bullet3/examples/SharedMemory/PhysicsClientExample.cpp
erwin coumans 5cf8ee3360 Allow to compile pybullet using btDiscreteDynamicsWorld (no multibodies and no deformables), this allows to create Jacobian and Mass matrix (and A=J*M-1*J_transpose) with MLCP solvers
Add examples/pybullet/gym/pybullet_utils/readwriteurdf.py, this allows to read a URDF and write the URDF with more reasonable inertia tensors (based on mass and collision volumes)
2021-03-15 22:44:55 -07:00

1159 lines
36 KiB
C++

#include "PhysicsClientExample.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
#include "../CommonInterfaces/Common2dCanvasInterface.h"
#include "SharedMemoryCommon.h"
#include "../CommonInterfaces/CommonParameterInterface.h"
#include "PhysicsServerCommandProcessor.h"
#include "PhysicsClientC_API.h"
#include "PhysicsClient.h"
//#include "SharedMemoryCommands.h"
#include "PhysicsLoopBackC_API.h"
#include "PhysicsDirectC_API.h"
#include "PhysicsClientC_API.h"
#include "PhysicsServerSharedMemory.h"
#include <stdio.h>
#ifdef _WIN32
#define safe_printf _snprintf
#else
#define safe_printf snprintf
#endif
struct MyMotorInfo2
{
btScalar m_velTarget;
btScalar m_maxForce;
btScalar m_posTarget;
int m_uIndex;
int m_qIndex;
};
static int camVisualizerWidth = 228; //1024/3;
static int camVisualizerHeight = 192; //768/3;
enum CustomCommands
{
CMD_CUSTOM_SET_REALTIME_SIMULATION = CMD_MAX_CLIENT_COMMANDS + 1,
CMD_CUSTOM_SET_GRAVITY
};
#define MAX_NUM_MOTORS 128
class PhysicsClientExample : public SharedMemoryCommon
{
protected:
b3PhysicsClientHandle m_physicsClientHandle;
//this m_physicsServer is only used when option eCLIENTEXAMPLE_SERVER is enabled
PhysicsServerSharedMemory m_physicsServer;
bool m_wantsTermination;
btAlignedObjectArray<int> m_userCommandRequests;
btAlignedObjectArray<int> m_bodyUniqueIds;
int m_sharedMemoryKey;
int m_selectedBody;
int m_prevSelectedBody;
struct Common2dCanvasInterface* m_canvas;
int m_canvasRGBIndex;
int m_canvasDepthIndex;
int m_canvasSegMaskIndex;
btScalar m_lightPos[3];
btScalar m_specularCoeff;
void createButton(const char* name, int id, bool isTrigger);
void createButtons();
//@todo, add accessor methods
// MyMotorInfo2 m_motorTargetVelocities[MAX_NUM_MOTORS];
MyMotorInfo2 m_motorTargetPositions[MAX_NUM_MOTORS];
int m_numMotors;
int m_options;
bool m_isOptionalServerConnected;
public:
PhysicsClientExample(GUIHelperInterface* helper, int options);
virtual ~PhysicsClientExample();
virtual void initPhysics();
void selectComboBox(int comboIndex, const char* name)
{
if (m_guiHelper && m_guiHelper->getParameterInterface())
{
int itemIndex = int(atoi(name));
int bodyIndex = m_bodyUniqueIds[itemIndex];
if (m_selectedBody != bodyIndex)
{
m_selectedBody = bodyIndex;
}
}
}
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 3.45;
float pitch = -16.2;
float yaw = 287;
float targetPos[3] = {2.05, 0.02, 0.53}; //-3,2.8,-2.5};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
virtual bool wantsTermination()
{
return m_wantsTermination;
}
virtual bool isConnected()
{
return (m_physicsClientHandle != 0);
}
void enqueueCommand(int commandId);
void prepareAndSubmitCommand(int commandId);
virtual void exitPhysics(){};
virtual void renderScene()
{
if (m_options == eCLIENTEXAMPLE_SERVER)
{
int renderFlags = 0;
m_physicsServer.renderScene(renderFlags);
}
b3DebugLines debugLines;
b3GetDebugLines(m_physicsClientHandle, &debugLines);
int numLines = debugLines.m_numDebugLines;
int lineWidth = 1;
if (1)
{
btAlignedObjectArray<btVector3FloatData> points;
points.resize(numLines * 2);
btAlignedObjectArray<unsigned int> indices;
indices.resize(numLines * 2);
for (int i = 0; i < numLines; i++)
{
points[i * 2].m_floats[0] = debugLines.m_linesFrom[i * 3 + 0];
points[i * 2].m_floats[1] = debugLines.m_linesFrom[i * 3 + 1];
points[i * 2].m_floats[2] = debugLines.m_linesFrom[i * 3 + 2];
points[i * 2 + 1].m_floats[0] = debugLines.m_linesTo[i * 3 + 0];
points[i * 2 + 1].m_floats[1] = debugLines.m_linesTo[i * 3 + 1];
points[i * 2 + 1].m_floats[2] = debugLines.m_linesTo[i * 3 + 2];
indices[i * 2] = i * 2;
indices[i * 2 + 1] = i * 2 + 1;
}
float color[4] = {0.2, 0.2, 1, 1};
if (points.size() && indices.size())
{
m_guiHelper->getRenderInterface()->drawLines(&points[0].m_floats[0], color, points.size(), sizeof(btVector3FloatData), &indices[0], indices.size(), lineWidth);
}
}
else
{
for (int i = 0; i < numLines; i++)
{
m_guiHelper->getRenderInterface()->drawLine(debugLines.m_linesFrom, debugLines.m_linesTo, debugLines.m_linesColor, lineWidth);
}
}
}
void prepareControlCommand(b3SharedMemoryCommandHandle commandHandle)
{
for (int i = 0; i < m_numMotors; i++)
{
btScalar targetPos = m_motorTargetPositions[i].m_posTarget;
int qIndex = m_motorTargetPositions[i].m_qIndex;
int uIndex = m_motorTargetPositions[i].m_uIndex;
static int serial = 0;
serial++;
// b3Printf("# motors = %d, cmd[%d] qIndex = %d, uIndex = %d, targetPos = %f", m_numMotors, serial, qIndex,uIndex,targetPos);
b3JointControlSetDesiredPosition(commandHandle, qIndex, targetPos);
b3JointControlSetDesiredVelocity(commandHandle, uIndex, 0);
b3JointControlSetKp(commandHandle, qIndex, 0.2);
b3JointControlSetKd(commandHandle, uIndex, 1.);
b3JointControlSetMaximumForce(commandHandle, uIndex, 5000);
}
}
virtual void physicsDebugDraw(int debugFlags)
{
if (m_options == eCLIENTEXAMPLE_SERVER)
{
m_physicsServer.physicsDebugDraw(debugFlags);
}
}
virtual bool mouseMoveCallback(float x, float y) { return false; };
virtual bool mouseButtonCallback(int button, int state, float x, float y) { return false; }
virtual bool keyboardCallback(int key, int state) { return false; }
virtual void setSharedMemoryKey(int key)
{
m_sharedMemoryKey = key;
}
};
void MyComboBoxCallback(int combobox, const char* item, void* userPointer)
{
//b3Printf("Item selected %s", item);
PhysicsClientExample* cl = (PhysicsClientExample*)userPointer;
b3Assert(cl);
if (cl)
{
cl->selectComboBox(combobox, item);
}
}
void MyCallback(int buttonId, bool buttonState, void* userPtr)
{
PhysicsClientExample* cl = (PhysicsClientExample*)userPtr;
b3Assert(cl);
if (cl && buttonState)
{
cl->enqueueCommand(buttonId);
}
}
void PhysicsClientExample::enqueueCommand(int commandId)
{
m_userCommandRequests.push_back(commandId);
}
void PhysicsClientExample::prepareAndSubmitCommand(int commandId)
{
switch (commandId)
{
case CMD_LOAD_URDF:
{
b3SharedMemoryCommandHandle commandHandle = b3LoadUrdfCommandInit(m_physicsClientHandle, "kuka_iiwa/model.urdf");
//setting the initial position, orientation and other arguments are optional
double startPosX = 0;
static double startPosY = 0;
double startPosZ = 0;
b3LoadUrdfCommandSetStartPosition(commandHandle, startPosX, startPosY, startPosZ);
startPosY += 2.f;
// ret = b3LoadUrdfCommandSetUseFixedBase(commandHandle, 1);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_LOAD_SDF:
{
#ifdef BT_DEBUG
b3SharedMemoryCommandHandle commandHandle = b3LoadSdfCommandInit(m_physicsClientHandle, "two_cubes.sdf");
#else
b3SharedMemoryCommandHandle commandHandle = b3LoadSdfCommandInit(m_physicsClientHandle, "kitchens/1.sdf"); //two_cubes.sdf");//kitchens/1.sdf");//kuka_iiwa/model.sdf");
#endif
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_REQUEST_CAMERA_IMAGE_DATA:
{
///request an image from a simulated camera, using a software renderer.
b3SharedMemoryCommandHandle commandHandle = b3InitRequestCameraImage(m_physicsClientHandle);
//b3RequestCameraImageSelectRenderer(commandHandle,ER_BULLET_HARDWARE_OPENGL);
float viewMatrix[16];
float projectionMatrix[16];
m_guiHelper->getRenderInterface()->getActiveCamera()->getCameraProjectionMatrix(projectionMatrix);
m_guiHelper->getRenderInterface()->getActiveCamera()->getCameraViewMatrix(viewMatrix);
b3RequestCameraImageSetCameraMatrices(commandHandle, viewMatrix, projectionMatrix);
b3RequestCameraImageSetPixelResolution(commandHandle, camVisualizerWidth, camVisualizerHeight);
float lightPos[3];
lightPos[0] = m_lightPos[0];
lightPos[1] = m_lightPos[1];
lightPos[2] = m_lightPos[2];
b3RequestCameraImageSetLightDirection(commandHandle, lightPos);
b3RequestCameraImageSetLightSpecularCoeff(commandHandle, m_specularCoeff);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_CREATE_BOX_COLLISION_SHAPE:
{
b3SharedMemoryCommandHandle commandHandle = b3CreateBoxShapeCommandInit(m_physicsClientHandle);
b3CreateBoxCommandSetStartPosition(commandHandle, 0, 0, -1.5);
b3CreateBoxCommandSetColorRGBA(commandHandle, 0, 0, 1, 1);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_CREATE_RIGID_BODY:
{
b3SharedMemoryCommandHandle commandHandle = b3CreateBoxShapeCommandInit(m_physicsClientHandle);
b3CreateBoxCommandSetStartPosition(commandHandle, 0, 0, 0);
b3CreateBoxCommandSetMass(commandHandle, 1);
b3CreateBoxCommandSetCollisionShapeType(commandHandle, COLLISION_SHAPE_TYPE_CYLINDER_Y);
b3CreateBoxCommandSetColorRGBA(commandHandle, 1, 1, 0, 1);
double radius = 0.2;
double halfHeight = 0.5;
b3CreateBoxCommandSetHalfExtents(commandHandle, radius, halfHeight, radius);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_REQUEST_ACTUAL_STATE:
{
if (m_selectedBody >= 0)
{
b3SharedMemoryCommandHandle commandHandle = b3RequestActualStateCommandInit(m_physicsClientHandle, m_selectedBody);
b3SharedMemoryStatusHandle statusHandle = b3SubmitClientCommandAndWaitStatus(m_physicsClientHandle, commandHandle);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
int numJoints = b3GetNumJoints(m_physicsClientHandle, m_selectedBody);
for (int i = 0; i < numJoints; ++i)
{
struct b3JointSensorState sensorState;
b3GetJointState(m_physicsClientHandle, statusHandle, i, &sensorState);
//b3Printf("Joint %d: %f", i, sensorState.m_jointMotorTorque);
}
}
break;
};
case CMD_INIT_POSE:
{
if (m_selectedBody >= 0)
{
b3SharedMemoryCommandHandle commandHandle = b3CreatePoseCommandInit(m_physicsClientHandle, m_selectedBody);
static int toggle = 0;
double pos[3] = {0, 0, 0};
pos[toggle] = 2;
toggle++;
if (toggle > 2)
toggle = 0;
btQuaternion orn;
orn.setValue(0, 0, 0, 1);
switch (toggle)
{
case 0:
orn = btQuaternion(btVector3(1, 0, 0), SIMD_HALF_PI);
break;
case 1:
orn = btQuaternion(btVector3(0, 1, 0), SIMD_HALF_PI);
break;
case 2:
orn = btQuaternion(btVector3(0, 0, 1), SIMD_HALF_PI);
break;
default:
orn.setValue(0, 0, 0, 1);
};
b3CreatePoseCommandSetBaseOrientation(commandHandle, orn[0], orn[1], orn[2], orn[3]);
b3CreatePoseCommandSetBasePosition(commandHandle, pos[0], pos[1], pos[2]);
int numJoints = b3GetNumJoints(m_physicsClientHandle, m_selectedBody);
static double jointPos = SIMD_PI / 2.f;
for (int i = 0; i < numJoints; i++)
{
b3JointInfo info;
b3GetJointInfo(m_physicsClientHandle, m_selectedBody, i, &info);
if ((info.m_jointType == 0) || (info.m_jointType == 1)) //revolute or prismatic
{
b3CreatePoseCommandSetJointPosition(m_physicsClientHandle, commandHandle, i, jointPos);
}
}
jointPos += SIMD_PI / 8.0;
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
}
break;
}
case CMD_STEP_FORWARD_SIMULATION:
{
b3SharedMemoryCommandHandle commandHandle = b3InitStepSimulationCommand(m_physicsClientHandle);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_REQUEST_DEBUG_LINES:
{
b3SharedMemoryCommandHandle commandHandle = b3InitRequestDebugLinesCommand(m_physicsClientHandle, btIDebugDraw::DBG_DrawWireframe);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_SEND_DESIRED_STATE:
{
if (m_selectedBody >= 0)
{
// b3SharedMemoryCommandHandle command = b3JointControlCommandInit( m_physicsClientHandle, m_selectedBody, CONTROL_MODE_VELOCITY);
b3SharedMemoryCommandHandle command = b3JointControlCommandInit2(m_physicsClientHandle, m_selectedBody, CONTROL_MODE_POSITION_VELOCITY_PD);
// b3Printf("prepare control command for body %d", m_selectedBody);
prepareControlCommand(command);
b3SubmitClientCommand(m_physicsClientHandle, command);
}
break;
}
case CMD_RESET_SIMULATION:
{
b3SharedMemoryCommandHandle commandHandle = b3InitResetSimulationCommand(m_physicsClientHandle);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_SEND_BULLET_DATA_STREAM:
{
#if 0
//this worked, but needs C-API and a streaming options, similar to debug lines
command.m_type = buttonId;
cl->enqueueCommand(command);
#endif
break;
}
case CMD_CUSTOM_SET_GRAVITY:
{
b3SharedMemoryCommandHandle commandHandle = b3InitPhysicsParamCommand(m_physicsClientHandle);
b3PhysicsParamSetGravity(commandHandle, 0.0, 0.0, -9.8);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_CUSTOM_SET_REALTIME_SIMULATION:
{
b3SharedMemoryCommandHandle commandHandle = b3InitPhysicsParamCommand(m_physicsClientHandle);
b3PhysicsParamSetRealTimeSimulation(commandHandle, 1);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_CALCULATE_INVERSE_DYNAMICS:
{
if (m_selectedBody >= 0)
{
btAlignedObjectArray<double> jointPositionsQ;
btAlignedObjectArray<double> jointVelocitiesQdot;
btAlignedObjectArray<double> jointAccelerations;
int numJoints = b3GetNumJoints(m_physicsClientHandle, m_selectedBody);
if (numJoints)
{
b3Printf("Compute inverse dynamics for joint accelerations:");
jointPositionsQ.resize(numJoints);
jointVelocitiesQdot.resize(numJoints);
jointAccelerations.resize(numJoints);
for (int i = 0; i < numJoints; i++)
{
jointAccelerations[i] = 100;
b3Printf("Desired joint acceleration[%d]=%f", i, jointAccelerations[i]);
}
b3SharedMemoryCommandHandle commandHandle = b3CalculateInverseDynamicsCommandInit(m_physicsClientHandle,
m_selectedBody, &jointPositionsQ[0], &jointVelocitiesQdot[0], &jointAccelerations[0]);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
}
}
break;
}
case CMD_REQUEST_CONTACT_POINT_INFORMATION:
{
b3SharedMemoryCommandHandle commandHandle = b3InitRequestContactPointInformation(m_physicsClientHandle);
b3SetContactFilterBodyA(commandHandle, 0);
b3SetContactFilterBodyB(commandHandle, 1);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_SAVE_WORLD:
{
b3SharedMemoryCommandHandle commandHandle = b3SaveWorldCommandInit(m_physicsClientHandle, "saveWorld.py");
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_REQUEST_VISUAL_SHAPE_INFO:
{
if (m_selectedBody >= 0)
{
//request visual shape information
b3SharedMemoryCommandHandle commandHandle = b3InitRequestVisualShapeInformation(m_physicsClientHandle, m_selectedBody);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
}
break;
}
case CMD_SET_SHADOW:
{
b3SharedMemoryCommandHandle commandHandle = b3InitRequestCameraImage(m_physicsClientHandle);
float viewMatrix[16];
float projectionMatrix[16];
m_guiHelper->getRenderInterface()->getActiveCamera()->getCameraProjectionMatrix(projectionMatrix);
m_guiHelper->getRenderInterface()->getActiveCamera()->getCameraViewMatrix(viewMatrix);
b3RequestCameraImageSetCameraMatrices(commandHandle, viewMatrix, projectionMatrix);
b3RequestCameraImageSetPixelResolution(commandHandle, camVisualizerWidth, camVisualizerHeight);
bool hasShadow = true;
b3RequestCameraImageSetShadow(commandHandle, hasShadow);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_UPDATE_VISUAL_SHAPE:
{
int objectUniqueId = 0;
int linkIndex = -1;
int shapeIndex = -1;
int textureIndex = -2;
double rgbaColor[4] = {0.0, 1.0, 0.0, 1.0};
b3SharedMemoryCommandHandle commandHandle = b3InitUpdateVisualShape2(m_physicsClientHandle, objectUniqueId, linkIndex, shapeIndex);
b3UpdateVisualShapeRGBAColor(commandHandle, rgbaColor);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
default:
{
b3Error("Unknown buttonId");
btAssert(0);
}
};
}
struct Bullet2CommandProcessorCreation3 : public CommandProcessorCreationInterface
{
virtual class CommandProcessorInterface* createCommandProcessor()
{
PhysicsServerCommandProcessor* proc = new PhysicsServerCommandProcessor;
return proc;
}
virtual void deleteCommandProcessor(CommandProcessorInterface* proc)
{
delete proc;
}
};
static Bullet2CommandProcessorCreation3 sB2PC2;
PhysicsClientExample::PhysicsClientExample(GUIHelperInterface* helper, int options)
: SharedMemoryCommon(helper),
m_physicsClientHandle(0),
m_physicsServer(&sB2PC2, 0, 0),
m_wantsTermination(false),
m_sharedMemoryKey(SHARED_MEMORY_KEY),
m_selectedBody(-1),
m_prevSelectedBody(-1),
m_canvas(0),
m_canvasRGBIndex(-1),
m_canvasDepthIndex(-1),
m_canvasSegMaskIndex(-1),
m_specularCoeff(1.0),
m_numMotors(0),
m_options(options),
m_isOptionalServerConnected(false)
{
b3Printf("Started PhysicsClientExample\n");
}
PhysicsClientExample::~PhysicsClientExample()
{
if (m_physicsClientHandle)
{
b3ProcessServerStatus(m_physicsClientHandle);
b3DisconnectSharedMemory(m_physicsClientHandle);
}
if (m_options == eCLIENTEXAMPLE_SERVER)
{
bool deInitializeSharedMemory = true;
m_physicsServer.disconnectSharedMemory(deInitializeSharedMemory);
}
if (m_canvas)
{
if (m_canvasRGBIndex >= 0)
m_canvas->destroyCanvas(m_canvasRGBIndex);
if (m_canvasDepthIndex >= 0)
m_canvas->destroyCanvas(m_canvasDepthIndex);
if (m_canvasSegMaskIndex >= 0)
m_canvas->destroyCanvas(m_canvasSegMaskIndex);
}
b3Printf("~PhysicsClientExample\n");
}
void PhysicsClientExample::createButton(const char* name, int buttonId, bool isTrigger)
{
ButtonParams button(name, buttonId, isTrigger);
button.m_callback = MyCallback;
button.m_userPointer = this;
m_guiHelper->getParameterInterface()->registerButtonParameter(button);
}
void PhysicsClientExample::createButtons()
{
bool isTrigger = false;
if (m_guiHelper && m_guiHelper->getParameterInterface())
{
m_guiHelper->getParameterInterface()->removeAllParameters();
createButton("Load URDF", CMD_LOAD_URDF, isTrigger);
createButton("Load SDF", CMD_LOAD_SDF, isTrigger);
createButton("Save World", CMD_SAVE_WORLD, isTrigger);
createButton("Set Shadow", CMD_SET_SHADOW, isTrigger);
createButton("Update Visual Shape", CMD_UPDATE_VISUAL_SHAPE, isTrigger);
createButton("Get Camera Image", CMD_REQUEST_CAMERA_IMAGE_DATA, isTrigger);
createButton("Step Sim", CMD_STEP_FORWARD_SIMULATION, isTrigger);
createButton("Realtime Sim", CMD_CUSTOM_SET_REALTIME_SIMULATION, isTrigger);
createButton("Get Visual Shape Info", CMD_REQUEST_VISUAL_SHAPE_INFO, isTrigger);
createButton("Send Bullet Stream", CMD_SEND_BULLET_DATA_STREAM, isTrigger);
if (m_options != eCLIENTEXAMPLE_SERVER)
{
createButton("Get State", CMD_REQUEST_ACTUAL_STATE, isTrigger);
}
createButton("Send Desired State", CMD_SEND_DESIRED_STATE, isTrigger);
createButton("Create Box Collider", CMD_CREATE_BOX_COLLISION_SHAPE, isTrigger);
createButton("Create Cylinder Body", CMD_CREATE_RIGID_BODY, isTrigger);
createButton("Reset Simulation", CMD_RESET_SIMULATION, isTrigger);
createButton("Initialize Pose", CMD_INIT_POSE, isTrigger);
createButton("Set gravity", CMD_CUSTOM_SET_GRAVITY, isTrigger);
createButton("Compute Inverse Dynamics", CMD_CALCULATE_INVERSE_DYNAMICS, isTrigger);
createButton("Get Contact Point Info", CMD_REQUEST_CONTACT_POINT_INFORMATION, isTrigger);
if (m_bodyUniqueIds.size())
{
if (m_selectedBody < 0)
m_selectedBody = 0;
ComboBoxParams comboParams;
comboParams.m_comboboxId = 0;
comboParams.m_numItems = m_bodyUniqueIds.size();
comboParams.m_startItem = m_selectedBody;
comboParams.m_callback = MyComboBoxCallback;
comboParams.m_userPointer = this;
//todo: get the real object name
const char** blarray = new const char*[m_bodyUniqueIds.size()];
for (int i = 0; i < m_bodyUniqueIds.size(); i++)
{
char* bla = new char[16];
sprintf(bla, "%d", i);
blarray[i] = bla;
comboParams.m_items = blarray; //{&bla};
}
m_guiHelper->getParameterInterface()->registerComboBox(comboParams);
}
if (m_physicsClientHandle && m_selectedBody >= 0)
{
m_numMotors = 0;
int numJoints = b3GetNumJoints(m_physicsClientHandle, m_selectedBody);
for (int i = 0; i < numJoints; i++)
{
b3JointInfo info;
b3GetJointInfo(m_physicsClientHandle, m_selectedBody, i, &info);
//b3Printf("Joint %s at q-index %d and u-index %d\n",info.m_jointName,info.m_qIndex,info.m_uIndex);
if (info.m_flags & JOINT_HAS_MOTORIZED_POWER)
{
if (m_numMotors < MAX_NUM_MOTORS)
{
char motorName[1026];
safe_printf(motorName, sizeof(motorName), "%s q", info.m_jointName);
// MyMotorInfo2* motorInfo = &m_motorTargetVelocities[m_numMotors];
MyMotorInfo2* motorInfo = &m_motorTargetPositions[m_numMotors];
motorInfo->m_velTarget = 0.f;
motorInfo->m_posTarget = 0.f;
motorInfo->m_uIndex = info.m_uIndex;
motorInfo->m_qIndex = info.m_qIndex;
// SliderParams slider(motorName,&motorInfo->m_velTarget);
// slider.m_minVal=-4;
// slider.m_maxVal=4;
SliderParams slider(motorName, &motorInfo->m_posTarget);
slider.m_minVal = -4;
slider.m_maxVal = 4;
if (m_guiHelper && m_guiHelper->getParameterInterface())
{
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
m_numMotors++;
}
}
}
}
{
SliderParams sliderLightPosX("light source position x", &m_lightPos[0]);
SliderParams sliderLightPosY("light source position y", &m_lightPos[1]);
SliderParams sliderLightPosZ("light source position z", &m_lightPos[2]);
SliderParams sliderSpecularCoeff("specular coefficient", &m_specularCoeff);
sliderLightPosX.m_minVal = -1.5;
sliderLightPosX.m_maxVal = 1.5;
sliderLightPosY.m_minVal = -1.5;
sliderLightPosY.m_maxVal = 1.5;
sliderLightPosZ.m_minVal = -1.5;
sliderLightPosZ.m_maxVal = 1.5;
sliderSpecularCoeff.m_minVal = 0;
sliderSpecularCoeff.m_maxVal = 5.0;
if (m_guiHelper && m_guiHelper->getParameterInterface())
{
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(sliderLightPosX);
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(sliderLightPosY);
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(sliderLightPosZ);
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(sliderSpecularCoeff);
}
}
}
}
void PhysicsClientExample::initPhysics()
{
if (m_guiHelper && m_guiHelper->getParameterInterface())
{
int upAxis = 2;
m_guiHelper->setUpAxis(upAxis);
createButtons();
}
else
{
MyCallback(CMD_LOAD_URDF, true, this);
MyCallback(CMD_STEP_FORWARD_SIMULATION, true, this);
MyCallback(CMD_RESET_SIMULATION, true, this);
}
m_selectedBody = -1;
m_prevSelectedBody = -1;
m_lightPos[0] = 1.0;
m_lightPos[1] = 1.0;
m_lightPos[2] = 1.0;
{
m_canvas = m_guiHelper->get2dCanvasInterface();
if (m_canvas)
{
m_canvasRGBIndex = m_canvas->createCanvas("Synthetic Camera RGB data", camVisualizerWidth, camVisualizerHeight, 8, 55);
m_canvasDepthIndex = m_canvas->createCanvas("Synthetic Camera Depth data", camVisualizerWidth, camVisualizerHeight, 8, 75 + camVisualizerHeight);
m_canvasSegMaskIndex = m_canvas->createCanvas("Synthetic Camera Segmentation Mask", camVisualizerWidth, camVisualizerHeight, 8, 95 + camVisualizerHeight * 2);
for (int i = 0; i < camVisualizerWidth; i++)
{
for (int j = 0; j < camVisualizerHeight; j++)
{
unsigned char red = 255;
unsigned char green = 255;
unsigned char blue = 255;
unsigned char alpha = 255;
if (i == j)
{
red = 0;
green = 0;
blue = 0;
}
m_canvas->setPixel(m_canvasRGBIndex, i, j, red, green, blue, alpha);
m_canvas->setPixel(m_canvasDepthIndex, i, j, red, green, blue, alpha);
m_canvas->setPixel(m_canvasSegMaskIndex, i, j, red, green, blue, alpha);
}
}
m_canvas->refreshImageData(m_canvasRGBIndex);
m_canvas->refreshImageData(m_canvasDepthIndex);
m_canvas->refreshImageData(m_canvasSegMaskIndex);
}
}
if (m_options == eCLIENTEXAMPLE_SERVER)
{
m_isOptionalServerConnected = m_physicsServer.connectSharedMemory(m_guiHelper);
}
if (m_options == eCLIENTEXAMPLE_DIRECT)
{
m_physicsClientHandle = b3ConnectPhysicsDirect();
}
else
{
m_physicsClientHandle = b3ConnectSharedMemory(m_sharedMemoryKey);
//m_physicsClientHandle = b3ConnectPhysicsLoopback(SHARED_MEMORY_KEY);
}
if (!b3CanSubmitCommand(m_physicsClientHandle))
{
b3Warning("Cannot connect to physics client");
}
}
void PhysicsClientExample::stepSimulation(float deltaTime)
{
if (m_options == eCLIENTEXAMPLE_SERVER)
{
for (int i = 0; i < 100; i++)
{
m_physicsServer.processClientCommands();
}
}
if (m_prevSelectedBody != m_selectedBody)
{
createButtons();
m_prevSelectedBody = m_selectedBody;
}
//while (!b3CanSubmitCommand(m_physicsClientHandle))
{
b3SharedMemoryStatusHandle status = b3ProcessServerStatus(m_physicsClientHandle);
bool hasStatus = (status != 0);
if (hasStatus)
{
int statusType = b3GetStatusType(status);
if (statusType == CMD_ACTUAL_STATE_UPDATE_COMPLETED)
{
//b3Printf("bla\n");
}
if (statusType == CMD_CAMERA_IMAGE_COMPLETED)
{
// static int counter=0;
// char msg[1024];
// sprintf(msg,"Camera image %d OK\n",counter++);
b3CameraImageData imageData;
b3GetCameraImageData(m_physicsClientHandle, &imageData);
if (m_canvas)
{
//compute depth image range
float minDepthValue = 1e20f;
float maxDepthValue = -1e20f;
for (int i = 0; i < camVisualizerWidth; i++)
{
for (int j = 0; j < camVisualizerHeight; j++)
{
int xIndex = int(float(i) * (float(imageData.m_pixelWidth) / float(camVisualizerWidth)));
int yIndex = int(float(j) * (float(imageData.m_pixelHeight) / float(camVisualizerHeight)));
btClamp(xIndex, 0, imageData.m_pixelWidth);
btClamp(yIndex, 0, imageData.m_pixelHeight);
if (m_canvasDepthIndex >= 0)
{
int depthPixelIndex = (xIndex + yIndex * imageData.m_pixelWidth);
float depthValue = imageData.m_depthValues[depthPixelIndex];
//todo: rescale the depthValue to [0..255]
if (depthValue > -1e20)
{
maxDepthValue = btMax(maxDepthValue, depthValue);
minDepthValue = btMin(minDepthValue, depthValue);
}
}
}
}
for (int i = 0; i < camVisualizerWidth; i++)
{
for (int j = 0; j < camVisualizerHeight; j++)
{
int xIndex = int(float(i) * (float(imageData.m_pixelWidth) / float(camVisualizerWidth)));
int yIndex = int(float(j) * (float(imageData.m_pixelHeight) / float(camVisualizerHeight)));
btClamp(yIndex, 0, imageData.m_pixelHeight);
btClamp(xIndex, 0, imageData.m_pixelWidth);
int bytesPerPixel = 4; //RGBA
if (m_canvasRGBIndex >= 0)
{
int rgbPixelIndex = (xIndex + yIndex * imageData.m_pixelWidth) * bytesPerPixel;
m_canvas->setPixel(m_canvasRGBIndex, i, j,
imageData.m_rgbColorData[rgbPixelIndex],
imageData.m_rgbColorData[rgbPixelIndex + 1],
imageData.m_rgbColorData[rgbPixelIndex + 2],
255); //alpha set to 255
}
if (m_canvasDepthIndex >= 0)
{
int depthPixelIndex = (xIndex + yIndex * imageData.m_pixelWidth);
float depthValue = imageData.m_depthValues[depthPixelIndex];
//todo: rescale the depthValue to [0..255]
if (depthValue > -1e20)
{
int rgb = 0;
if (maxDepthValue != minDepthValue)
{
rgb = (depthValue - minDepthValue) * (255. / (btFabs(maxDepthValue - minDepthValue)));
if (rgb < 0 || rgb > 255)
{
//printf("rgb=%d\n",rgb);
}
}
m_canvas->setPixel(m_canvasDepthIndex, i, j,
rgb,
rgb,
255, 255); //alpha set to 255
}
else
{
m_canvas->setPixel(m_canvasDepthIndex, i, j,
0,
0,
0, 255); //alpha set to 255
}
}
if (m_canvasSegMaskIndex >= 0 && (0 != imageData.m_segmentationMaskValues))
{
int segmentationMaskPixelIndex = (xIndex + yIndex * imageData.m_pixelWidth);
int segmentationMask = imageData.m_segmentationMaskValues[segmentationMaskPixelIndex];
btVector4 palette[4] = {btVector4(32, 255, 32, 255),
btVector4(32, 32, 255, 255),
btVector4(255, 255, 32, 255),
btVector4(32, 255, 255, 255)};
if (segmentationMask >= 0)
{
int obIndex = segmentationMask & ((1 << 24) - 1);
int linkIndex = (segmentationMask >> 24) - 1;
btVector4 rgb = palette[(obIndex + linkIndex) & 3];
m_canvas->setPixel(m_canvasSegMaskIndex, i, j,
rgb.x(),
rgb.y(),
rgb.z(), 255); //alpha set to 255
}
else
{
m_canvas->setPixel(m_canvasSegMaskIndex, i, j,
0,
0,
0, 255); //alpha set to 255
}
}
}
}
if (m_canvasRGBIndex >= 0)
m_canvas->refreshImageData(m_canvasRGBIndex);
if (m_canvasDepthIndex >= 0)
m_canvas->refreshImageData(m_canvasDepthIndex);
if (m_canvasSegMaskIndex >= 0)
m_canvas->refreshImageData(m_canvasSegMaskIndex);
}
// b3Printf(msg);
}
if (statusType == CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED)
{
int bodyUniqueId;
int dofCount;
b3GetStatusInverseDynamicsJointForces(status,
&bodyUniqueId,
&dofCount,
0);
btAlignedObjectArray<double> jointForces;
if (dofCount)
{
jointForces.resize(dofCount);
b3GetStatusInverseDynamicsJointForces(status,
0,
0,
&jointForces[0]);
for (int i = 0; i < dofCount; i++)
{
b3Printf("jointForces[%d]=%f", i, jointForces[i]);
}
}
}
if (statusType == CMD_CALCULATED_INVERSE_DYNAMICS_FAILED)
{
b3Warning("Inverse Dynamics computations failed");
}
if (statusType == CMD_CAMERA_IMAGE_FAILED)
{
b3Warning("Camera image FAILED\n");
}
if (statusType == CMD_SDF_LOADING_COMPLETED)
{
int bodyIndicesOut[1024];
int bodyCapacity = 1024;
int numBodies = b3GetStatusBodyIndices(status, bodyIndicesOut, bodyCapacity);
if (numBodies > bodyCapacity)
{
b3Warning("loadSDF number of bodies (%d) exceeds the internal body capacity (%d)", numBodies, bodyCapacity);
}
else
{
for (int i = 0; i < numBodies; i++)
{
int bodyUniqueId = bodyIndicesOut[i];
m_bodyUniqueIds.push_back(bodyUniqueId);
int numJoints = b3GetNumJoints(m_physicsClientHandle, bodyUniqueId);
if (numJoints > 0)
{
m_selectedBody = bodyUniqueId;
}
/* int numJoints = b3GetNumJoints(m_physicsClientHandle,bodyUniqueId);
b3Printf("numJoints = %d", numJoints);
for (int i=0;i<numJoints;i++)
{
b3JointInfo info;
b3GetJointInfo(m_physicsClientHandle,bodyUniqueId,i,&info);
b3Printf("Joint %s at q-index %d and u-index %d\n",info.m_jointName,info.m_qIndex,info.m_uIndex);
}
*/
}
}
//int numJoints = b3GetNumJoints(m_physicsClientHandle,bodyIndex);
//int bodyIndex = b3GetStatusBodyIndex(status);
/*if (bodyIndex>=0)
{
int numJoints = b3GetNumJoints(m_physicsClientHandle,bodyIndex);
for (int i=0;i<numJoints;i++)
{
b3JointInfo info;
b3GetJointInfo(m_physicsClientHandle,bodyIndex,i,&info);
b3Printf("Joint %s at q-index %d and u-index %d\n",info.m_jointName,info.m_qIndex,info.m_uIndex);
}
ComboBoxParams comboParams;
comboParams.m_comboboxId = bodyIndex;
comboParams.m_numItems = 1;
comboParams.m_startItem = 0;
comboParams.m_callback = MyComboBoxCallback;
comboParams.m_userPointer = this;
const char* bla = "bla";
const char* blarray[1];
blarray[0] = bla;
comboParams.m_items=blarray;//{&bla};
m_guiHelper->getParameterInterface()->registerComboBox(comboParams);
}
*/
}
if (statusType == CMD_URDF_LOADING_COMPLETED)
{
int bodyIndex = b3GetStatusBodyIndex(status);
if (bodyIndex >= 0)
{
m_bodyUniqueIds.push_back(bodyIndex);
m_selectedBody = bodyIndex;
int numJoints = b3GetNumJoints(m_physicsClientHandle, bodyIndex);
for (int i = 0; i < numJoints; i++)
{
b3JointInfo info;
b3GetJointInfo(m_physicsClientHandle, bodyIndex, i, &info);
//b3Printf("Joint %s at q-index %d and u-index %d\n",info.m_jointName,info.m_qIndex,info.m_uIndex);
}
}
}
if (statusType == CMD_CONTACT_POINT_INFORMATION_FAILED)
{
b3Warning("Cannot get contact information");
}
if (statusType == CMD_VISUAL_SHAPE_INFO_FAILED)
{
b3Warning("Cannot get visual shape information");
}
if (statusType == CMD_VISUAL_SHAPE_UPDATE_FAILED)
{
b3Warning("Cannot update visual shape");
}
if (statusType == CMD_VISUAL_SHAPE_INFO_COMPLETED)
{
b3VisualShapeInformation shapeInfo;
b3GetVisualShapeInformation(m_physicsClientHandle, &shapeInfo);
b3Printf("Num visual shapes: %d", shapeInfo.m_numVisualShapes);
}
if (statusType == CMD_VISUAL_SHAPE_UPDATE_COMPLETED)
{
b3Printf("Visual shape update completed.");
}
if (statusType == CMD_CONTACT_POINT_INFORMATION_COMPLETED)
{
b3ContactInformation contactPointData;
b3GetContactPointInformation(m_physicsClientHandle, &contactPointData);
b3Printf("Num Contacts: %d\n", contactPointData.m_numContactPoints);
}
}
}
if (b3CanSubmitCommand(m_physicsClientHandle))
{
if (m_userCommandRequests.size())
{
//b3Printf("Outstanding user command requests: %d\n", m_userCommandRequests.size());
int commandId = m_userCommandRequests[0];
//a manual 'pop_front', we don't use 'remove' because it will re-order the commands
for (int i = 1; i < m_userCommandRequests.size(); i++)
{
m_userCommandRequests[i - 1] = m_userCommandRequests[i];
}
m_userCommandRequests.pop_back();
//for the CMD_RESET_SIMULATION we need to do something special: clear the GUI sliders
if (commandId == CMD_RESET_SIMULATION)
{
m_selectedBody = -1;
m_numMotors = 0;
m_bodyUniqueIds.clear();
createButtons();
b3SharedMemoryCommandHandle commandHandle = b3InitResetSimulationCommand(m_physicsClientHandle);
if (m_options == eCLIENTEXAMPLE_SERVER)
{
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
while (!b3CanSubmitCommand(m_physicsClientHandle))
{
m_physicsServer.processClientCommands();
b3SharedMemoryStatusHandle status = b3ProcessServerStatus(m_physicsClientHandle);
bool hasStatus = (status != 0);
if (hasStatus)
{
//int statusType = b3GetStatusType(status);
//b3Printf("Status after reset: %d",statusType);
}
}
}
else
{
prepareAndSubmitCommand(commandId);
}
}
else
{
prepareAndSubmitCommand(commandId);
}
}
else
{
if (m_numMotors)
{
enqueueCommand(CMD_SEND_DESIRED_STATE);
}
enqueueCommand(CMD_STEP_FORWARD_SIMULATION);
if (m_options != eCLIENTEXAMPLE_SERVER)
{
//enqueueCommand(CMD_REQUEST_DEBUG_LINES);
}
}
}
}
extern int gSharedMemoryKey;
class CommonExampleInterface* PhysicsClientCreateFunc(struct CommonExampleOptions& options)
{
PhysicsClientExample* example = new PhysicsClientExample(options.m_guiHelper, options.m_option);
if (gSharedMemoryKey >= 0)
{
example->setSharedMemoryKey(gSharedMemoryKey);
}
return example;
}