mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-15 14:10:11 +00:00
ef9570c315
This recreates pull request #2192
153 lines
5.3 KiB
Python
153 lines
5.3 KiB
Python
# Copyright 2017 The TensorFlow Agents Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
r"""Script to train a batch reinforcement learning algorithm.
|
|
|
|
Command line:
|
|
|
|
python3 -m agents.scripts.train --logdir=/path/to/logdir --config=pendulum
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import datetime
|
|
import os
|
|
|
|
import gym
|
|
import tensorflow as tf
|
|
|
|
from . import tools
|
|
from . import configs
|
|
from . import utility
|
|
|
|
|
|
def _create_environment(config):
|
|
"""Constructor for an instance of the environment.
|
|
|
|
Args:
|
|
config: Object providing configurations via attributes.
|
|
|
|
Returns:
|
|
Wrapped OpenAI Gym environment.
|
|
"""
|
|
if isinstance(config.env, str):
|
|
env = gym.make(config.env)
|
|
else:
|
|
env = config.env()
|
|
if config.max_length:
|
|
env = tools.wrappers.LimitDuration(env, config.max_length)
|
|
env = tools.wrappers.RangeNormalize(env)
|
|
env = tools.wrappers.ClipAction(env)
|
|
env = tools.wrappers.ConvertTo32Bit(env)
|
|
return env
|
|
|
|
|
|
def _define_loop(graph, logdir, train_steps, eval_steps):
|
|
"""Create and configure a training loop with training and evaluation phases.
|
|
|
|
Args:
|
|
graph: Object providing graph elements via attributes.
|
|
logdir: Log directory for storing checkpoints and summaries.
|
|
train_steps: Number of training steps per epoch.
|
|
eval_steps: Number of evaluation steps per epoch.
|
|
|
|
Returns:
|
|
Loop object.
|
|
"""
|
|
loop = tools.Loop(logdir, graph.step, graph.should_log, graph.do_report, graph.force_reset)
|
|
loop.add_phase('train',
|
|
graph.done,
|
|
graph.score,
|
|
graph.summary,
|
|
train_steps,
|
|
report_every=train_steps,
|
|
log_every=train_steps // 2,
|
|
checkpoint_every=None,
|
|
feed={graph.is_training: True})
|
|
loop.add_phase('eval',
|
|
graph.done,
|
|
graph.score,
|
|
graph.summary,
|
|
eval_steps,
|
|
report_every=eval_steps,
|
|
log_every=eval_steps // 2,
|
|
checkpoint_every=10 * eval_steps,
|
|
feed={graph.is_training: False})
|
|
return loop
|
|
|
|
|
|
def train(config, env_processes):
|
|
"""Training and evaluation entry point yielding scores.
|
|
|
|
Resolves some configuration attributes, creates environments, graph, and
|
|
training loop. By default, assigns all operations to the CPU.
|
|
|
|
Args:
|
|
config: Object providing configurations via attributes.
|
|
env_processes: Whether to step environments in separate processes.
|
|
|
|
Yields:
|
|
Evaluation scores.
|
|
"""
|
|
tf.reset_default_graph()
|
|
if config.update_every % config.num_agents:
|
|
tf.logging.warn('Number of agents should divide episodes per update.')
|
|
with tf.device('/cpu:0'):
|
|
batch_env = utility.define_batch_env(lambda: _create_environment(config), config.num_agents,
|
|
env_processes)
|
|
graph = utility.define_simulation_graph(batch_env, config.algorithm, config)
|
|
loop = _define_loop(graph, config.logdir, config.update_every * config.max_length,
|
|
config.eval_episodes * config.max_length)
|
|
total_steps = int(config.steps / config.update_every *
|
|
(config.update_every + config.eval_episodes))
|
|
# Exclude episode related variables since the Python state of environments is
|
|
# not checkpointed and thus new episodes start after resuming.
|
|
saver = utility.define_saver(exclude=(r'.*_temporary/.*',))
|
|
sess_config = tf.ConfigProto(allow_soft_placement=True)
|
|
sess_config.gpu_options.allow_growth = True
|
|
with tf.Session(config=sess_config) as sess:
|
|
utility.initialize_variables(sess, saver, config.logdir)
|
|
for score in loop.run(sess, saver, total_steps):
|
|
yield score
|
|
batch_env.close()
|
|
|
|
|
|
def main(_):
|
|
"""Create or load configuration and launch the trainer."""
|
|
utility.set_up_logging()
|
|
if not FLAGS.config:
|
|
raise KeyError('You must specify a configuration.')
|
|
logdir = FLAGS.logdir and os.path.expanduser(
|
|
os.path.join(FLAGS.logdir, '{}-{}'.format(FLAGS.timestamp, FLAGS.config)))
|
|
try:
|
|
config = utility.load_config(logdir)
|
|
except IOError:
|
|
config = tools.AttrDict(getattr(configs, FLAGS.config)())
|
|
config = utility.save_config(config, logdir)
|
|
for score in train(config, FLAGS.env_processes):
|
|
tf.logging.info('Score {}.'.format(score))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
FLAGS = tf.app.flags.FLAGS
|
|
tf.app.flags.DEFINE_string('logdir', None, 'Base directory to store logs.')
|
|
tf.app.flags.DEFINE_string('timestamp',
|
|
datetime.datetime.now().strftime('%Y%m%dT%H%M%S'),
|
|
'Sub directory to store logs.')
|
|
tf.app.flags.DEFINE_string('config', None, 'Configuration to execute.')
|
|
tf.app.flags.DEFINE_boolean('env_processes', True,
|
|
'Step environments in separate processes to circumvent the GIL.')
|
|
tf.app.run()
|