp = 0.f;
motor->setPositionTarget(0,kp);
hasDesiredVelocity = true;
}
if (hasDesiredVelocity)
{
btScalar maxImp = 1000000.f*m_data->m_physicsDeltaTime;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex]&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex]*m_data->m_physicsDeltaTime;
}
motor->setMaxAppliedImpulse(maxImp);
}
numMotors++;
}
}
dofIndex += mb->getLink(link).m_dofCount;
}
}
break;
}
case CONTROL_MODE_POSITION_VELOCITY_PD:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_POSITION_VELOCITY_PD");
}
//compute the force base on PD control
int numMotors = 0;
//find the joint motors and apply the desired velocity and maximum force/torque
{
int velIndex = 6;//skip the 3 linear + 3 angular degree of freedom velocity entries of the base
int posIndex = 7;//skip 3 positional and 4 orientation (quaternion) positional degrees of freedom of the base
for (int link=0;link<mb->getNumLinks();link++)
{
if (supportsJointMotor(mb,link))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr;
if (motor)
{
bool hasDesiredPosOrVel = false;
btScalar kp = 0.f;
btScalar kd = 0.f;
btScalar desiredVelocity = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT)!=0)
{
hasDesiredPosOrVel = true;
desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex];
kd = 0.1;
}
btScalar desiredPosition = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q)!=0)
{
hasDesiredPosOrVel = true;
desiredPosition = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex];
kp = 0.1;
}
if (hasDesiredPosOrVel)
{
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KP)!=0)
{
kp = clientCmd.m_sendDesiredStateCommandArgument.m_Kp[velIndex];
}
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KD)!=0)
{
kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[velIndex];
}
motor->setVelocityTarget(desiredVelocity,kd);
motor->setPositionTarget(desiredPosition,kp);
btScalar maxImp = 1000000.f*m_data->m_physicsDeltaTime;
if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex]*m_data->m_physicsDeltaTime;
motor->setMaxAppliedImpulse(maxImp);
}
numMotors++;
}
}
velIndex += mb->getLink(link).m_dofCount;
posIndex += mb->getLink(link).m_posVarCount;
}
}
break;
}
default:
{
b3Warning("m_controlMode not implemented yet");
break;
}
}
}
serverStatusOut.m_type = CMD_DESIRED_STATE_RECEIVED_COMPLETED;
hasStatus = true;
break;
}
case CMD_REQUEST_ACTUAL_STATE:
{
if (m_data->m_verboseOutput)
{
b3Printf("Sending the actual state (Q,U)");
}
int bodyUniqueId = clientCmd.m_requestActualStateInformationCommandArgument.m_bodyUniqueId;
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId;
int totalDegreeOfFreedomQ = 0;
int totalDegreeOfFreedomU = 0;
//always add the base, even for static (non-moving objects)
//so that we can easily move the 'fixed' base when needed
//do we don't use this conditional "if (!mb->hasFixedBase())"
{
btTransform tr;
tr.setOrigin(mb->getBasePos());
tr.setRotation(mb->getWorldToBaseRot().inverse());
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[0] =
body->m_rootLocalInertialFrame.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[1] =
body->m_rootLocalInertialFrame.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[2] =
body->m_rootLocalInertialFrame.getOrigin()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[3] =
body->m_rootLocalInertialFrame.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[4] =
body->m_rootLocalInertialFrame.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[5] =
body->m_rootLocalInertialFrame.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[6] =
body->m_rootLocalInertialFrame.getRotation()[3];
//base position in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[0] = tr.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[1] = tr.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[2] = tr.getOrigin()[2];
//base orientation, quaternion x,y,z,w, in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[3] = tr.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[4] = tr.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[5] = tr.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_actualStateQ[6] = tr.getRotation()[3];
totalDegreeOfFreedomQ +=7;//pos + quaternion
//base linear velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[0] = mb->getBaseVel()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[1] = mb->getBaseVel()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[2] = mb->getBaseVel()[2];
//base angular velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[3] = mb->getBaseOmega()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[4] = mb->getBaseOmega()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[5] = mb->getBaseOmega()[2];
totalDegreeOfFreedomU += 6;//3 linear and 3 angular DOF
}
for (int l=0;l<mb->getNumLinks();l++)
{
for (int d=0;d<mb->getLink(l).m_posVarCount;d++)
{
serverCmd.m_sendActualStateArgs.m_actualStateQ[totalDegreeOfFreedomQ++] = mb->getJointPosMultiDof(l)[d];
}
for (int d=0;d<mb->getLink(l).m_dofCount;d++)
{
serverCmd.m_sendActualStateArgs.m_actualStateQdot[totalDegreeOfFreedomU++] = mb->getJointVelMultiDof(l)[d];
}
if (0 == mb->getLink(l).m_jointFeedback)
{
for (int d=0;d<6;d++)
{
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+d]=0;
}
} else
{
btVector3 sensedForce = mb->getLink(l).m_jointFeedback->m_reactionForces.getLinear();
btVector3 sensedTorque = mb->getLink(l).m_jointFeedback->m_reactionForces.getAngular();
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+0] = sensedForce[0];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+1] = sensedForce[1];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+2] = sensedForce[2];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+3] = sensedTorque[0];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+4] = sensedTorque[1];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+5] = sensedTorque[2];
}
serverCmd.m_sendActualStateArgs.m_jointMotorForce[l] = 0;
if (supportsJointMotor(mb,l))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)body->m_multiBody->getLink(l).m_userPtr;
if (motor && m_data->m_physicsDeltaTime>btScalar(0))
{
btScalar force =motor->getAppliedImpulse(0)/m_data->m_physicsDeltaTime;
serverCmd.m_sendActualStateArgs.m_jointMotorForce[l] =
force;
//if (force>0)
//{
// b3Printf("force = %f\n", force);
//}
}
}
btVector3 linkLocalInertialOrigin = body->m_linkLocalInertialFrames[l].getOrigin();
btQuaternion linkLocalInertialRotation = body->m_linkLocalInertialFrames[l].getRotation();
btVector3 linkOrigin = mb->getLink(l).m_cachedWorldTransform.getOrigin();
btQuaternion linkRotation = mb->getLink(l).m_cachedWorldTransform.getRotation();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+0] = linkOrigin.getX();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+1] = linkOrigin.getY();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+2] = linkOrigin.getZ();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+3] = linkRotation.x();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+4] = linkRotation.y();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+5] = linkRotation.z();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+6] = linkRotation.w();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+0] = linkLocalInertialOrigin.getX();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+1] = linkLocalInertialOrigin.getY();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+2] = linkLocalInertialOrigin.getZ();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+3] = linkLocalInertialRotation.x();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+4] = linkLocalInertialRotation.y();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+5] = linkLocalInertialRotation.z();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+6] = linkLocalInertialRotation.w();
}
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
hasStatus = true;
} else
{
if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId;
int totalDegreeOfFreedomQ = 0;
int totalDegreeOfFreedomU = 0;
btTransform tr = rb->getWorldTransform();
//base position in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[0] = tr.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[1] = tr.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[2] = tr.getOrigin()[2];
//base orientation, quaternion x,y,z,w, in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[3] = tr.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[4] = tr.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[5] = tr.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_actualStateQ[6] = tr.getRotation()[3];
totalDegreeOfFreedomQ +=7;//pos + quaternion
//base linear velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[0] = rb->getLinearVelocity()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[1] = rb->getLinearVelocity()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[2] = rb->getLinearVelocity()[2];
//base angular velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[3] = rb->getAngularVelocity()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[4] = rb->getAngularVelocity()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[5] = rb->getAngularVelocity()[2];
totalDegreeOfFreedomU += 6;//3 linear and 3 angular DOF
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
hasStatus = true;
} else
{
b3Warning("Request state but no multibody or rigid body available");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED;
hasStatus = true;
}
}
break;
}
case CMD_STEP_FORWARD_SIMULATION:
{
if (m_data->m_verboseOutput)
{
b3Printf("Step simulation request");
b3Printf("CMD_STEP_FORWARD_SIMULATION clientCmd = %d\n", clientCmd.m_sequenceNumber);
}
///todo(erwincoumans) move this damping inside Bullet
for (int i=0;i<m_data->m_bodyHandles.size();i++)
{
applyJointDamping(i);
}
m_data->m_dynamicsWorld->stepSimulation(m_data->m_physicsDeltaTime,0);
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_STEP_FORWARD_SIMULATION_COMPLETED;
hasStatus = true;
break;
}
case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS:
{
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_DELTA_TIME)
{
m_data->m_physicsDeltaTime = clientCmd.m_physSimParamArgs.m_deltaTime;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_GRAVITY)
{
btVector3 grav(clientCmd.m_physSimParamArgs.m_gravityAcceleration[0],
clientCmd.m_physSimParamArgs.m_gravityAcceleration[1],
clientCmd.m_physSimParamArgs.m_gravityAcceleration[2]);
this->m_data->m_dynamicsWorld->setGravity(grav);
if (m_data->m_verboseOutput)
{
b3Printf("Updated Gravity: %f,%f,%f",grav[0],grav[1],grav[2]);
}
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
};
case CMD_INIT_POSE:
{
if (m_data->m_verboseOutput)
{
b3Printf("Server Init Pose not implemented yet");
}
int bodyUniqueId = clientCmd.m_initPoseArgs.m_bodyUniqueId;
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION)
{
btVector3 zero(0,0,0);
btAssert(clientCmd.m_initPoseArgs.m_hasInitialStateQ[0] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[1] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[2]);
mb->setBaseVel(zero);
mb->setBasePos(btVector3(
clientCmd.m_initPoseArgs.m_initialStateQ[0],
clientCmd.m_initPoseArgs.m_initialStateQ[1],
clientCmd.m_initPoseArgs.m_initialStateQ[2]));
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION)
{
btAssert(clientCmd.m_initPoseArgs.m_hasInitialStateQ[3] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[4] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[5] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[6]);
mb->setBaseOmega(btVector3(0,0,0));
mb->setWorldToBaseRot(btQuaternion(
clientCmd.m_initPoseArgs.m_initialStateQ[3],
clientCmd.m_initPoseArgs.m_initialStateQ[4],
clientCmd.m_initPoseArgs.m_initialStateQ[5],
clientCmd.m_initPoseArgs.m_initialStateQ[6]));
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_JOINT_STATE)
{
int dofIndex = 7;
for (int i=0;i<mb->getNumLinks();i++)
{
if ( (clientCmd.m_initPoseArgs.m_hasInitialStateQ[dofIndex]) && (mb->getLink(i).m_dofCount==1))
{
mb->setJointPos(i,clientCmd.m_initPoseArgs.m_initialStateQ[dofIndex]);
mb->setJointVel(i,0);
}
dofIndex += mb->getLink(i).m_dofCount;
}
}
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_RESET_SIMULATION:
{
//clean up all data
if (m_data && m_data->m_guiHelper)
{
m_data->m_guiHelper->removeAllGraphicsInstances();
}
if (m_data)
{
m_data->m_visualConverter.resetAll();
}
deleteDynamicsWorld();
createEmptyDynamicsWorld();
m_data->exitHandles();
m_data->initHandles();
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_RESET_SIMULATION_COMPLETED;
hasStatus = true;
break;
}
case CMD_CREATE_RIGID_BODY:
case CMD_CREATE_BOX_COLLISION_SHAPE:
{
btVector3 halfExtents(1,1,1);
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_HALF_EXTENTS)
{
halfExtents = btVector3(
clientCmd.m_createBoxShapeArguments.m_halfExtentsX,
clientCmd.m_createBoxShapeArguments.m_halfExtentsY,
clientCmd.m_createBoxShapeArguments.m_halfExtentsZ);
}
btTransform startTrans;
startTrans.setIdentity();
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_INITIAL_POSITION)
{
startTrans.setOrigin(btVector3(
clientCmd.m_createBoxShapeArguments.m_initialPosition[0],
clientCmd.m_createBoxShapeArguments.m_initialPosition[1],
clientCmd.m_createBoxShapeArguments.m_initialPosition[2]));
}
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_INITIAL_ORIENTATION)
{
startTrans.setRotation(btQuaternion(
clientCmd.m_createBoxShapeArguments.m_initialOrientation[0],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[1],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[2],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[3]));
}
btScalar mass = 0.f;
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_MASS)
{
mass = clientCmd.m_createBoxShapeArguments.m_mass;
}
int shapeType = COLLISION_SHAPE_TYPE_BOX;
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_COLLISION_SHAPE_TYPE)
{
shapeType = clientCmd.m_createBoxShapeArguments.m_collisionShapeType;
}
btBulletWorldImporter* worldImporter = new btBulletWorldImporter(m_data->m_dynamicsWorld);
m_data->m_worldImporters.push_back(worldImporter);
btCollisionShape* shape = 0;
switch (shapeType)
{
case COLLISION_SHAPE_TYPE_CYLINDER_X:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[0];
shape = worldImporter->createCylinderShapeX(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CYLINDER_Y:
{
btScalar radius = halfExtents[0];
btScalar height = halfExtents[1];
shape = worldImporter->createCylinderShapeY(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CYLINDER_Z:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[2];
shape = worldImporter->createCylinderShapeZ(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_X:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[0];
shape = worldImporter->createCapsuleShapeX(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_Y:
{
btScalar radius = halfExtents[0];
btScalar height = halfExtents[1];
shape = worldImporter->createCapsuleShapeY(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_Z:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[2];
shape = worldImporter->createCapsuleShapeZ(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_SPHERE:
{
btScalar radius = halfExtents[0];
shape = worldImporter->createSphereShape(radius);
break;
}
case COLLISION_SHAPE_TYPE_BOX:
default:
{
shape = worldImporter->createBoxShape(halfExtents);
}
}
bool isDynamic = (mass>0);
btRigidBody* rb = worldImporter->createRigidBody(isDynamic,mass,startTrans,shape,0);
rb->setRollingFriction(0.2);
//m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
btVector4 colorRGBA(1,0,0,1);
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_COLOR)
{
colorRGBA[0] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[0];
colorRGBA[1] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[1];
colorRGBA[2] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[2];
colorRGBA[3] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[3];
}
m_data->m_guiHelper->createCollisionShapeGraphicsObject(rb->getCollisionShape());
m_data->m_guiHelper->createCollisionObjectGraphicsObject(rb,colorRGBA);
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_RIGID_BODY_CREATION_COMPLETED;
int bodyUniqueId = m_data->allocHandle();
InternalBodyHandle* bodyHandle = m_data->getHandle(bodyUniqueId);
serverCmd.m_rigidBodyCreateArgs.m_bodyUniqueId = bodyUniqueId;
bodyHandle->m_rootLocalInertialFrame.setIdentity();
bodyHandle->m_rigidBody = rb;
hasStatus = true;
break;
}
case CMD_PICK_BODY:
{
pickBody(btVector3(clientCmd.m_pickBodyArguments.m_rayFromWorld[0],
clientCmd.m_pickBodyArguments.m_rayFromWorld[1],
clientCmd.m_pickBodyArguments.m_rayFromWorld[2]),
btVector3(clientCmd.m_pickBodyArguments.m_rayToWorld[0],
clientCmd.m_pickBodyArguments.m_rayToWorld[1],
clientCmd.m_pickBodyArguments.m_rayToWorld[2]));
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_MOVE_PICKED_BODY:
{
movePickedBody(btVector3(clientCmd.m_pickBodyArguments.m_rayFromWorld[0],
clientCmd.m_pickBodyArguments.m_rayFromWorld[1],
clientCmd.m_pickBodyArguments.m_rayFromWorld[2]),
btVector3(clientCmd.m_pickBodyArguments.m_rayToWorld[0],
clientCmd.m_pickBodyArguments.m_rayToWorld[1],
clientCmd.m_pickBodyArguments.m_rayToWorld[2]));
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_REMOVE_PICKING_CONSTRAINT_BODY:
{
removePickingConstraint();
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
case CMD_APPLY_EXTERNAL_FORCE:
{
if (m_data->m_verboseOutput)
{
b3Printf("CMD_APPLY_EXTERNAL_FORCE clientCmd = %d\n", clientCmd.m_sequenceNumber);
}
for (int i = 0; i < clientCmd.m_externalForceArguments.m_numForcesAndTorques; ++i)
{
InteralBodyData* body = m_data->getHandle(clientCmd.m_externalForceArguments.m_bodyUniqueIds[i]);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
bool isLinkFrame = ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_LINK_FRAME)!=0);
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_FORCE)!=0)
{
btVector3 forceLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+2]);
btVector3 positionLocal(
clientCmd.m_externalForceArguments.m_positions[i*3+0],
clientCmd.m_externalForceArguments.m_positions[i*3+1],
clientCmd.m_externalForceArguments.m_positions[i*3+2]);
if (clientCmd.m_externalForceArguments.m_linkIds[i] == -1)
{
btVector3 forceWorld = isLinkFrame ? forceLocal : mb->getBaseWorldTransform().getBasis()*forceLocal;
btVector3 relPosWorld = isLinkFrame ? positionLocal : mb->getBaseWorldTransform().getBasis()*positionLocal;
mb->addBaseForce(forceWorld);
mb->addBaseTorque(relPosWorld.cross(forceWorld));
//b3Printf("apply base force of %f,%f,%f at %f,%f,%f\n", forceWorld[0],forceWorld[1],forceWorld[2],positionLocal[0],positionLocal[1],positionLocal[2]);
} else
{
int link = clientCmd.m_externalForceArguments.m_linkIds[i];
btVector3 forceWorld = mb->getLink(link).m_cachedWorldTransform.getBasis()*forceLocal;
btVector3 relPosWorld = mb->getLink(link).m_cachedWorldTransform.getBasis()*positionLocal;
mb->addLinkForce(link, forceWorld);
mb->addLinkTorque(link,relPosWorld.cross(forceWorld));
//b3Printf("apply link force of %f,%f,%f at %f,%f,%f\n", forceWorld[0],forceWorld[1],forceWorld[2], positionLocal[0],positionLocal[1],positionLocal[2]);
}
}
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_TORQUE)!=0)
{
btVector3 torqueLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+2]);
if (clientCmd.m_externalForceArguments.m_linkIds[i] == -1)
{
btVector3 torqueWorld = isLinkFrame ? torqueLocal : mb->getBaseWorldTransform().getBasis()*torqueLocal;
mb->addBaseTorque(torqueWorld);
//b3Printf("apply base torque of %f,%f,%f\n", torqueWorld[0],torqueWorld[1],torqueWorld[2]);
} else
{
int link = clientCmd.m_externalForceArguments.m_linkIds[i];
btVector3 torqueWorld = mb->getLink(link).m_cachedWorldTransform.getBasis()*torqueLocal;
mb->addLinkTorque(link, torqueWorld);
//b3Printf("apply link torque of %f,%f,%f\n", torqueWorld[0],torqueWorld[1],torqueWorld[2]);
}
}
}
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
break;
}
default:
{
b3Error("Unknown command encountered");
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_UNKNOWN_COMMAND_FLUSHED;
hasStatus = true;
}
};
}
}
return hasStatus;
}
void PhysicsServerCommandProcessor::renderScene()
{
if (m_data->m_guiHelper)
{
m_data->m_guiHelper->syncPhysicsToGraphics(m_data->m_dynamicsWorld);
m_data->m_guiHelper->render(m_data->m_dynamicsWorld);
}
}
void PhysicsServerCommandProcessor::physicsDebugDraw(int debugDrawFlags)
{
if (m_data->m_dynamicsWorld)
{
if (m_data->m_dynamicsWorld->getDebugDrawer())
{
m_data->m_dynamicsWorld->getDebugDrawer()->setDebugMode(debugDrawFlags);
m_data->m_dynamicsWorld->debugDrawWorld();
}
}
}
bool PhysicsServerCommandProcessor::pickBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
if (m_data->m_dynamicsWorld==0)
return false;
btCollisionWorld::ClosestRayResultCallback rayCallback(rayFromWorld, rayToWorld);
m_data->m_dynamicsWorld->rayTest(rayFromWorld, rayToWorld, rayCallback);
if (rayCallback.hasHit())
{
btVector3 pickPos = rayCallback.m_hitPointWorld;
btRigidBody* body = (btRigidBody*)btRigidBody::upcast(rayCallback.m_collisionObject);
if (body)
{
//other exclusions?
if (!(body->isStaticObject() || body->isKinematicObject()))
{
m_data->m_pickedBody = body;
m_data->m_pickedBody->setActivationState(DISABLE_DEACTIVATION);
//printf("pickPos=%f,%f,%f\n",pickPos.getX(),pickPos.getY(),pickPos.getZ());
btVector3 localPivot = body->getCenterOfMassTransform().inverse() * pickPos;
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body, localPivot);
m_data->m_dynamicsWorld->addConstraint(p2p, true);
m_data->m_pickedConstraint = p2p;
btScalar mousePickClamping = 30.f;
p2p->m_setting.m_impulseClamp = mousePickClamping;
//very weak constraint for picking
p2p->m_setting.m_tau = 0.001f;
}
} else
{
btMultiBodyLinkCollider* multiCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(rayCallback.m_collisionObject);
if (multiCol && multiCol->m_multiBody)
{
m_data->m_prevCanSleep = multiCol->m_multiBody->getCanSleep();
multiCol->m_multiBody->setCanSleep(false);
btVector3 pivotInA = multiCol->m_multiBody->worldPosToLocal(multiCol->m_link, pickPos);
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(multiCol->m_multiBody,multiCol->m_link,0,pivotInA,pickPos);
//if you add too much energy to the system, causing high angular velocities, simulation 'explodes'
//see also http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=949
//so we try to avoid it by clamping the maximum impulse (force) that the mouse pick can apply
//it is not satisfying, hopefully we find a better solution (higher order integrator, using joint friction using a zero-velocity target motor with limited force etc?)
btScalar scaling=1;
p2p->setMaxAppliedImpulse(2*scaling);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(p2p);
m_data->m_pickingMultiBodyPoint2Point =p2p;
}
}
// pickObject(pickPos, rayCallback.m_collisionObject);
m_data->m_oldPickingPos = rayToWorld;
m_data->m_hitPos = pickPos;
m_data->m_oldPickingDist = (pickPos - rayFromWorld).length();
// printf("hit !\n");
//add p2p
}
return false;
}
bool PhysicsServerCommandProcessor::movePickedBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
if (m_data->m_pickedBody && m_data->m_pickedConstraint)
{
btPoint2PointConstraint* pickCon = static_cast<btPoint2PointConstraint*>(m_data->m_pickedConstraint);
if (pickCon)
{
//keep it at the same picking distance
btVector3 dir = rayToWorld-rayFromWorld;
dir.normalize();
dir *= m_data->m_oldPickingDist;
btVector3 newPivotB = rayFromWorld + dir;
pickCon->setPivotB(newPivotB);
}
}
if (m_data->m_pickingMultiBodyPoint2Point)
{
//keep it at the same picking distance
btVector3 dir = rayToWorld-rayFromWorld;
dir.normalize();
dir *= m_data->m_oldPickingDist;
btVector3 newPivotB = rayFromWorld + dir;
m_data->m_pickingMultiBodyPoint2Point->setPivotInB(newPivotB);
}
return false;
}
void PhysicsServerCommandProcessor::removePickingConstraint()
{
if (m_data->m_pickedConstraint)
{
m_data->m_dynamicsWorld->removeConstraint(m_data->m_pickedConstraint);
delete m_data->m_pickedConstraint;
m_data->m_pickedConstraint = 0;
m_data->m_pickedBody = 0;
}
if (m_data->m_pickingMultiBodyPoint2Point)
{
m_data->m_pickingMultiBodyPoint2Point->getMultiBodyA()->setCanSleep(m_data->m_prevCanSleep);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->removeMultiBodyConstraint(m_data->m_pickingMultiBodyPoint2Point);
delete m_data->m_pickingMultiBodyPoint2Point;
m_data->m_pickingMultiBodyPoint2Point = 0;
}
}
void PhysicsServerCommandProcessor::enableCommandLogging(bool enable, const char* fileName)
{
if (enable)
{
if (0==m_data->m_commandLogger)
{
m_data->m_commandLogger = new CommandLogger(fileName);
}
} else
{
if (0!=m_data->m_commandLogger)
{
delete m_data->m_commandLogger;
m_data->m_commandLogger = 0;
}
}
}
void PhysicsServerCommandProcessor::replayFromLogFile(const char* fileName)
{
CommandLogPlayback* pb = new CommandLogPlayback(fileName);
m_data->m_logPlayback = pb;
}
void PhysicsServerCommandProcessor::applyJointDamping(int bodyUniqueId)
{
InteralBodyData* body = m_data->getHandle(bodyUniqueId);
if (body) {
btMultiBody* mb = body->m_multiBody;
if (mb) {
for (int l=0;l<mb->getNumLinks();l++) {
for (int d=0;d<mb->getLink(l).m_dofCount;d++) {
double damping_coefficient = mb->getLink(l).m_jointDamping;
double damping = -damping_coefficient*mb->getJointVelMultiDof(l)[d];
mb->addJointTorqueMultiDof(l, d, damping);
}
}
}
}
}