bullet3/examples/SharedMemory/PhysicsServerCommandProcessor.cpp
2020-01-17 11:55:42 +01:00

13686 lines
479 KiB
C++

#include "PhysicsServerCommandProcessor.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "plugins/b3PluginCollisionInterface.h"
#include "../Importers/ImportURDFDemo/BulletUrdfImporter.h"
#include "../Importers/ImportURDFDemo/MyMultiBodyCreator.h"
#include "../Importers/ImportURDFDemo/URDF2Bullet.h"
#include "../Importers/ImportURDFDemo/UrdfFindMeshFile.h"
#include "../Extras/InverseDynamics/btMultiBodyTreeCreator.hpp"
#include "BulletCollision/CollisionDispatch/btInternalEdgeUtility.h"
#include "../Importers/ImportMeshUtility/b3ImportMeshUtility.h"
#include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
#include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h"
#include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodySphericalJointMotor.h"
#include "../Utils/b3BulletDefaultFileIO.h"
#include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h"
#include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodyGearConstraint.h"
#include "../Importers/ImportURDFDemo/UrdfParser.h"
#include "../Utils/b3ResourcePath.h"
#include "Bullet3Common/b3FileUtils.h"
#include "../OpenGLWindow/GLInstanceGraphicsShape.h"
#include "BulletDynamics/Featherstone/btMultiBodySliderConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "Bullet3Common/b3HashMap.h"
#include "../Utils/ChromeTraceUtil.h"
#include "SharedMemoryPublic.h"
#include "stb_image/stb_image.h"
#include "BulletInverseDynamics/MultiBodyTree.hpp"
#include "IKTrajectoryHelper.h"
#include "btBulletDynamicsCommon.h"
#include "../Utils/RobotLoggingUtil.h"
#include "LinearMath/btTransform.h"
#include "../Importers/ImportMJCFDemo/BulletMJCFImporter.h"
#include "../Importers/ImportObjDemo/LoadMeshFromObj.h"
#include "../Importers/ImportSTLDemo/LoadMeshFromSTL.h"
#include "../Extras/Serialize/BulletWorldImporter/btMultiBodyWorldImporter.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "LinearMath/btSerializer.h"
#include "Bullet3Common/b3Logging.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "SharedMemoryCommands.h"
#include "LinearMath/btRandom.h"
#include "Bullet3Common/b3ResizablePool.h"
#include "../Utils/b3Clock.h"
#include "b3PluginManager.h"
#include "../Extras/Serialize/BulletFileLoader/btBulletFile.h"
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
#include "LinearMath/TaskScheduler/btThreadSupportInterface.h"
#include "Wavefront/tiny_obj_loader.h"
#ifndef SKIP_COLLISION_FILTER_PLUGIN
#include "plugins/collisionFilterPlugin/collisionFilterPlugin.h"
#endif
#ifdef ENABLE_STATIC_GRPC_PLUGIN
#include "plugins/grpcPlugin/grpcPlugin.h"
#endif //ENABLE_STATIC_GRPC_PLUGIN
#ifndef SKIP_STATIC_PD_CONTROL_PLUGIN
#include "plugins/pdControlPlugin/pdControlPlugin.h"
#endif //SKIP_STATIC_PD_CONTROL_PLUGIN
#ifdef STATIC_LINK_SPD_PLUGIN
#include "plugins/stablePDPlugin/BulletConversion.h"
#include "plugins/stablePDPlugin/RBDModel.h"
#include "plugins/stablePDPlugin/RBDUtil.h"
#endif
#ifdef STATIC_LINK_VR_PLUGIN
#include "plugins/vrSyncPlugin/vrSyncPlugin.h"
#endif
#ifdef STATIC_EGLRENDERER_PLUGIN
#include "plugins/eglPlugin/eglRendererPlugin.h"
#endif //STATIC_EGLRENDERER_PLUGIN
#ifndef SKIP_STATIC_TINYRENDERER_PLUGIN
#include "plugins/tinyRendererPlugin/tinyRendererPlugin.h"
#endif
#ifdef B3_ENABLE_FILEIO_PLUGIN
#include "plugins/fileIOPlugin/fileIOPlugin.h"
#endif //B3_DISABLE_FILEIO_PLUGIN
#ifdef B3_ENABLE_TINY_AUDIO
#include "../TinyAudio/b3SoundEngine.h"
#endif
#ifdef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
#define SKIP_DEFORMABLE_BODY 1
#endif
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
#include "BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h"
#include "BulletSoftBody/btSoftBodySolvers.h"
#include "BulletSoftBody/btSoftBodyHelpers.h"
#include "BulletSoftBody/btSoftMultiBodyDynamicsWorld.h"
#include "BulletSoftBody/btDeformableMultiBodyDynamicsWorld.h"
#include "BulletSoftBody/btDeformableBodySolver.h"
#include "BulletSoftBody/btDeformableMultiBodyConstraintSolver.h"
#include "../SoftDemo/BunnyMesh.h"
#endif//SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
#ifndef SKIP_DEFORMABLE_BODY
#include "BulletSoftBody/btDeformableMultiBodyDynamicsWorld.h"
#include "BulletSoftBody/btDeformableBodySolver.h"
#include "BulletSoftBody/btDeformableMultiBodyConstraintSolver.h"
#endif//SKIP_DEFORMABLE_BODY
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
int gInternalSimFlags = 0;
bool gResetSimulation = 0;
int gVRTrackingObjectUniqueId = -1;
int gVRTrackingObjectFlag = VR_CAMERA_TRACK_OBJECT_ORIENTATION;
btTransform gVRTrackingObjectTr = btTransform::getIdentity();
btVector3 gVRTeleportPos1(0, 0, 0);
btQuaternion gVRTeleportOrn(0, 0, 0, 1);
btScalar simTimeScalingFactor = 1;
btScalar gRhsClamp = 1.f;
#include "../CommonInterfaces/CommonFileIOInterface.h"
class b3ThreadPool
{
public:
b3ThreadPool(const char* name = "b3ThreadPool")
{
btThreadSupportInterface::ConstructionInfo info(name, threadFunction);
m_threadSupportInterface = btThreadSupportInterface::create(info);
}
~b3ThreadPool()
{
delete m_threadSupportInterface;
}
const int numWorkers() const { return m_threadSupportInterface->getNumWorkerThreads(); }
void runTask(int threadIdx, btThreadSupportInterface::ThreadFunc func, void* arg)
{
FunctionContext& ctx = m_functionContexts[threadIdx];
ctx.func = func;
ctx.arg = arg;
m_threadSupportInterface->runTask(threadIdx, (void*)&ctx);
}
void waitForAllTasks()
{
BT_PROFILE("b3ThreadPool_waitForAllTasks");
m_threadSupportInterface->waitForAllTasks();
}
private:
struct FunctionContext
{
btThreadSupportInterface::ThreadFunc func;
void* arg;
};
static void threadFunction(void* userPtr)
{
BT_PROFILE("b3ThreadPool_threadFunction");
FunctionContext* ctx = (FunctionContext*)userPtr;
ctx->func(ctx->arg);
}
btThreadSupportInterface* m_threadSupportInterface;
FunctionContext m_functionContexts[BT_MAX_THREAD_COUNT];
};
struct SharedMemoryDebugDrawer : public btIDebugDraw
{
int m_debugMode;
btAlignedObjectArray<SharedMemLines> m_lines2;
SharedMemoryDebugDrawer()
: m_debugMode(0)
{
}
virtual void drawContactPoint(const btVector3& PointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime, const btVector3& color)
{
}
virtual void reportErrorWarning(const char* warningString)
{
}
virtual void draw3dText(const btVector3& location, const char* textString)
{
}
virtual void setDebugMode(int debugMode)
{
m_debugMode = debugMode;
}
virtual int getDebugMode() const
{
return m_debugMode;
}
virtual void drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
{
SharedMemLines line;
line.m_from = from;
line.m_to = to;
line.m_color = color;
m_lines2.push_back(line);
}
};
struct InternalVisualShapeData
{
int m_tinyRendererVisualShapeIndex;
int m_OpenGLGraphicsIndex;
b3AlignedObjectArray<UrdfVisual> m_visualShapes;
b3AlignedObjectArray<std::string> m_pathPrefixes;
void clear()
{
m_tinyRendererVisualShapeIndex = -1;
m_OpenGLGraphicsIndex = -1;
m_visualShapes.clear();
m_pathPrefixes.clear();
}
};
struct InternalCollisionShapeData
{
btCollisionShape* m_collisionShape;
b3AlignedObjectArray<UrdfCollision> m_urdfCollisionObjects;
int m_used;
InternalCollisionShapeData()
: m_collisionShape(0),
m_used(0)
{
}
void clear()
{
m_collisionShape = 0;
m_used = 0;
}
};
#include "SharedMemoryUserData.h"
struct InternalBodyData
{
btMultiBody* m_multiBody;
btRigidBody* m_rigidBody;
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
btSoftBody* m_softBody;
#endif
int m_testData;
std::string m_bodyName;
btTransform m_rootLocalInertialFrame;
btAlignedObjectArray<btTransform> m_linkLocalInertialFrames;
btAlignedObjectArray<btGeneric6DofSpring2Constraint*> m_rigidBodyJoints;
btAlignedObjectArray<std::string> m_rigidBodyJointNames;
btAlignedObjectArray<std::string> m_rigidBodyLinkNames;
btAlignedObjectArray<int> m_userDataHandles;
#ifdef B3_ENABLE_TINY_AUDIO
b3HashMap<btHashInt, SDFAudioSource> m_audioSources;
#endif //B3_ENABLE_TINY_AUDIO
InternalBodyData()
{
clear();
}
void clear()
{
m_multiBody = 0;
m_rigidBody = 0;
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
m_softBody = 0;
#endif
m_testData = 0;
m_bodyName = "";
m_rootLocalInertialFrame.setIdentity();
m_linkLocalInertialFrames.clear();
m_rigidBodyJoints.clear();
m_rigidBodyJointNames.clear();
m_rigidBodyLinkNames.clear();
m_userDataHandles.clear();
}
};
struct InteralUserConstraintData
{
btTypedConstraint* m_rbConstraint;
btMultiBodyConstraint* m_mbConstraint;
b3UserConstraint m_userConstraintData;
InteralUserConstraintData()
: m_rbConstraint(0),
m_mbConstraint(0)
{
}
};
struct InternalTextureData
{
int m_tinyRendererTextureId;
int m_openglTextureId;
void clear()
{
m_tinyRendererTextureId = -1;
m_openglTextureId = -1;
}
};
typedef b3PoolBodyHandle<InternalTextureData> InternalTextureHandle;
typedef b3PoolBodyHandle<InternalBodyData> InternalBodyHandle;
typedef b3PoolBodyHandle<InternalCollisionShapeData> InternalCollisionShapeHandle;
typedef b3PoolBodyHandle<InternalVisualShapeData> InternalVisualShapeHandle;
class btCommandChunk
{
public:
int m_chunkCode;
int m_length;
void* m_oldPtr;
int m_dna_nr;
int m_number;
};
class bCommandChunkPtr4
{
public:
bCommandChunkPtr4() {}
int code;
int len;
union {
int m_uniqueInt;
};
int dna_nr;
int nr;
};
// ----------------------------------------------------- //
class bCommandChunkPtr8
{
public:
bCommandChunkPtr8() {}
int code, len;
union {
int m_uniqueInts[2];
};
int dna_nr, nr;
};
struct CommandLogger
{
FILE* m_file;
void writeHeader(unsigned char* buffer) const
{
#ifdef BT_USE_DOUBLE_PRECISION
memcpy(buffer, "BT3CMDd", 7);
#else
memcpy(buffer, "BT3CMDf", 7);
#endif //BT_USE_DOUBLE_PRECISION
int littleEndian = 1;
littleEndian = ((char*)&littleEndian)[0];
if (sizeof(void*) == 8)
{
buffer[7] = '-';
}
else
{
buffer[7] = '_';
}
if (littleEndian)
{
buffer[8] = 'v';
}
else
{
buffer[8] = 'V';
}
buffer[9] = 0;
buffer[10] = 0;
buffer[11] = 0;
int ver = btGetVersion();
if (ver >= 0 && ver < 999)
{
sprintf((char*)&buffer[9], "%d", ver);
}
}
void logCommand(const SharedMemoryCommand& command)
{
if (m_file)
{
btCommandChunk chunk;
chunk.m_chunkCode = command.m_type;
chunk.m_oldPtr = 0;
chunk.m_dna_nr = 0;
chunk.m_length = sizeof(SharedMemoryCommand);
chunk.m_number = 1;
fwrite((const char*)&chunk, sizeof(btCommandChunk), 1, m_file);
switch (command.m_type)
{
case CMD_LOAD_MJCF:
{
fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file);
fwrite((const char*)&command.m_mjcfArguments, sizeof(MjcfArgs), 1, m_file);
break;
}
case CMD_REQUEST_BODY_INFO:
{
fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file);
fwrite((const char*)&command.m_sdfRequestInfoArgs, sizeof(SdfRequestInfoArgs), 1, m_file);
break;
}
case CMD_REQUEST_VISUAL_SHAPE_INFO:
{
fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file);
fwrite((const char*)&command.m_requestVisualShapeDataArguments, sizeof(RequestVisualShapeDataArgs), 1, m_file);
break;
}
case CMD_LOAD_URDF:
{
fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file);
fwrite((const char*)&command.m_urdfArguments, sizeof(UrdfArgs), 1, m_file);
break;
}
case CMD_INIT_POSE:
{
fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file);
fwrite((const char*)&command.m_initPoseArgs, sizeof(InitPoseArgs), 1, m_file);
break;
};
case CMD_REQUEST_ACTUAL_STATE:
{
fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file);
fwrite((const char*)&command.m_requestActualStateInformationCommandArgument,
sizeof(RequestActualStateArgs), 1, m_file);
break;
};
case CMD_SEND_DESIRED_STATE:
{
fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file);
fwrite((const char*)&command.m_sendDesiredStateCommandArgument, sizeof(SendDesiredStateArgs), 1, m_file);
break;
}
case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS:
{
fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file);
fwrite((const char*)&command.m_physSimParamArgs, sizeof(b3PhysicsSimulationParameters), 1, m_file);
break;
}
case CMD_REQUEST_CONTACT_POINT_INFORMATION:
{
fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file);
fwrite((const char*)&command.m_requestContactPointArguments, sizeof(RequestContactDataArgs), 1, m_file);
break;
}
case CMD_STEP_FORWARD_SIMULATION:
case CMD_RESET_SIMULATION:
case CMD_REQUEST_INTERNAL_DATA:
{
break;
};
default:
{
fwrite((const char*)&command, sizeof(SharedMemoryCommand), 1, m_file);
}
};
}
}
CommandLogger(const char* fileName)
{
m_file = fopen(fileName, "wb");
if (m_file)
{
unsigned char buf[15];
buf[12] = 12;
buf[13] = 13;
buf[14] = 14;
writeHeader(buf);
fwrite(buf, 12, 1, m_file);
}
}
virtual ~CommandLogger()
{
if (m_file)
{
fclose(m_file);
}
}
};
struct CommandLogPlayback
{
unsigned char m_header[12];
FILE* m_file;
bool m_bitsVary;
bool m_fileIs64bit;
CommandLogPlayback(const char* fileName)
{
m_file = fopen(fileName, "rb");
if (m_file)
{
size_t bytesRead;
bytesRead = fread(m_header, 12, 1, m_file);
}
unsigned char c = m_header[7];
m_fileIs64bit = (c == '-');
const bool VOID_IS_8 = ((sizeof(void*) == 8));
m_bitsVary = (VOID_IS_8 != m_fileIs64bit);
}
virtual ~CommandLogPlayback()
{
if (m_file)
{
fclose(m_file);
m_file = 0;
}
}
bool processNextCommand(SharedMemoryCommand* cmd)
{
//for a little while, keep this flag to be able to read 'old' log files
//#define BACKWARD_COMPAT
#if BACKWARD_COMPAT
SharedMemoryCommand unused;
#endif //BACKWARD_COMPAT
bool result = false;
size_t s = 0;
if (m_file)
{
int commandType = -1;
if (m_fileIs64bit)
{
bCommandChunkPtr8 chunk8;
s = fread((void*)&chunk8, sizeof(bCommandChunkPtr8), 1, m_file);
commandType = chunk8.code;
}
else
{
bCommandChunkPtr4 chunk4;
s = fread((void*)&chunk4, sizeof(bCommandChunkPtr4), 1, m_file);
commandType = chunk4.code;
}
if (s == 1)
{
memset(cmd, 0, sizeof(SharedMemoryCommand));
cmd->m_type = commandType;
#ifdef BACKWARD_COMPAT
s = fread(&unused, sizeof(SharedMemoryCommand), 1, m_file);
cmd->m_updateFlags = unused.m_updateFlags;
#endif
switch (commandType)
{
case CMD_LOAD_MJCF:
{
#ifdef BACKWARD_COMPAT
cmd->m_mjcfArguments = unused.m_mjcfArguments;
#else
s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file);
s = fread(&cmd->m_mjcfArguments, sizeof(MjcfArgs), 1, m_file);
#endif
result = true;
break;
}
case CMD_REQUEST_BODY_INFO:
{
#ifdef BACKWARD_COMPAT
cmd->m_sdfRequestInfoArgs = unused.m_sdfRequestInfoArgs;
#else
s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file);
s = fread(&cmd->m_sdfRequestInfoArgs, sizeof(SdfRequestInfoArgs), 1, m_file);
#endif
result = true;
break;
}
case CMD_REQUEST_VISUAL_SHAPE_INFO:
{
#ifdef BACKWARD_COMPAT
cmd->m_requestVisualShapeDataArguments = unused.m_requestVisualShapeDataArguments;
#else
s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file);
s = fread(&cmd->m_requestVisualShapeDataArguments, sizeof(RequestVisualShapeDataArgs), 1, m_file);
#endif
result = true;
break;
}
case CMD_LOAD_URDF:
{
#ifdef BACKWARD_COMPAT
cmd->m_urdfArguments = unused.m_urdfArguments;
#else
s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file);
s = fread(&cmd->m_urdfArguments, sizeof(UrdfArgs), 1, m_file);
#endif
result = true;
break;
}
case CMD_INIT_POSE:
{
#ifdef BACKWARD_COMPAT
cmd->m_initPoseArgs = unused.m_initPoseArgs;
#else
s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file);
s = fread(&cmd->m_initPoseArgs, sizeof(InitPoseArgs), 1, m_file);
#endif
result = true;
break;
};
case CMD_REQUEST_ACTUAL_STATE:
{
#ifdef BACKWARD_COMPAT
cmd->m_requestActualStateInformationCommandArgument = unused.m_requestActualStateInformationCommandArgument;
#else
s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file);
s = fread(&cmd->m_requestActualStateInformationCommandArgument, sizeof(RequestActualStateArgs), 1, m_file);
#endif
result = true;
break;
};
case CMD_SEND_DESIRED_STATE:
{
#ifdef BACKWARD_COMPAT
cmd->m_sendDesiredStateCommandArgument = unused.m_sendDesiredStateCommandArgument;
#else
s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file);
s = fread(&cmd->m_sendDesiredStateCommandArgument, sizeof(SendDesiredStateArgs), 1, m_file);
#endif
result = true;
break;
}
case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS:
{
#ifdef BACKWARD_COMPAT
cmd->m_physSimParamArgs = unused.m_physSimParamArgs;
#else
s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file);
s = fread(&cmd->m_physSimParamArgs, sizeof(b3PhysicsSimulationParameters), 1, m_file);
#endif
result = true;
break;
}
case CMD_REQUEST_CONTACT_POINT_INFORMATION:
{
#ifdef BACKWARD_COMPAT
cmd->m_requestContactPointArguments = unused.m_requestContactPointArguments;
#else
s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file);
s = fread(&cmd->m_requestContactPointArguments, sizeof(RequestContactDataArgs), 1, m_file);
#endif
result = true;
break;
}
case CMD_STEP_FORWARD_SIMULATION:
case CMD_RESET_SIMULATION:
case CMD_REQUEST_INTERNAL_DATA:
{
result = true;
break;
}
default:
{
s = fread(cmd, sizeof(SharedMemoryCommand), 1, m_file);
result = (s == 1);
}
};
}
}
return result;
}
};
struct SaveWorldObjectData
{
b3AlignedObjectArray<int> m_bodyUniqueIds;
std::string m_fileName;
};
struct MyBroadphaseCallback : public btBroadphaseAabbCallback
{
b3AlignedObjectArray<int> m_bodyUniqueIds;
b3AlignedObjectArray<int> m_links;
MyBroadphaseCallback()
{
}
virtual ~MyBroadphaseCallback()
{
}
void clear()
{
m_bodyUniqueIds.clear();
m_links.clear();
}
virtual bool process(const btBroadphaseProxy* proxy)
{
btCollisionObject* colObj = (btCollisionObject*)proxy->m_clientObject;
btMultiBodyLinkCollider* mbl = btMultiBodyLinkCollider::upcast(colObj);
if (mbl)
{
int bodyUniqueId = mbl->m_multiBody->getUserIndex2();
m_bodyUniqueIds.push_back(bodyUniqueId);
m_links.push_back(mbl->m_link);
return true;
}
int bodyUniqueId = colObj->getUserIndex2();
if (bodyUniqueId >= 0)
{
m_bodyUniqueIds.push_back(bodyUniqueId);
//it is not a multibody, so use -1 otherwise
m_links.push_back(-1);
}
return true;
}
};
struct MyOverlapFilterCallback : public btOverlapFilterCallback
{
int m_filterMode;
b3PluginManager* m_pluginManager;
MyOverlapFilterCallback(b3PluginManager* pluginManager)
: m_filterMode(B3_FILTER_GROUPAMASKB_AND_GROUPBMASKA),
m_pluginManager(pluginManager)
{
}
virtual ~MyOverlapFilterCallback()
{
}
// return true when pairs need collision
virtual bool needBroadphaseCollision(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) const
{
b3PluginCollisionInterface* collisionInterface = m_pluginManager->getCollisionInterface();
if (collisionInterface && collisionInterface->getNumRules())
{
int objectUniqueIdB = -1, linkIndexB = -1;
btCollisionObject* colObjB = (btCollisionObject*)proxy1->m_clientObject;
btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(colObjB);
if (mblB)
{
objectUniqueIdB = mblB->m_multiBody->getUserIndex2();
linkIndexB = mblB->m_link;
}
else
{
objectUniqueIdB = colObjB->getUserIndex2();
linkIndexB = -1;
}
int objectUniqueIdA = -1, linkIndexA = -1;
btCollisionObject* colObjA = (btCollisionObject*)proxy0->m_clientObject;
btMultiBodyLinkCollider* mblA = btMultiBodyLinkCollider::upcast(colObjA);
if (mblA)
{
objectUniqueIdA = mblA->m_multiBody->getUserIndex2();
linkIndexA = mblA->m_link;
}
else
{
objectUniqueIdA = colObjA->getUserIndex2();
linkIndexA = -1;
}
int collisionFilterGroupA = proxy0->m_collisionFilterGroup;
int collisionFilterMaskA = proxy0->m_collisionFilterMask;
int collisionFilterGroupB = proxy1->m_collisionFilterGroup;
int collisionFilterMaskB = proxy1->m_collisionFilterMask;
return collisionInterface->needsBroadphaseCollision(objectUniqueIdA, linkIndexA,
collisionFilterGroupA, collisionFilterMaskA,
objectUniqueIdB, linkIndexB, collisionFilterGroupB, collisionFilterMaskB, m_filterMode);
}
else
{
if (m_filterMode == B3_FILTER_GROUPAMASKB_AND_GROUPBMASKA)
{
bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
return collides;
}
if (m_filterMode == B3_FILTER_GROUPAMASKB_OR_GROUPBMASKA)
{
bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
collides = collides || (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
return collides;
}
return false;
}
}
};
struct InternalStateLogger
{
int m_loggingUniqueId;
int m_loggingType;
InternalStateLogger()
: m_loggingUniqueId(0),
m_loggingType(0)
{
}
virtual ~InternalStateLogger() {}
virtual void stop() = 0;
virtual void logState(btScalar timeStep) = 0;
};
struct VideoMP4Loggger : public InternalStateLogger
{
struct GUIHelperInterface* m_guiHelper;
std::string m_fileName;
VideoMP4Loggger(int loggerUid, const char* fileName, GUIHelperInterface* guiHelper)
: m_guiHelper(guiHelper)
{
m_fileName = fileName;
m_loggingUniqueId = loggerUid;
m_loggingType = STATE_LOGGING_VIDEO_MP4;
m_guiHelper->dumpFramesToVideo(fileName);
}
virtual void stop()
{
m_guiHelper->dumpFramesToVideo(0);
}
virtual void logState(btScalar timeStep)
{
//dumping video frames happens in another thread
//we could add some overlay of timestamp here, if needed/wanted
}
};
struct MinitaurStateLogger : public InternalStateLogger
{
int m_loggingTimeStamp;
std::string m_fileName;
int m_minitaurBodyUniqueId;
FILE* m_logFileHandle;
std::string m_structTypes;
btMultiBody* m_minitaurMultiBody;
btAlignedObjectArray<int> m_motorIdList;
MinitaurStateLogger(int loggingUniqueId, const std::string& fileName, btMultiBody* minitaurMultiBody, btAlignedObjectArray<int>& motorIdList)
: m_loggingTimeStamp(0),
m_logFileHandle(0),
m_minitaurMultiBody(minitaurMultiBody)
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_MINITAUR;
m_motorIdList.resize(motorIdList.size());
for (int m = 0; m < motorIdList.size(); m++)
{
m_motorIdList[m] = motorIdList[m];
}
btAlignedObjectArray<std::string> structNames;
//'t', 'r', 'p', 'y', 'q0', 'q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'u0', 'u1', 'u2', 'u3', 'u4', 'u5', 'u6', 'u7', 'xd', 'mo'
structNames.push_back("t");
structNames.push_back("r");
structNames.push_back("p");
structNames.push_back("y");
structNames.push_back("q0");
structNames.push_back("q1");
structNames.push_back("q2");
structNames.push_back("q3");
structNames.push_back("q4");
structNames.push_back("q5");
structNames.push_back("q6");
structNames.push_back("q7");
structNames.push_back("u0");
structNames.push_back("u1");
structNames.push_back("u2");
structNames.push_back("u3");
structNames.push_back("u4");
structNames.push_back("u5");
structNames.push_back("u6");
structNames.push_back("u7");
structNames.push_back("dx");
structNames.push_back("mo");
m_structTypes = "IffffffffffffffffffffB";
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
//btVector3 pos = m_minitaurMultiBody->getBasePos();
MinitaurLogRecord logData;
//'t', 'r', 'p', 'y', 'q0', 'q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'u0', 'u1', 'u2', 'u3', 'u4', 'u5', 'u6', 'u7', 'xd', 'mo'
btScalar motorDir[8] = {1, 1, 1, 1, 1, 1, 1, 1};
btQuaternion orn = m_minitaurMultiBody->getBaseWorldTransform().getRotation();
btMatrix3x3 mat(orn);
btScalar roll = 0;
btScalar pitch = 0;
btScalar yaw = 0;
mat.getEulerZYX(yaw, pitch, roll);
logData.m_values.push_back(m_loggingTimeStamp);
logData.m_values.push_back((float)roll);
logData.m_values.push_back((float)pitch);
logData.m_values.push_back((float)yaw);
for (int i = 0; i < 8; i++)
{
float jointAngle = (float)motorDir[i] * m_minitaurMultiBody->getJointPos(m_motorIdList[i]);
logData.m_values.push_back(jointAngle);
}
for (int i = 0; i < 8; i++)
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)m_minitaurMultiBody->getLink(m_motorIdList[i]).m_userPtr;
if (motor && timeStep > btScalar(0))
{
btScalar force = motor->getAppliedImpulse(0) / timeStep;
logData.m_values.push_back((float)force);
}
}
//x is forward component, estimated speed forward
float xd_speed = m_minitaurMultiBody->getBaseVel()[0];
logData.m_values.push_back(xd_speed);
char mode = 6;
logData.m_values.push_back(mode);
//at the moment, appendMinitaurLogData will directly write to disk (potential delay)
//better to fill a huge memory buffer and once in a while write it to disk
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
fflush(m_logFileHandle);
m_loggingTimeStamp++;
}
}
};
struct b3VRControllerEvents
{
b3VRControllerEvent m_vrEvents[MAX_VR_CONTROLLERS];
b3VRControllerEvents()
{
init();
}
virtual ~b3VRControllerEvents()
{
}
void init()
{
for (int i = 0; i < MAX_VR_CONTROLLERS; i++)
{
m_vrEvents[i].m_deviceType = 0;
m_vrEvents[i].m_numButtonEvents = 0;
m_vrEvents[i].m_numMoveEvents = 0;
for (int b = 0; b < MAX_VR_BUTTONS; b++)
{
m_vrEvents[i].m_buttons[b] = 0;
}
}
}
void addNewVREvents(const struct b3VRControllerEvent* vrEvents, int numVREvents)
{
//update m_vrEvents
for (int i = 0; i < numVREvents; i++)
{
int controlledId = vrEvents[i].m_controllerId;
if (vrEvents[i].m_numMoveEvents)
{
m_vrEvents[controlledId].m_analogAxis = vrEvents[i].m_analogAxis;
for (int a = 0; a < 10; a++)
{
m_vrEvents[controlledId].m_auxAnalogAxis[a] = vrEvents[i].m_auxAnalogAxis[a];
}
}
else
{
m_vrEvents[controlledId].m_analogAxis = 0;
for (int a = 0; a < 10; a++)
{
m_vrEvents[controlledId].m_auxAnalogAxis[a] = 0;
}
}
if (vrEvents[i].m_numMoveEvents + vrEvents[i].m_numButtonEvents)
{
m_vrEvents[controlledId].m_controllerId = vrEvents[i].m_controllerId;
m_vrEvents[controlledId].m_deviceType = vrEvents[i].m_deviceType;
m_vrEvents[controlledId].m_pos[0] = vrEvents[i].m_pos[0];
m_vrEvents[controlledId].m_pos[1] = vrEvents[i].m_pos[1];
m_vrEvents[controlledId].m_pos[2] = vrEvents[i].m_pos[2];
m_vrEvents[controlledId].m_orn[0] = vrEvents[i].m_orn[0];
m_vrEvents[controlledId].m_orn[1] = vrEvents[i].m_orn[1];
m_vrEvents[controlledId].m_orn[2] = vrEvents[i].m_orn[2];
m_vrEvents[controlledId].m_orn[3] = vrEvents[i].m_orn[3];
}
m_vrEvents[controlledId].m_numButtonEvents += vrEvents[i].m_numButtonEvents;
m_vrEvents[controlledId].m_numMoveEvents += vrEvents[i].m_numMoveEvents;
for (int b = 0; b < MAX_VR_BUTTONS; b++)
{
m_vrEvents[controlledId].m_buttons[b] |= vrEvents[i].m_buttons[b];
if (vrEvents[i].m_buttons[b] & eButtonIsDown)
{
m_vrEvents[controlledId].m_buttons[b] |= eButtonIsDown;
}
else
{
m_vrEvents[controlledId].m_buttons[b] &= ~eButtonIsDown;
}
}
}
};
};
struct VRControllerStateLogger : public InternalStateLogger
{
b3VRControllerEvents m_vrEvents;
int m_loggingTimeStamp;
int m_deviceTypeFilter;
std::string m_fileName;
FILE* m_logFileHandle;
std::string m_structTypes;
VRControllerStateLogger(int loggingUniqueId, int deviceTypeFilter, const std::string& fileName)
: m_loggingTimeStamp(0),
m_deviceTypeFilter(deviceTypeFilter),
m_fileName(fileName),
m_logFileHandle(0)
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_VR_CONTROLLERS;
btAlignedObjectArray<std::string> structNames;
structNames.push_back("stepCount");
structNames.push_back("timeStamp");
structNames.push_back("controllerId");
structNames.push_back("numMoveEvents");
structNames.push_back("m_numButtonEvents");
structNames.push_back("posX");
structNames.push_back("posY");
structNames.push_back("posZ");
structNames.push_back("oriX");
structNames.push_back("oriY");
structNames.push_back("oriZ");
structNames.push_back("oriW");
structNames.push_back("analogAxis");
structNames.push_back("buttons0");
structNames.push_back("buttons1");
structNames.push_back("buttons2");
structNames.push_back("buttons3");
structNames.push_back("buttons4");
structNames.push_back("buttons5");
structNames.push_back("buttons6");
structNames.push_back("deviceType");
m_structTypes = "IfIIIffffffffIIIIIIII";
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
int stepCount = m_loggingTimeStamp;
float timeStamp = m_loggingTimeStamp * timeStep;
for (int i = 0; i < MAX_VR_CONTROLLERS; i++)
{
b3VRControllerEvent& event = m_vrEvents.m_vrEvents[i];
if (m_deviceTypeFilter & event.m_deviceType)
{
if (event.m_numButtonEvents + event.m_numMoveEvents)
{
MinitaurLogRecord logData;
//serverStatusOut.m_sendVREvents.m_controllerEvents[serverStatusOut.m_sendVREvents.m_numVRControllerEvents++] = event;
//log the event
logData.m_values.push_back(stepCount);
logData.m_values.push_back(timeStamp);
logData.m_values.push_back(event.m_controllerId);
logData.m_values.push_back(event.m_numMoveEvents);
logData.m_values.push_back(event.m_numButtonEvents);
logData.m_values.push_back(event.m_pos[0]);
logData.m_values.push_back(event.m_pos[1]);
logData.m_values.push_back(event.m_pos[2]);
logData.m_values.push_back(event.m_orn[0]);
logData.m_values.push_back(event.m_orn[1]);
logData.m_values.push_back(event.m_orn[2]);
logData.m_values.push_back(event.m_orn[3]);
logData.m_values.push_back(event.m_analogAxis);
int packedButtons[7] = {0, 0, 0, 0, 0, 0, 0};
int packedButtonIndex = 0;
int packedButtonShift = 0;
//encode the 64 buttons into 7 int (3 bits each), each int stores 10 buttons
for (int b = 0; b < MAX_VR_BUTTONS; b++)
{
int buttonMask = event.m_buttons[b];
buttonMask = buttonMask << (packedButtonShift * 3);
packedButtons[packedButtonIndex] |= buttonMask;
packedButtonShift++;
if (packedButtonShift >= 10)
{
packedButtonShift = 0;
packedButtonIndex++;
if (packedButtonIndex >= 7)
{
btAssert(0);
break;
}
}
}
for (int b = 0; b < 7; b++)
{
logData.m_values.push_back(packedButtons[b]);
}
logData.m_values.push_back(event.m_deviceType);
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
event.m_numButtonEvents = 0;
event.m_numMoveEvents = 0;
for (int b = 0; b < MAX_VR_BUTTONS; b++)
{
event.m_buttons[b] = 0;
}
}
}
}
fflush(m_logFileHandle);
m_loggingTimeStamp++;
}
}
};
struct GenericRobotStateLogger : public InternalStateLogger
{
float m_loggingTimeStamp;
std::string m_fileName;
FILE* m_logFileHandle;
std::string m_structTypes;
const btMultiBodyDynamicsWorld* m_dynamicsWorld;
btAlignedObjectArray<int> m_bodyIdList;
bool m_filterObjectUniqueId;
int m_maxLogDof;
int m_logFlags;
GenericRobotStateLogger(int loggingUniqueId, const std::string& fileName, const btMultiBodyDynamicsWorld* dynamicsWorld, int maxLogDof, int logFlags)
: m_loggingTimeStamp(0),
m_logFileHandle(0),
m_dynamicsWorld(dynamicsWorld),
m_filterObjectUniqueId(false),
m_maxLogDof(maxLogDof),
m_logFlags(logFlags)
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_GENERIC_ROBOT;
btAlignedObjectArray<std::string> structNames;
structNames.push_back("stepCount");
structNames.push_back("timeStamp");
structNames.push_back("objectId");
structNames.push_back("posX");
structNames.push_back("posY");
structNames.push_back("posZ");
structNames.push_back("oriX");
structNames.push_back("oriY");
structNames.push_back("oriZ");
structNames.push_back("oriW");
structNames.push_back("velX");
structNames.push_back("velY");
structNames.push_back("velZ");
structNames.push_back("omegaX");
structNames.push_back("omegaY");
structNames.push_back("omegaZ");
structNames.push_back("qNum");
m_structTypes = "IfifffffffffffffI";
for (int i = 0; i < m_maxLogDof; i++)
{
m_structTypes.append("f");
char jointName[256];
sprintf(jointName, "q%d", i);
structNames.push_back(jointName);
}
for (int i = 0; i < m_maxLogDof; i++)
{
m_structTypes.append("f");
char jointName[256];
sprintf(jointName, "u%d", i);
structNames.push_back(jointName);
}
if (m_logFlags & STATE_LOG_JOINT_TORQUES)
{
for (int i = 0; i < m_maxLogDof; i++)
{
m_structTypes.append("f");
char jointName[256];
sprintf(jointName, "t%d", i);
structNames.push_back(jointName);
}
}
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
for (int i = 0; i < m_dynamicsWorld->getNumMultibodies(); i++)
{
const btMultiBody* mb = m_dynamicsWorld->getMultiBody(i);
int objectUniqueId = mb->getUserIndex2();
if (m_filterObjectUniqueId && m_bodyIdList.findLinearSearch2(objectUniqueId) < 0)
{
continue;
}
MinitaurLogRecord logData;
int stepCount = m_loggingTimeStamp;
float timeStamp = m_loggingTimeStamp * m_dynamicsWorld->getSolverInfo().m_timeStep;
logData.m_values.push_back(stepCount);
logData.m_values.push_back(timeStamp);
btVector3 pos = mb->getBasePos();
btQuaternion ori = mb->getWorldToBaseRot().inverse();
btVector3 vel = mb->getBaseVel();
btVector3 omega = mb->getBaseOmega();
float posX = pos[0];
float posY = pos[1];
float posZ = pos[2];
float oriX = ori.x();
float oriY = ori.y();
float oriZ = ori.z();
float oriW = ori.w();
float velX = vel[0];
float velY = vel[1];
float velZ = vel[2];
float omegaX = omega[0];
float omegaY = omega[1];
float omegaZ = omega[2];
logData.m_values.push_back(objectUniqueId);
logData.m_values.push_back(posX);
logData.m_values.push_back(posY);
logData.m_values.push_back(posZ);
logData.m_values.push_back(oriX);
logData.m_values.push_back(oriY);
logData.m_values.push_back(oriZ);
logData.m_values.push_back(oriW);
logData.m_values.push_back(velX);
logData.m_values.push_back(velY);
logData.m_values.push_back(velZ);
logData.m_values.push_back(omegaX);
logData.m_values.push_back(omegaY);
logData.m_values.push_back(omegaZ);
int numDofs = mb->getNumDofs();
logData.m_values.push_back(numDofs);
int numJoints = mb->getNumLinks();
for (int j = 0; j < numJoints; ++j)
{
if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1)
{
float q = mb->getJointPos(j);
logData.m_values.push_back(q);
}
}
for (int j = numDofs; j < m_maxLogDof; ++j)
{
float q = 0.0;
logData.m_values.push_back(q);
}
for (int j = 0; j < numJoints; ++j)
{
if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1)
{
float v = mb->getJointVel(j);
logData.m_values.push_back(v);
}
}
for (int j = numDofs; j < m_maxLogDof; ++j)
{
float v = 0.0;
logData.m_values.push_back(v);
}
if (m_logFlags & STATE_LOG_JOINT_TORQUES)
{
for (int j = 0; j < numJoints; ++j)
{
if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1)
{
float jointTorque = 0;
if (m_logFlags & STATE_LOG_JOINT_MOTOR_TORQUES)
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(j).m_userPtr;
if (motor)
{
jointTorque += motor->getAppliedImpulse(0) / timeStep;
}
}
if (m_logFlags & STATE_LOG_JOINT_USER_TORQUES)
{
if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1)
{
jointTorque += mb->getJointTorque(j); //these are the 'user' applied external torques
}
}
logData.m_values.push_back(jointTorque);
}
}
for (int j = numDofs; j < m_maxLogDof; ++j)
{
float u = 0.0;
logData.m_values.push_back(u);
}
}
//at the moment, appendMinitaurLogData will directly write to disk (potential delay)
//better to fill a huge memory buffer and once in a while write it to disk
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
fflush(m_logFileHandle);
}
m_loggingTimeStamp++;
}
}
};
struct ContactPointsStateLogger : public InternalStateLogger
{
int m_loggingTimeStamp;
std::string m_fileName;
FILE* m_logFileHandle;
std::string m_structTypes;
btMultiBodyDynamicsWorld* m_dynamicsWorld;
bool m_filterLinkA;
bool m_filterLinkB;
int m_linkIndexA;
int m_linkIndexB;
int m_bodyUniqueIdA;
int m_bodyUniqueIdB;
ContactPointsStateLogger(int loggingUniqueId, const std::string& fileName, btMultiBodyDynamicsWorld* dynamicsWorld)
: m_loggingTimeStamp(0),
m_fileName(fileName),
m_logFileHandle(0),
m_dynamicsWorld(dynamicsWorld),
m_filterLinkA(false),
m_filterLinkB(false),
m_linkIndexA(-2),
m_linkIndexB(-2),
m_bodyUniqueIdA(-1),
m_bodyUniqueIdB(-1)
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_CONTACT_POINTS;
btAlignedObjectArray<std::string> structNames;
structNames.push_back("stepCount");
structNames.push_back("timeStamp");
structNames.push_back("contactFlag");
structNames.push_back("bodyUniqueIdA");
structNames.push_back("bodyUniqueIdB");
structNames.push_back("linkIndexA");
structNames.push_back("linkIndexB");
structNames.push_back("positionOnAX");
structNames.push_back("positionOnAY");
structNames.push_back("positionOnAZ");
structNames.push_back("positionOnBX");
structNames.push_back("positionOnBY");
structNames.push_back("positionOnBZ");
structNames.push_back("contactNormalOnBX");
structNames.push_back("contactNormalOnBY");
structNames.push_back("contactNormalOnBZ");
structNames.push_back("contactDistance");
structNames.push_back("normalForce");
m_structTypes = "IfIiiiifffffffffff";
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
int numContactManifolds = m_dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0; i < numContactManifolds; i++)
{
const btPersistentManifold* manifold = m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i];
int linkIndexA = -1;
int linkIndexB = -1;
int objectIndexB = -1;
const btRigidBody* bodyB = btRigidBody::upcast(manifold->getBody1());
if (bodyB)
{
objectIndexB = bodyB->getUserIndex2();
}
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
if (mblB && mblB->m_multiBody)
{
linkIndexB = mblB->m_link;
objectIndexB = mblB->m_multiBody->getUserIndex2();
if (m_filterLinkB && (m_linkIndexB != linkIndexB))
{
continue;
}
}
int objectIndexA = -1;
const btRigidBody* bodyA = btRigidBody::upcast(manifold->getBody0());
if (bodyA)
{
objectIndexA = bodyA->getUserIndex2();
}
const btMultiBodyLinkCollider* mblA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
if (mblA && mblA->m_multiBody)
{
linkIndexA = mblA->m_link;
objectIndexA = mblA->m_multiBody->getUserIndex2();
if (m_filterLinkA && (m_linkIndexA != linkIndexA))
{
continue;
}
}
btAssert(bodyA || mblA);
//apply the filter, if the user provides it
if (m_bodyUniqueIdA >= 0)
{
if ((m_bodyUniqueIdA != objectIndexA) &&
(m_bodyUniqueIdA != objectIndexB))
continue;
}
//apply the second object filter, if the user provides it
if (m_bodyUniqueIdB >= 0)
{
if ((m_bodyUniqueIdB != objectIndexA) &&
(m_bodyUniqueIdB != objectIndexB))
continue;
}
for (int p = 0; p < manifold->getNumContacts(); p++)
{
MinitaurLogRecord logData;
int stepCount = m_loggingTimeStamp;
float timeStamp = m_loggingTimeStamp * timeStep;
logData.m_values.push_back(stepCount);
logData.m_values.push_back(timeStamp);
const btManifoldPoint& srcPt = manifold->getContactPoint(p);
logData.m_values.push_back(0); // reserved contact flag
logData.m_values.push_back(objectIndexA);
logData.m_values.push_back(objectIndexB);
logData.m_values.push_back(linkIndexA);
logData.m_values.push_back(linkIndexB);
logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[0]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[1]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[2]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[0]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[1]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[2]));
logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[0]));
logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[1]));
logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[2]));
logData.m_values.push_back((float)(srcPt.getDistance()));
logData.m_values.push_back((float)(srcPt.getAppliedImpulse() / timeStep));
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
fflush(m_logFileHandle);
}
}
m_loggingTimeStamp++;
}
}
};
struct SaveStateData
{
bParse::btBulletFile* m_bulletFile;
btSerializer* m_serializer;
};
struct PhysicsServerCommandProcessorInternalData
{
///handle management
b3ResizablePool<InternalTextureHandle> m_textureHandles;
b3ResizablePool<InternalBodyHandle> m_bodyHandles;
b3ResizablePool<InternalCollisionShapeHandle> m_userCollisionShapeHandles;
b3ResizablePool<InternalVisualShapeHandle> m_userVisualShapeHandles;
b3ResizablePool<b3PoolBodyHandle<SharedMemoryUserData> > m_userDataHandles;
btHashMap<SharedMemoryUserDataHashKey, int> m_userDataHandleLookup;
b3PluginManager m_pluginManager;
bool m_useRealTimeSimulation;
b3VRControllerEvents m_vrControllerEvents;
btAlignedObjectArray<SaveStateData> m_savedStates;
btAlignedObjectArray<b3KeyboardEvent> m_keyboardEvents;
btAlignedObjectArray<b3MouseEvent> m_mouseEvents;
CommandLogger* m_commandLogger;
int m_commandLoggingUid;
CommandLogPlayback* m_logPlayback;
int m_logPlaybackUid;
btScalar m_physicsDeltaTime;
btScalar m_numSimulationSubSteps;
btScalar m_simulationTimestamp;
btAlignedObjectArray<btMultiBodyJointFeedback*> m_multiBodyJointFeedbacks;
b3HashMap<btHashPtr, btInverseDynamics::MultiBodyTree*> m_inverseDynamicsBodies;
b3HashMap<btHashPtr, IKTrajectoryHelper*> m_inverseKinematicsHelpers;
int m_userConstraintUIDGenerator;
b3HashMap<btHashInt, InteralUserConstraintData> m_userConstraints;
b3AlignedObjectArray<SaveWorldObjectData> m_saveWorldBodyData;
btAlignedObjectArray<btMultiBodyWorldImporter*> m_worldImporters;
btAlignedObjectArray<std::string*> m_strings;
btAlignedObjectArray<btCollisionShape*> m_collisionShapes;
btAlignedObjectArray<const unsigned char*> m_heightfieldDatas;
btAlignedObjectArray<int> m_allocatedTextures;
btHashMap<btHashPtr, UrdfCollision> m_bulletCollisionShape2UrdfCollision;
btAlignedObjectArray<btStridingMeshInterface*> m_meshInterfaces;
MyOverlapFilterCallback* m_broadphaseCollisionFilterCallback;
btHashedOverlappingPairCache* m_pairCache;
btBroadphaseInterface* m_broadphase;
btCollisionDispatcher* m_dispatcher;
btMultiBodyConstraintSolver* m_solver;
btDefaultCollisionConfiguration* m_collisionConfiguration;
#ifndef SKIP_DEFORMABLE_BODY
btDeformableBodySolver* m_deformablebodySolver;
btAlignedObjectArray<btDeformableLagrangianForce*> m_lf;
#endif
btMultiBodyDynamicsWorld* m_dynamicsWorld;
int m_constraintSolverType;
SharedMemoryDebugDrawer* m_remoteDebugDrawer;
btAlignedObjectArray<b3ContactPointData> m_cachedContactPoints;
MyBroadphaseCallback m_cachedOverlappingObjects;
btAlignedObjectArray<int> m_sdfRecentLoadedBodies;
btAlignedObjectArray<int> m_graphicsIndexToSegmentationMask;
btAlignedObjectArray<InternalStateLogger*> m_stateLoggers;
int m_stateLoggersUniqueId;
int m_profileTimingLoggingUid;
std::string m_profileTimingFileName;
struct GUIHelperInterface* m_guiHelper;
int m_sharedMemoryKey;
bool m_enableTinyRenderer;
bool m_verboseOutput;
//data for picking objects
class btRigidBody* m_pickedBody;
int m_savedActivationState;
class btTypedConstraint* m_pickedConstraint;
class btMultiBodyPoint2Point* m_pickingMultiBodyPoint2Point;
btVector3 m_oldPickingPos;
btVector3 m_hitPos;
btScalar m_oldPickingDist;
bool m_prevCanSleep;
int m_pdControlPlugin;
int m_collisionFilterPlugin;
int m_grpcPlugin;
#ifdef B3_ENABLE_TINY_AUDIO
b3SoundEngine m_soundEngine;
#endif
b3HashMap<b3HashString, char*> m_profileEvents;
b3HashMap<b3HashString, UrdfVisualShapeCache> m_cachedVUrdfisualShapes;
b3ThreadPool* m_threadPool;
btScalar m_defaultCollisionMargin;
double m_remoteSyncTransformTime;
double m_remoteSyncTransformInterval;
PhysicsServerCommandProcessorInternalData(PhysicsCommandProcessorInterface* proc)
: m_pluginManager(proc),
m_useRealTimeSimulation(false),
m_commandLogger(0),
m_commandLoggingUid(-1),
m_logPlayback(0),
m_logPlaybackUid(-1),
m_physicsDeltaTime(1. / 240.),
m_numSimulationSubSteps(0),
m_simulationTimestamp(0),
m_userConstraintUIDGenerator(1),
m_broadphaseCollisionFilterCallback(0),
m_pairCache(0),
m_broadphase(0),
m_dispatcher(0),
m_solver(0),
m_collisionConfiguration(0),
#ifndef SKIP_DEFORMABLE_BODY
m_deformablebodySolver(0),
#endif
m_dynamicsWorld(0),
m_constraintSolverType(-1),
m_remoteDebugDrawer(0),
m_stateLoggersUniqueId(0),
m_profileTimingLoggingUid(-1),
m_guiHelper(0),
m_sharedMemoryKey(SHARED_MEMORY_KEY),
m_enableTinyRenderer(true),
m_verboseOutput(false),
m_pickedBody(0),
m_pickedConstraint(0),
m_pickingMultiBodyPoint2Point(0),
m_pdControlPlugin(-1),
m_collisionFilterPlugin(-1),
m_grpcPlugin(-1),
m_threadPool(0),
m_defaultCollisionMargin(0.001),
m_remoteSyncTransformTime(1. / 30.),
m_remoteSyncTransformInterval(1. / 30.)
{
{
//register static plugins:
#ifdef STATIC_LINK_VR_PLUGIN
b3PluginFunctions funcs(initPlugin_vrSyncPlugin, exitPlugin_vrSyncPlugin, executePluginCommand_vrSyncPlugin);
funcs.m_preTickFunc = preTickPluginCallback_vrSyncPlugin;
m_pluginManager.registerStaticLinkedPlugin("vrSyncPlugin", funcs);
#endif //STATIC_LINK_VR_PLUGIN
}
#ifndef SKIP_STATIC_PD_CONTROL_PLUGIN
{
//int b3PluginManager::registerStaticLinkedPlugin(const char* pluginPath, PFN_INIT initFunc, PFN_EXIT exitFunc, PFN_EXECUTE executeCommandFunc, PFN_TICK preTickFunc, PFN_TICK postTickFunc, PFN_GET_RENDER_INTERFACE getRendererFunc, PFN_TICK processClientCommandsFunc, PFN_GET_COLLISION_INTERFACE getCollisionFunc, bool initPlugin)
b3PluginFunctions funcs(initPlugin_pdControlPlugin, exitPlugin_pdControlPlugin, executePluginCommand_pdControlPlugin);
funcs.m_preTickFunc = preTickPluginCallback_pdControlPlugin;
m_pdControlPlugin = m_pluginManager.registerStaticLinkedPlugin("pdControlPlugin", funcs);
}
#endif //SKIP_STATIC_PD_CONTROL_PLUGIN
#ifndef SKIP_COLLISION_FILTER_PLUGIN
{
b3PluginFunctions funcs(initPlugin_collisionFilterPlugin, exitPlugin_collisionFilterPlugin, executePluginCommand_collisionFilterPlugin);
funcs.m_getCollisionFunc = getCollisionInterface_collisionFilterPlugin;
m_collisionFilterPlugin = m_pluginManager.registerStaticLinkedPlugin("collisionFilterPlugin", funcs);
m_pluginManager.selectCollisionPlugin(m_collisionFilterPlugin);
}
#endif
#ifdef ENABLE_STATIC_GRPC_PLUGIN
{
b3PluginFunctions funcs(initPlugin_grpcPlugin, exitPlugin_grpcPlugin, executePluginCommand_grpcPlugin);
funcs.m_processClientCommandsFunc = processClientCommands_grpcPlugin;
m_grpcPlugin = m_pluginManager.registerStaticLinkedPlugin("grpcPlugin", funcs);
}
#endif //ENABLE_STATIC_GRPC_PLUGIN
#ifdef STATIC_EGLRENDERER_PLUGIN
{
bool initPlugin = false;
b3PluginFunctions funcs(initPlugin_eglRendererPlugin, exitPlugin_eglRendererPlugin, executePluginCommand_eglRendererPlugin);
funcs.m_getRendererFunc = getRenderInterface_eglRendererPlugin;
int renderPluginId = m_pluginManager.registerStaticLinkedPlugin("eglRendererPlugin", funcs, initPlugin);
m_pluginManager.selectPluginRenderer(renderPluginId);
}
#endif //STATIC_EGLRENDERER_PLUGIN
#ifndef SKIP_STATIC_TINYRENDERER_PLUGIN
{
b3PluginFunctions funcs(initPlugin_tinyRendererPlugin, exitPlugin_tinyRendererPlugin, executePluginCommand_tinyRendererPlugin);
funcs.m_getRendererFunc = getRenderInterface_tinyRendererPlugin;
int renderPluginId = m_pluginManager.registerStaticLinkedPlugin("tinyRendererPlugin", funcs);
m_pluginManager.selectPluginRenderer(renderPluginId);
}
#endif
#ifdef B3_ENABLE_FILEIO_PLUGIN
{
b3PluginFunctions funcs(initPlugin_fileIOPlugin, exitPlugin_fileIOPlugin, executePluginCommand_fileIOPlugin);
funcs.m_fileIoFunc = getFileIOFunc_fileIOPlugin;
int renderPluginId = m_pluginManager.registerStaticLinkedPlugin("fileIOPlugin", funcs);
m_pluginManager.selectFileIOPlugin(renderPluginId);
}
#endif
m_vrControllerEvents.init();
m_bodyHandles.exitHandles();
m_bodyHandles.initHandles();
m_userCollisionShapeHandles.exitHandles();
m_userCollisionShapeHandles.initHandles();
m_userVisualShapeHandles.exitHandles();
m_userVisualShapeHandles.initHandles();
}
#ifdef STATIC_LINK_SPD_PLUGIN
b3HashMap<btHashPtr, cRBDModel*> m_rbdModels;
static void convertPose(const btMultiBody* multiBody, const double* jointPositionsQ, const double* jointVelocitiesQdot, Eigen::VectorXd& pose, Eigen::VectorXd& vel)
{
int baseDofQ = multiBody->hasFixedBase() ? 0 : 7;
int baseDofQdot = multiBody->hasFixedBase() ? 0 : 6;
pose.resize(7 + multiBody->getNumPosVars());
vel.resize(7 + multiBody->getNumPosVars()); //??
btTransform tr = multiBody->getBaseWorldTransform();
int dofsrc = 0;
int velsrcdof = 0;
if (baseDofQ == 7)
{
pose[0] = jointPositionsQ[dofsrc++];
pose[1] = jointPositionsQ[dofsrc++];
pose[2] = jointPositionsQ[dofsrc++];
double quatXYZW[4];
quatXYZW[0] = jointPositionsQ[dofsrc++];
quatXYZW[1] = jointPositionsQ[dofsrc++];
quatXYZW[2] = jointPositionsQ[dofsrc++];
quatXYZW[3] = jointPositionsQ[dofsrc++];
pose[3] = quatXYZW[3];
pose[4] = quatXYZW[0];
pose[5] = quatXYZW[1];
pose[6] = quatXYZW[2];
}
else
{
pose[0] = tr.getOrigin()[0];
pose[1] = tr.getOrigin()[1];
pose[2] = tr.getOrigin()[2];
pose[3] = tr.getRotation()[3];
pose[4] = tr.getRotation()[0];
pose[5] = tr.getRotation()[1];
pose[6] = tr.getRotation()[2];
}
if (baseDofQdot == 6)
{
vel[0] = jointVelocitiesQdot[velsrcdof++];
vel[1] = jointVelocitiesQdot[velsrcdof++];
vel[2] = jointVelocitiesQdot[velsrcdof++];
vel[3] = jointVelocitiesQdot[velsrcdof++];
vel[4] = jointVelocitiesQdot[velsrcdof++];
vel[5] = jointVelocitiesQdot[velsrcdof++];
vel[6] = jointVelocitiesQdot[velsrcdof++];
vel[6] = 0;
}
else
{
vel[0] = multiBody->getBaseVel()[0];
vel[1] = multiBody->getBaseVel()[1];
vel[2] = multiBody->getBaseVel()[2];
vel[3] = multiBody->getBaseOmega()[0];
vel[4] = multiBody->getBaseOmega()[1];
vel[5] = multiBody->getBaseOmega()[2];
vel[6] = 0;
}
int dof = 7;
int veldof = 7;
for (int l = 0; l < multiBody->getNumLinks(); l++)
{
switch (multiBody->getLink(l).m_jointType)
{
case btMultibodyLink::eRevolute:
case btMultibodyLink::ePrismatic:
{
pose[dof++] = jointPositionsQ[dofsrc++];
vel[veldof++] = jointVelocitiesQdot[velsrcdof++];
break;
}
case btMultibodyLink::eSpherical:
{
double quatXYZW[4];
quatXYZW[0] = jointPositionsQ[dofsrc++];
quatXYZW[1] = jointPositionsQ[dofsrc++];
quatXYZW[2] = jointPositionsQ[dofsrc++];
quatXYZW[3] = jointPositionsQ[dofsrc++];
pose[dof++] = quatXYZW[3];
pose[dof++] = quatXYZW[0];
pose[dof++] = quatXYZW[1];
pose[dof++] = quatXYZW[2];
vel[veldof++] = jointVelocitiesQdot[velsrcdof++];
vel[veldof++] = jointVelocitiesQdot[velsrcdof++];
vel[veldof++] = jointVelocitiesQdot[velsrcdof++];
vel[veldof++] = jointVelocitiesQdot[velsrcdof++];
break;
}
case btMultibodyLink::eFixed:
{
break;
}
default:
{
assert(0);
}
}
}
}
cRBDModel* findOrCreateRBDModel(btMultiBody* multiBody, const double* jointPositionsQ, const double* jointVelocitiesQdot)
{
cRBDModel* rbdModel = 0;
cRBDModel** rbdModelPtr = m_rbdModels.find(multiBody);
if (rbdModelPtr)
{
rbdModel = *rbdModelPtr;
}
else
{
rbdModel = new cRBDModel();
Eigen::MatrixXd bodyDefs;
Eigen::MatrixXd jointMat;
btExtractJointBodyFromBullet(multiBody, bodyDefs, jointMat);
btVector3 grav = m_dynamicsWorld->getGravity();
tVector3 gravity(grav[0], grav[1], grav[2], 0);
rbdModel->Init(jointMat, bodyDefs, gravity);
m_rbdModels.insert(multiBody, rbdModel);
}
//sync pose and vel
Eigen::VectorXd pose, vel;
PhysicsServerCommandProcessorInternalData::convertPose(multiBody, jointPositionsQ, jointVelocitiesQdot, pose, vel);
btVector3 gravOrg = m_dynamicsWorld->getGravity();
tVector grav(gravOrg[0], gravOrg[1], gravOrg[2], 0);
rbdModel->SetGravity(grav);
{
BT_PROFILE("rbdModel::Update");
rbdModel->Update(pose, vel);
}
return rbdModel;
}
#endif
btInverseDynamics::MultiBodyTree* findOrCreateTree(btMultiBody* multiBody)
{
btInverseDynamics::MultiBodyTree* tree = 0;
btInverseDynamics::MultiBodyTree** treePtrPtr =
m_inverseDynamicsBodies.find(multiBody);
if (treePtrPtr)
{
tree = *treePtrPtr;
}
else
{
btInverseDynamics::btMultiBodyTreeCreator id_creator;
if (-1 == id_creator.createFromBtMultiBody(multiBody, false))
{
}
else
{
tree = btInverseDynamics::CreateMultiBodyTree(id_creator);
m_inverseDynamicsBodies.insert(multiBody, tree);
}
}
return tree;
}
};
void PhysicsServerCommandProcessor::setGuiHelper(struct GUIHelperInterface* guiHelper)
{
if (guiHelper)
{
guiHelper->createPhysicsDebugDrawer(m_data->m_dynamicsWorld);
}
else
{
//state loggers use guiHelper, so remove them before the guiHelper is deleted
deleteStateLoggers();
if (m_data->m_guiHelper && m_data->m_dynamicsWorld && m_data->m_dynamicsWorld->getDebugDrawer())
{
m_data->m_dynamicsWorld->setDebugDrawer(0);
}
}
m_data->m_guiHelper = guiHelper;
}
PhysicsServerCommandProcessor::PhysicsServerCommandProcessor()
: m_data(0)
{
m_data = new PhysicsServerCommandProcessorInternalData(this);
createEmptyDynamicsWorld();
}
PhysicsServerCommandProcessor::~PhysicsServerCommandProcessor()
{
deleteDynamicsWorld();
if (m_data->m_commandLogger)
{
delete m_data->m_commandLogger;
m_data->m_commandLogger = 0;
}
for (int i = 0; i < m_data->m_profileEvents.size(); i++)
{
char* event = *m_data->m_profileEvents.getAtIndex(i);
delete[] event;
}
if (m_data->m_threadPool)
delete m_data->m_threadPool;
delete m_data;
}
void preTickCallback(btDynamicsWorld* world, btScalar timeStep)
{
PhysicsServerCommandProcessor* proc = (PhysicsServerCommandProcessor*)world->getWorldUserInfo();
proc->tickPlugins(timeStep, true);
}
void logCallback(btDynamicsWorld* world, btScalar timeStep)
{
//handle the logging and playing sounds
PhysicsServerCommandProcessor* proc = (PhysicsServerCommandProcessor*)world->getWorldUserInfo();
proc->processCollisionForces(timeStep);
proc->logObjectStates(timeStep);
proc->tickPlugins(timeStep, false);
}
bool MyContactAddedCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
{
btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
return true;
}
bool MyContactDestroyedCallback(void* userPersistentData)
{
//printf("destroyed\n");
return false;
}
bool MyContactProcessedCallback(btManifoldPoint& cp, void* body0, void* body1)
{
//printf("processed\n");
return false;
}
void MyContactStartedCallback(btPersistentManifold* const& manifold)
{
//printf("started\n");
}
void MyContactEndedCallback(btPersistentManifold* const& manifold)
{
// printf("ended\n");
}
void PhysicsServerCommandProcessor::processCollisionForces(btScalar timeStep)
{
#ifdef B3_ENABLE_TINY_AUDIO
//this is experimental at the moment: impulse thresholds, sound parameters will be exposed in C-API/pybullet.
//audio will go into a wav file, as well as real-time output to speakers/headphones using RtAudio/DAC.
int numContactManifolds = m_data->m_dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0; i < numContactManifolds; i++)
{
const btPersistentManifold* manifold = m_data->m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i];
bool objHasSound[2];
objHasSound[0] = (0 != (manifold->getBody0()->getCollisionFlags() & btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER));
objHasSound[1] = (0 != (manifold->getBody1()->getCollisionFlags() & btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER));
const btCollisionObject* colObjs[2] = {manifold->getBody0(), manifold->getBody1()};
for (int ob = 0; ob < 2; ob++)
{
if (objHasSound[ob])
{
int uid0 = -1;
int linkIndex = -2;
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(colObjs[ob]);
if (mblB && mblB->m_multiBody)
{
linkIndex = mblB->m_link;
uid0 = mblB->m_multiBody->getUserIndex2();
}
const btRigidBody* bodyB = btRigidBody::upcast(colObjs[ob]);
if (bodyB)
{
uid0 = bodyB->getUserIndex2();
linkIndex = -1;
}
if ((uid0 < 0) || (linkIndex < -1))
continue;
InternalBodyHandle* bodyHandle0 = m_data->m_bodyHandles.getHandle(uid0);
SDFAudioSource* audioSrc = bodyHandle0->m_audioSources[linkIndex];
if (audioSrc == 0)
continue;
for (int p = 0; p < manifold->getNumContacts(); p++)
{
double imp = manifold->getContactPoint(p).getAppliedImpulse();
//printf ("manifold %d, contact %d, lifeTime:%d, appliedImpulse:%f\n",i,p, manifold->getContactPoint(p).getLifeTime(),imp);
if (imp > audioSrc->m_collisionForceThreshold && manifold->getContactPoint(p).getLifeTime() == 1)
{
int soundSourceIndex = m_data->m_soundEngine.getAvailableSoundSource();
if (soundSourceIndex >= 0)
{
b3SoundMessage msg;
msg.m_attackRate = audioSrc->m_attackRate;
msg.m_decayRate = audioSrc->m_decayRate;
msg.m_sustainLevel = audioSrc->m_sustainLevel;
msg.m_releaseRate = audioSrc->m_releaseRate;
msg.m_amplitude = audioSrc->m_gain;
msg.m_frequency = audioSrc->m_pitch;
msg.m_type = B3_SOUND_SOURCE_WAV_FILE;
msg.m_wavId = audioSrc->m_userIndex;
msg.m_autoKeyOff = true;
m_data->m_soundEngine.startSound(soundSourceIndex, msg);
}
}
}
}
}
}
#endif //B3_ENABLE_TINY_AUDIO
}
void PhysicsServerCommandProcessor::processClientCommands()
{
m_data->m_pluginManager.tickPlugins(0, B3_PROCESS_CLIENT_COMMANDS_TICK);
}
void PhysicsServerCommandProcessor::reportNotifications()
{
m_data->m_pluginManager.reportNotifications();
}
void PhysicsServerCommandProcessor::tickPlugins(btScalar timeStep, bool isPreTick)
{
b3PluginManagerTickMode tickMode = isPreTick ? B3_PRE_TICK_MODE : B3_POST_TICK_MODE;
m_data->m_pluginManager.tickPlugins(timeStep, tickMode);
if (!isPreTick)
{
//clear events after each postTick, so we don't receive events multiple ticks
m_data->m_pluginManager.clearEvents();
}
}
void PhysicsServerCommandProcessor::logObjectStates(btScalar timeStep)
{
for (int i = 0; i < m_data->m_stateLoggers.size(); i++)
{
m_data->m_stateLoggers[i]->logState(timeStep);
}
}
struct ProgrammaticUrdfInterface : public URDFImporterInterface
{
int m_bodyUniqueId;
const b3CreateMultiBodyArgs& m_createBodyArgs;
mutable b3AlignedObjectArray<btCollisionShape*> m_allocatedCollisionShapes;
PhysicsServerCommandProcessorInternalData* m_data;
int m_flags;
ProgrammaticUrdfInterface(const b3CreateMultiBodyArgs& bodyArgs, PhysicsServerCommandProcessorInternalData* data, int flags)
: m_bodyUniqueId(-1),
m_createBodyArgs(bodyArgs),
m_data(data),
m_flags(flags)
{
}
virtual ~ProgrammaticUrdfInterface()
{
}
virtual bool loadURDF(const char* fileName, bool forceFixedBase = false)
{
b3Assert(0);
return false;
}
virtual const char* getPathPrefix()
{
return "";
}
///return >=0 for the root link index, -1 if there is no root link
virtual int getRootLinkIndex() const
{
return m_createBodyArgs.m_baseLinkIndex;
}
///pure virtual interfaces, precondition is a valid linkIndex (you can assert/terminate if the linkIndex is out of range)
virtual std::string getLinkName(int linkIndex) const
{
std::string linkName = "link";
char numstr[21]; // enough to hold all numbers up to 64-bits
sprintf(numstr, "%d", linkIndex);
linkName = linkName + numstr;
return linkName;
}
//various derived class in internal source code break with new pure virtual methods, so provide some default implementation
virtual std::string getBodyName() const
{
return m_createBodyArgs.m_bodyName;
}
/// optional method to provide the link color. return true if the color is available and copied into colorRGBA, return false otherwise
virtual bool getLinkColor(int linkIndex, btVector4& colorRGBA) const
{
b3Assert(0);
return false;
}
mutable btHashMap<btHashInt, UrdfMaterialColor> m_linkColors;
virtual bool getLinkColor2(int linkIndex, struct UrdfMaterialColor& matCol) const
{
if (m_flags & URDF_USE_MATERIAL_COLORS_FROM_MTL)
{
const UrdfMaterialColor* matColPtr = m_linkColors[linkIndex];
if (matColPtr)
{
matCol = *matColPtr;
if ((m_flags & CUF_USE_MATERIAL_TRANSPARANCY_FROM_MTL) == 0)
{
matCol.m_rgbaColor[3] = 1;
}
return true;
}
}
else
{
if (m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex] >= 0)
{
const InternalVisualShapeHandle* visHandle = m_data->m_userVisualShapeHandles.getHandle(m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex]);
if (visHandle)
{
for (int i = 0; i < visHandle->m_visualShapes.size(); i++)
{
if (visHandle->m_visualShapes[i].m_geometry.m_hasLocalMaterial)
{
matCol = visHandle->m_visualShapes[i].m_geometry.m_localMaterial.m_matColor;
return true;
}
}
}
}
}
return false;
}
virtual int getCollisionGroupAndMask(int linkIndex, int& colGroup, int& colMask) const
{
return 0;
}
///this API will likely change, don't override it!
virtual bool getLinkContactInfo(int linkIndex, URDFLinkContactInfo& contactInfo) const
{
return false;
}
virtual bool getLinkAudioSource(int linkIndex, SDFAudioSource& audioSource) const
{
b3Assert(0);
return false;
}
virtual std::string getJointName(int linkIndex) const
{
std::string jointName = "joint";
char numstr[21]; // enough to hold all numbers up to 64-bits
sprintf(numstr, "%d", linkIndex);
jointName = jointName + numstr;
return jointName;
}
//fill mass and inertial data. If inertial data is missing, please initialize mass, inertia to sensitive values, and inertialFrame to identity.
virtual void getMassAndInertia(int urdfLinkIndex, btScalar& mass, btVector3& localInertiaDiagonal, btTransform& inertialFrame) const
{
if (urdfLinkIndex >= 0 && urdfLinkIndex < m_createBodyArgs.m_numLinks)
{
mass = m_createBodyArgs.m_linkMasses[urdfLinkIndex];
localInertiaDiagonal.setValue(
m_createBodyArgs.m_linkInertias[urdfLinkIndex * 3 + 0],
m_createBodyArgs.m_linkInertias[urdfLinkIndex * 3 + 1],
m_createBodyArgs.m_linkInertias[urdfLinkIndex * 3 + 2]);
inertialFrame.setOrigin(btVector3(
m_createBodyArgs.m_linkInertialFramePositions[urdfLinkIndex * 3 + 0],
m_createBodyArgs.m_linkInertialFramePositions[urdfLinkIndex * 3 + 1],
m_createBodyArgs.m_linkInertialFramePositions[urdfLinkIndex * 3 + 2]));
inertialFrame.setRotation(btQuaternion(
m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex * 4 + 0],
m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex * 4 + 1],
m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex * 4 + 2],
m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex * 4 + 3]));
}
else
{
mass = 0;
localInertiaDiagonal.setValue(0, 0, 0);
inertialFrame.setIdentity();
}
}
///fill an array of child link indices for this link, btAlignedObjectArray behaves like a std::vector so just use push_back and resize(0) if needed
virtual void getLinkChildIndices(int urdfLinkIndex, btAlignedObjectArray<int>& childLinkIndices) const
{
for (int i = 0; i < m_createBodyArgs.m_numLinks; i++)
{
if (m_createBodyArgs.m_linkParentIndices[i] == urdfLinkIndex)
{
childLinkIndices.push_back(i);
}
}
}
virtual bool getJointInfo(int urdfLinkIndex, btTransform& parent2joint, btTransform& linkTransformInWorld, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit, btScalar& jointDamping, btScalar& jointFriction) const
{
return false;
};
virtual bool getJointInfo2(int urdfLinkIndex, btTransform& parent2joint, btTransform& linkTransformInWorld, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit, btScalar& jointDamping, btScalar& jointFriction, btScalar& jointMaxForce, btScalar& jointMaxVelocity) const
{
bool isValid = false;
int jointTypeOrg = m_createBodyArgs.m_linkJointTypes[urdfLinkIndex];
switch (jointTypeOrg)
{
case eRevoluteType:
{
isValid = true;
jointType = URDFRevoluteJoint;
break;
}
case ePrismaticType:
{
isValid = true;
jointType = URDFPrismaticJoint;
break;
}
case eFixedType:
{
isValid = true;
jointType = URDFFixedJoint;
break;
}
case eSphericalType:
{
isValid = true;
jointType = URDFSphericalJoint;
break;
}
//case ePlanarType:
//case eFixedType:
//case ePoint2PointType:
//case eGearType:
default:
{
}
};
if (isValid)
{
//backwards compatibility for custom file importers
jointMaxForce = 0;
jointMaxVelocity = 0;
jointFriction = 0;
jointDamping = 0;
jointLowerLimit = 1;
jointUpperLimit = -1;
parent2joint.setOrigin(btVector3(
m_createBodyArgs.m_linkPositions[urdfLinkIndex * 3 + 0],
m_createBodyArgs.m_linkPositions[urdfLinkIndex * 3 + 1],
m_createBodyArgs.m_linkPositions[urdfLinkIndex * 3 + 2]));
parent2joint.setRotation(btQuaternion(
m_createBodyArgs.m_linkOrientations[urdfLinkIndex * 4 + 0],
m_createBodyArgs.m_linkOrientations[urdfLinkIndex * 4 + 1],
m_createBodyArgs.m_linkOrientations[urdfLinkIndex * 4 + 2],
m_createBodyArgs.m_linkOrientations[urdfLinkIndex * 4 + 3]));
linkTransformInWorld.setIdentity();
jointAxisInJointSpace.setValue(
m_createBodyArgs.m_linkJointAxis[3 * urdfLinkIndex + 0],
m_createBodyArgs.m_linkJointAxis[3 * urdfLinkIndex + 1],
m_createBodyArgs.m_linkJointAxis[3 * urdfLinkIndex + 2]);
}
return isValid;
};
virtual bool getRootTransformInWorld(btTransform& rootTransformInWorld) const
{
int baseLinkIndex = m_createBodyArgs.m_baseLinkIndex;
rootTransformInWorld.setOrigin(btVector3(
m_createBodyArgs.m_linkPositions[baseLinkIndex * 3 + 0],
m_createBodyArgs.m_linkPositions[baseLinkIndex * 3 + 1],
m_createBodyArgs.m_linkPositions[baseLinkIndex * 3 + 2]));
rootTransformInWorld.setRotation(btQuaternion(
m_createBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 0],
m_createBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 1],
m_createBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 2],
m_createBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 3]));
return true;
}
virtual void setRootTransformInWorld(const btTransform& rootTransformInWorld)
{
b3Assert(0);
}
virtual int convertLinkVisualShapes(int linkIndex, const char* pathPrefix, const btTransform& localInertiaFrame) const
{
int graphicsIndex = -1;
double globalScaling = 1.f; //todo!
int flags = 0;
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), fileIO, globalScaling, flags);
u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer);
btAlignedObjectArray<GLInstanceVertex> vertices;
btAlignedObjectArray<int> indices;
btTransform startTrans;
startTrans.setIdentity();
btAlignedObjectArray<BulletURDFTexture> textures;
if (m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex] >= 0)
{
InternalVisualShapeHandle* visHandle = m_data->m_userVisualShapeHandles.getHandle(m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex]);
if (visHandle)
{
if (visHandle->m_OpenGLGraphicsIndex >= 0)
{
//instancing. assume the inertial frame is identical
graphicsIndex = visHandle->m_OpenGLGraphicsIndex;
}
else
{
for (int v = 0; v < visHandle->m_visualShapes.size(); v++)
{
b3ImportMeshData meshData;
u2b.convertURDFToVisualShapeInternal(&visHandle->m_visualShapes[v], pathPrefix, localInertiaFrame.inverse() * visHandle->m_visualShapes[v].m_linkLocalFrame, vertices, indices, textures, meshData);
if ((meshData.m_flags & B3_IMPORT_MESH_HAS_RGBA_COLOR) &&
(meshData.m_flags & B3_IMPORT_MESH_HAS_SPECULAR_COLOR))
{
UrdfMaterialColor matCol;
matCol.m_rgbaColor.setValue(meshData.m_rgbaColor[0],
meshData.m_rgbaColor[1],
meshData.m_rgbaColor[2],
meshData.m_rgbaColor[3]);
matCol.m_specularColor.setValue(meshData.m_specularColor[0],
meshData.m_specularColor[1],
meshData.m_specularColor[2]);
m_linkColors.insert(linkIndex, matCol);
}
}
if (vertices.size() && indices.size())
{
if (1)
{
int textureIndex = -1;
if (textures.size())
{
textureIndex = m_data->m_guiHelper->registerTexture(textures[0].textureData1, textures[0].m_width, textures[0].m_height);
}
{
B3_PROFILE("registerGraphicsShape");
graphicsIndex = m_data->m_guiHelper->registerGraphicsShape(&vertices[0].xyzw[0], vertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES, textureIndex);
visHandle->m_OpenGLGraphicsIndex = graphicsIndex;
}
}
}
}
}
}
return graphicsIndex;
}
virtual void convertLinkVisualShapes2(int linkIndex, int urdfIndex, const char* pathPrefix, const btTransform& localInertiaFrame, class btCollisionObject* colObj, int bodyUniqueId) const
{
//if there is a visual, use it, otherwise convert collision shape back into UrdfCollision...
UrdfModel model; // = m_data->m_urdfParser.getModel();
UrdfLink link;
if (m_createBodyArgs.m_linkVisualShapeUniqueIds[urdfIndex] >= 0)
{
const InternalVisualShapeHandle* visHandle = m_data->m_userVisualShapeHandles.getHandle(m_createBodyArgs.m_linkVisualShapeUniqueIds[urdfIndex]);
if (visHandle)
{
for (int i = 0; i < visHandle->m_visualShapes.size(); i++)
{
link.m_visualArray.push_back(visHandle->m_visualShapes[i]);
}
}
}
if (link.m_visualArray.size() == 0)
{
int colShapeUniqueId = m_createBodyArgs.m_linkCollisionShapeUniqueIds[urdfIndex];
if (colShapeUniqueId >= 0)
{
InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(colShapeUniqueId);
if (handle)
{
for (int i = 0; i < handle->m_urdfCollisionObjects.size(); i++)
{
link.m_collisionArray.push_back(handle->m_urdfCollisionObjects[i]);
}
}
}
}
//UrdfVisual vis;
//link.m_visualArray.push_back(vis);
//UrdfLink*const* linkPtr = model.m_links.getAtIndex(urdfIndex);
if (m_data->m_pluginManager.getRenderInterface())
{
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
int visualShapeUniqueid = m_data->m_pluginManager.getRenderInterface()->convertVisualShapes(linkIndex, pathPrefix, localInertiaFrame, &link, &model, colObj->getBroadphaseHandle()->getUid(), bodyUniqueId, fileIO);
colObj->setUserIndex3(visualShapeUniqueid);
}
}
virtual void setBodyUniqueId(int bodyId)
{
m_bodyUniqueId = bodyId;
}
virtual int getBodyUniqueId() const
{
return m_bodyUniqueId;
}
//default implementation for backward compatibility
virtual class btCompoundShape* convertLinkCollisionShapes(int linkIndex, const char* pathPrefix, const btTransform& localInertiaFrame) const
{
btCompoundShape* compound = new btCompoundShape();
int colShapeUniqueId = m_createBodyArgs.m_linkCollisionShapeUniqueIds[linkIndex];
if (colShapeUniqueId >= 0)
{
InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(colShapeUniqueId);
if (handle && handle->m_collisionShape)
{
handle->m_used++;
if (handle->m_collisionShape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
{
btCompoundShape* childCompound = (btCompoundShape*)handle->m_collisionShape;
for (int c = 0; c < childCompound->getNumChildShapes(); c++)
{
btTransform childTrans = childCompound->getChildTransform(c);
btCollisionShape* childShape = childCompound->getChildShape(c);
btTransform tr = localInertiaFrame.inverse() * childTrans;
compound->addChildShape(tr, childShape);
}
}
else
{
btTransform childTrans;
childTrans.setIdentity();
compound->addChildShape(localInertiaFrame.inverse() * childTrans, handle->m_collisionShape);
}
}
}
m_allocatedCollisionShapes.push_back(compound);
return compound;
}
virtual int getNumAllocatedCollisionShapes() const
{
return m_allocatedCollisionShapes.size();
}
virtual class btCollisionShape* getAllocatedCollisionShape(int index)
{
return m_allocatedCollisionShapes[index];
}
virtual int getNumModels() const
{
return 1;
}
virtual void activateModel(int /*modelIndex*/)
{
}
};
btDeformableMultiBodyDynamicsWorld* PhysicsServerCommandProcessor::getDeformableWorld()
{
btDeformableMultiBodyDynamicsWorld* world = 0;
if (m_data->m_dynamicsWorld && m_data->m_dynamicsWorld->getWorldType()== BT_DEFORMABLE_MULTIBODY_DYNAMICS_WORLD)
{
world = (btDeformableMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
}
return world;
}
btSoftMultiBodyDynamicsWorld* PhysicsServerCommandProcessor::getSoftWorld()
{
btSoftMultiBodyDynamicsWorld* world = 0;
if (m_data->m_dynamicsWorld && m_data->m_dynamicsWorld->getWorldType()== BT_SOFT_MULTIBODY_DYNAMICS_WORLD)
{
world = (btSoftMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
}
return world;
}
void PhysicsServerCommandProcessor::createEmptyDynamicsWorld(int flags)
{
m_data->m_constraintSolverType = eConstraintSolverLCP_SI;
///collision configuration contains default setup for memory, collision setup
//m_collisionConfiguration->setConvexConvexMultipointIterations();
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
m_data->m_collisionConfiguration = new btSoftBodyRigidBodyCollisionConfiguration();
#else
m_data->m_collisionConfiguration = new btDefaultCollisionConfiguration();
#endif
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_data->m_dispatcher = new btCollisionDispatcher(m_data->m_collisionConfiguration);
m_data->m_broadphaseCollisionFilterCallback = new MyOverlapFilterCallback(&m_data->m_pluginManager);
m_data->m_broadphaseCollisionFilterCallback->m_filterMode = B3_FILTER_GROUPAMASKB_OR_GROUPBMASKA;
m_data->m_pairCache = new btHashedOverlappingPairCache();
m_data->m_pairCache->setOverlapFilterCallback(m_data->m_broadphaseCollisionFilterCallback);
//int maxProxies = 32768;
if (flags&RESET_USE_SIMPLE_BROADPHASE)
{
m_data->m_broadphase = new btSimpleBroadphase(65536, m_data->m_pairCache);
} else
{
btDbvtBroadphase* bv = new btDbvtBroadphase(m_data->m_pairCache);
bv->setVelocityPrediction(0);
m_data->m_broadphase = bv;
}
if (flags & RESET_USE_DEFORMABLE_WORLD)
{
#ifndef SKIP_DEFORMABLE_BODY
m_data->m_deformablebodySolver = new btDeformableBodySolver();
btDeformableMultiBodyConstraintSolver* solver = new btDeformableMultiBodyConstraintSolver;
m_data->m_solver = solver;
solver->setDeformableSolver(m_data->m_deformablebodySolver);
m_data->m_dynamicsWorld = new btDeformableMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, solver, m_data->m_collisionConfiguration, m_data->m_deformablebodySolver);
#endif
}
if ((0==m_data->m_dynamicsWorld) && (0==(flags&RESET_USE_DISCRETE_DYNAMICS_WORLD)))
{
m_data->m_solver = new btMultiBodyConstraintSolver;
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
m_data->m_dynamicsWorld = new btSoftMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration);
#else
m_data->m_dynamicsWorld = new btMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration);
#endif
}
if (0==m_data->m_dynamicsWorld)
{
m_data->m_solver = new btMultiBodyConstraintSolver;
m_data->m_dynamicsWorld = new btMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration);
}
//Workaround: in a VR application, where we avoid synchronizing between GFX/Physics threads, we don't want to resize this array, so pre-allocate it
m_data->m_dynamicsWorld->getCollisionObjectArray().reserve(128 * 1024);
m_data->m_remoteDebugDrawer = new SharedMemoryDebugDrawer();
m_data->m_dynamicsWorld->setGravity(btVector3(0, 0, 0));
m_data->m_dynamicsWorld->getSolverInfo().m_erp2 = 0.08;
m_data->m_dynamicsWorld->getSolverInfo().m_frictionERP = 0.2; //need to check if there are artifacts with frictionERP
m_data->m_dynamicsWorld->getSolverInfo().m_linearSlop = 0.00001;
m_data->m_dynamicsWorld->getSolverInfo().m_numIterations = 50;
m_data->m_dynamicsWorld->getSolverInfo().m_minimumSolverBatchSize = 0;
m_data->m_dynamicsWorld->getSolverInfo().m_warmstartingFactor = 0.1;
gDbvtMargin = btScalar(0);
m_data->m_dynamicsWorld->getSolverInfo().m_leastSquaresResidualThreshold = 1e-7;
if (m_data->m_guiHelper)
{
m_data->m_guiHelper->createPhysicsDebugDrawer(m_data->m_dynamicsWorld);
}
bool isPreTick = false;
m_data->m_dynamicsWorld->setInternalTickCallback(logCallback, this, isPreTick);
isPreTick = true;
m_data->m_dynamicsWorld->setInternalTickCallback(preTickCallback, this, isPreTick);
gContactAddedCallback = MyContactAddedCallback;
#ifdef B3_ENABLE_TINY_AUDIO
m_data->m_soundEngine.init(16, true);
//we don't use those callbacks (yet), experimental
// gContactDestroyedCallback = MyContactDestroyedCallback;
// gContactProcessedCallback = MyContactProcessedCallback;
// gContactStartedCallback = MyContactStartedCallback;
// gContactEndedCallback = MyContactEndedCallback;
#endif
}
void PhysicsServerCommandProcessor::deleteStateLoggers()
{
for (int i = 0; i < m_data->m_stateLoggers.size(); i++)
{
m_data->m_stateLoggers[i]->stop();
delete m_data->m_stateLoggers[i];
}
m_data->m_stateLoggers.clear();
}
void PhysicsServerCommandProcessor::deleteCachedInverseKinematicsBodies()
{
for (int i = 0; i < m_data->m_inverseKinematicsHelpers.size(); i++)
{
IKTrajectoryHelper** ikHelperPtr = m_data->m_inverseKinematicsHelpers.getAtIndex(i);
if (ikHelperPtr)
{
IKTrajectoryHelper* ikHelper = *ikHelperPtr;
delete ikHelper;
}
}
m_data->m_inverseKinematicsHelpers.clear();
}
void PhysicsServerCommandProcessor::deleteCachedInverseDynamicsBodies()
{
for (int i = 0; i < m_data->m_inverseDynamicsBodies.size(); i++)
{
btInverseDynamics::MultiBodyTree** treePtrPtr = m_data->m_inverseDynamicsBodies.getAtIndex(i);
if (treePtrPtr)
{
btInverseDynamics::MultiBodyTree* tree = *treePtrPtr;
delete tree;
}
}
m_data->m_inverseDynamicsBodies.clear();
}
void PhysicsServerCommandProcessor::deleteDynamicsWorld()
{
#ifdef B3_ENABLE_TINY_AUDIO
m_data->m_soundEngine.exit();
//gContactDestroyedCallback = 0;
//gContactProcessedCallback = 0;
//gContactStartedCallback = 0;
//gContactEndedCallback = 0;
#endif
deleteCachedInverseDynamicsBodies();
deleteCachedInverseKinematicsBodies();
deleteStateLoggers();
m_data->m_userConstraints.clear();
m_data->m_saveWorldBodyData.clear();
for (int i = 0; i < m_data->m_multiBodyJointFeedbacks.size(); i++)
{
delete m_data->m_multiBodyJointFeedbacks[i];
}
m_data->m_multiBodyJointFeedbacks.clear();
for (int i = 0; i < m_data->m_worldImporters.size(); i++)
{
m_data->m_worldImporters[i]->deleteAllData();
delete m_data->m_worldImporters[i];
}
m_data->m_worldImporters.clear();
#ifdef ENABLE_LINK_MAPPER
for (int i = 0; i < m_data->m_urdfLinkNameMapper.size(); i++)
{
delete m_data->m_urdfLinkNameMapper[i];
}
m_data->m_urdfLinkNameMapper.clear();
#endif //ENABLE_LINK_MAPPER
for (int i = 0; i < m_data->m_strings.size(); i++)
{
delete m_data->m_strings[i];
}
m_data->m_strings.clear();
btAlignedObjectArray<btTypedConstraint*> constraints;
btAlignedObjectArray<btMultiBodyConstraint*> mbconstraints;
if (m_data->m_dynamicsWorld)
{
int i;
for (i = m_data->m_dynamicsWorld->getNumConstraints() - 1; i >= 0; i--)
{
btTypedConstraint* constraint = m_data->m_dynamicsWorld->getConstraint(i);
constraints.push_back(constraint);
m_data->m_dynamicsWorld->removeConstraint(constraint);
}
for (i = m_data->m_dynamicsWorld->getNumMultiBodyConstraints() - 1; i >= 0; i--)
{
btMultiBodyConstraint* mbconstraint = m_data->m_dynamicsWorld->getMultiBodyConstraint(i);
mbconstraints.push_back(mbconstraint);
m_data->m_dynamicsWorld->removeMultiBodyConstraint(mbconstraint);
}
for (i = m_data->m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--)
{
btCollisionObject* obj = m_data->m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_data->m_dynamicsWorld->removeCollisionObject(obj);
delete obj;
}
for (i = m_data->m_dynamicsWorld->getNumMultibodies() - 1; i >= 0; i--)
{
btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(i);
m_data->m_dynamicsWorld->removeMultiBody(mb);
delete mb;
}
#ifndef SKIP_DEFORMABLE_BODY
for (int j = 0; j < m_data->m_lf.size(); j++)
{
btDeformableLagrangianForce* force = m_data->m_lf[j];
delete force;
}
m_data->m_lf.clear();
#endif
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
{
btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld();
if (softWorld)
{
for (i =softWorld->getSoftBodyArray().size() - 1; i >= 0; i--)
{
btSoftBody* sb =softWorld->getSoftBodyArray()[i];
softWorld->removeSoftBody(sb);
delete sb;
}
}
}
#endif//SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
#ifndef SKIP_DEFORMABLE_BODY
{
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
for (i =deformWorld->getSoftBodyArray().size() - 1; i >= 0; i--)
{
btSoftBody* sb =deformWorld->getSoftBodyArray()[i];
deformWorld->removeSoftBody(sb);
delete sb;
}
}
}
#endif
}
for (int i = 0; i < constraints.size(); i++)
{
delete constraints[i];
}
constraints.clear();
for (int i = 0; i < mbconstraints.size(); i++)
{
delete mbconstraints[i];
}
mbconstraints.clear();
//delete collision shapes
for (int j = 0; j < m_data->m_collisionShapes.size(); j++)
{
btCollisionShape* shape = m_data->m_collisionShapes[j];
//check for internal edge utility, delete memory
if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*)shape;
if (trimesh->getTriangleInfoMap())
{
delete trimesh->getTriangleInfoMap();
}
}
if (shape->getShapeType() == TERRAIN_SHAPE_PROXYTYPE)
{
btHeightfieldTerrainShape* terrain = (btHeightfieldTerrainShape*)shape;
if (terrain->getTriangleInfoMap())
{
delete terrain->getTriangleInfoMap();
}
}
delete shape;
}
for (int j = 0; j < m_data->m_heightfieldDatas.size(); j++)
{
delete[] m_data->m_heightfieldDatas[j];
}
for (int j = 0; j < m_data->m_meshInterfaces.size(); j++)
{
delete m_data->m_meshInterfaces[j];
}
if (m_data->m_guiHelper)
{
for (int j = 0; j < m_data->m_allocatedTextures.size(); j++)
{
int texId = m_data->m_allocatedTextures[j];
m_data->m_guiHelper->removeTexture(texId);
}
}
m_data->m_heightfieldDatas.clear();
m_data->m_allocatedTextures.clear();
m_data->m_meshInterfaces.clear();
m_data->m_collisionShapes.clear();
m_data->m_bulletCollisionShape2UrdfCollision.clear();
m_data->m_graphicsIndexToSegmentationMask.clear();
delete m_data->m_dynamicsWorld;
m_data->m_dynamicsWorld = 0;
delete m_data->m_remoteDebugDrawer;
m_data->m_remoteDebugDrawer = 0;
#if !defined(SKIP_DEFORMABLE_BODY) && !defined(SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD)
delete m_data->m_deformablebodySolver;
m_data->m_deformablebodySolver = 0;
#endif
delete m_data->m_solver;
m_data->m_solver = 0;
delete m_data->m_broadphase;
m_data->m_broadphase = 0;
delete m_data->m_pairCache;
m_data->m_pairCache = 0;
delete m_data->m_broadphaseCollisionFilterCallback;
m_data->m_broadphaseCollisionFilterCallback = 0;
delete m_data->m_dispatcher;
m_data->m_dispatcher = 0;
delete m_data->m_collisionConfiguration;
m_data->m_collisionConfiguration = 0;
m_data->m_userConstraintUIDGenerator = 1;
#ifdef STATIC_LINK_SPD_PLUGIN
for (int i = 0; i < m_data->m_rbdModels.size(); i++)
{
delete *(m_data->m_rbdModels.getAtIndex(i));
}
m_data->m_rbdModels.clear();
#endif //STATIC_LINK_SPD_PLUGIN
}
bool PhysicsServerCommandProcessor::supportsJointMotor(btMultiBody* mb, int mbLinkIndex)
{
bool canHaveMotor = (mb->getLink(mbLinkIndex).m_jointType == btMultibodyLink::eRevolute || mb->getLink(mbLinkIndex).m_jointType == btMultibodyLink::ePrismatic);
return canHaveMotor;
}
//for testing, create joint motors for revolute and prismatic joints
void PhysicsServerCommandProcessor::createJointMotors(btMultiBody* mb)
{
int numLinks = mb->getNumLinks();
for (int i = 0; i < numLinks; i++)
{
int mbLinkIndex = i;
float maxMotorImpulse = 1.f;
if (supportsJointMotor(mb, mbLinkIndex))
{
int dof = 0;
btScalar desiredVelocity = 0.f;
btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb, mbLinkIndex, dof, desiredVelocity, maxMotorImpulse);
motor->setPositionTarget(0, 0);
motor->setVelocityTarget(0, 1);
//motor->setRhsClamp(gRhsClamp);
//motor->setMaxAppliedImpulse(0);
mb->getLink(mbLinkIndex).m_userPtr = motor;
m_data->m_dynamicsWorld->addMultiBodyConstraint(motor);
motor->finalizeMultiDof();
}
if (mb->getLink(mbLinkIndex).m_jointType == btMultibodyLink::eSpherical)
{
btMultiBodySphericalJointMotor* motor = new btMultiBodySphericalJointMotor(mb, mbLinkIndex, 1000 * maxMotorImpulse);
mb->getLink(mbLinkIndex).m_userPtr = motor;
m_data->m_dynamicsWorld->addMultiBodyConstraint(motor);
motor->finalizeMultiDof();
}
}
}
int PhysicsServerCommandProcessor::addUserData(int bodyUniqueId, int linkIndex, int visualShapeIndex, const char* key, const char* valueBytes, int valueLength, int valueType) {
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (!body)
{
return -1;
}
SharedMemoryUserDataHashKey userDataIdentifier(key, bodyUniqueId, linkIndex, visualShapeIndex);
int* userDataHandlePtr = m_data->m_userDataHandleLookup.find(userDataIdentifier);
int userDataHandle = userDataHandlePtr ? *userDataHandlePtr : m_data->m_userDataHandles.allocHandle();
SharedMemoryUserData* userData = m_data->m_userDataHandles.getHandle(userDataHandle);
if (!userData)
{
return -1;
}
if (!userDataHandlePtr)
{
userData->m_key = key;
userData->m_bodyUniqueId = bodyUniqueId;
userData->m_linkIndex = linkIndex;
userData->m_visualShapeIndex = visualShapeIndex;
m_data->m_userDataHandleLookup.insert(userDataIdentifier, userDataHandle);
body->m_userDataHandles.push_back(userDataHandle);
}
userData->replaceValue(valueBytes, valueLength, valueType);
return userDataHandle;
}
void PhysicsServerCommandProcessor::addUserData(const btHashMap<btHashString, std::string>& user_data_entries, int bodyUniqueId, int linkIndex, int visualShapeIndex) {
for (int i = 0; i < user_data_entries.size(); ++i) {
const std::string key = user_data_entries.getKeyAtIndex(i).m_string1;
const std::string* value = user_data_entries.getAtIndex(i);
addUserData(bodyUniqueId, linkIndex, visualShapeIndex, key.c_str(), value->c_str(),
value->size()+1, USER_DATA_VALUE_TYPE_STRING);
}
}
bool PhysicsServerCommandProcessor::processImportedObjects(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags, URDFImporterInterface& u2b)
{
bool loadOk = true;
btTransform rootTrans;
rootTrans.setIdentity();
if (m_data->m_verboseOutput)
{
b3Printf("loaded %s OK!", fileName);
}
SaveWorldObjectData sd;
sd.m_fileName = fileName;
for (int m = 0; m < u2b.getNumModels(); m++)
{
u2b.activateModel(m);
btMultiBody* mb = 0;
btRigidBody* rb = 0;
//get a body index
int bodyUniqueId = m_data->m_bodyHandles.allocHandle();
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
sd.m_bodyUniqueIds.push_back(bodyUniqueId);
u2b.setBodyUniqueId(bodyUniqueId);
{
btScalar mass = 0;
bodyHandle->m_rootLocalInertialFrame.setIdentity();
bodyHandle->m_bodyName = u2b.getBodyName();
btVector3 localInertiaDiagonal(0, 0, 0);
int urdfLinkIndex = u2b.getRootLinkIndex();
u2b.getMassAndInertia2(urdfLinkIndex, mass, localInertiaDiagonal, bodyHandle->m_rootLocalInertialFrame, flags);
}
//todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user
//int rootLinkIndex = u2b.getRootLinkIndex();
//b3Printf("urdf root link index = %d\n",rootLinkIndex);
MyMultiBodyCreator creation(m_data->m_guiHelper);
u2b.getRootTransformInWorld(rootTrans);
//CUF_RESERVED is a temporary flag, for backward compatibility purposes
flags |= CUF_RESERVED;
if (flags & CUF_ENABLE_CACHED_GRAPHICS_SHAPES)
{
{
UrdfVisualShapeCache* tmpPtr = m_data->m_cachedVUrdfisualShapes[fileName];
if (tmpPtr == 0)
{
m_data->m_cachedVUrdfisualShapes.insert(fileName, UrdfVisualShapeCache());
}
}
UrdfVisualShapeCache* cachedVisualShapesPtr = m_data->m_cachedVUrdfisualShapes[fileName];
ConvertURDF2Bullet(u2b, creation, rootTrans, m_data->m_dynamicsWorld, useMultiBody, u2b.getPathPrefix(), flags, cachedVisualShapesPtr);
}
else
{
ConvertURDF2Bullet(u2b, creation, rootTrans, m_data->m_dynamicsWorld, useMultiBody, u2b.getPathPrefix(), flags);
}
mb = creation.getBulletMultiBody();
rb = creation.getRigidBody();
if (rb)
rb->setUserIndex2(bodyUniqueId);
if (mb)
mb->setUserIndex2(bodyUniqueId);
if (mb)
{
bodyHandle->m_multiBody = mb;
m_data->m_sdfRecentLoadedBodies.push_back(bodyUniqueId);
int segmentationMask = bodyUniqueId;
{
int graphicsIndex = -1;
if (mb->getBaseCollider())
{
graphicsIndex = mb->getBaseCollider()->getUserIndex();
}
if (graphicsIndex >= 0)
{
if (m_data->m_graphicsIndexToSegmentationMask.size() < (graphicsIndex + 1))
{
m_data->m_graphicsIndexToSegmentationMask.resize(graphicsIndex + 1);
}
m_data->m_graphicsIndexToSegmentationMask[graphicsIndex] = segmentationMask;
}
}
createJointMotors(mb);
#ifdef B3_ENABLE_TINY_AUDIO
{
SDFAudioSource audioSource;
int urdfRootLink = u2b.getRootLinkIndex(); //LinkIndex = creation.m_mb2urdfLink[-1];
if (u2b.getLinkAudioSource(urdfRootLink, audioSource))
{
int flags = mb->getBaseCollider()->getCollisionFlags();
mb->getBaseCollider()->setCollisionFlags(flags | btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER);
audioSource.m_userIndex = m_data->m_soundEngine.loadWavFile(audioSource.m_uri.c_str());
if (audioSource.m_userIndex >= 0)
{
bodyHandle->m_audioSources.insert(-1, audioSource);
}
}
}
#endif
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks());
for (int i = 0; i < mb->getNumLinks(); i++)
{
//disable serialization of the collision objects
int urdfLinkIndex = creation.m_mb2urdfLink[i];
btScalar mass;
btVector3 localInertiaDiagonal(0, 0, 0);
btTransform localInertialFrame;
u2b.getMassAndInertia2(urdfLinkIndex, mass, localInertiaDiagonal, localInertialFrame, flags);
bodyHandle->m_linkLocalInertialFrames.push_back(localInertialFrame);
std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(linkName);
mb->getLink(i).m_linkName = linkName->c_str();
{
int graphicsIndex = -1;
if (mb->getLinkCollider(i))
{
graphicsIndex = mb->getLinkCollider(i)->getUserIndex();
}
if (graphicsIndex >= 0)
{
int linkIndex = i;
if (m_data->m_graphicsIndexToSegmentationMask.size() < (graphicsIndex + 1))
{
m_data->m_graphicsIndexToSegmentationMask.resize(graphicsIndex + 1);
}
int segmentationMask = bodyUniqueId + ((linkIndex + 1) << 24);
m_data->m_graphicsIndexToSegmentationMask[graphicsIndex] = segmentationMask;
}
}
std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(jointName);
mb->getLink(i).m_jointName = jointName->c_str();
#ifdef B3_ENABLE_TINY_AUDIO
{
SDFAudioSource audioSource;
int urdfLinkIndex = creation.m_mb2urdfLink[link];
if (u2b.getLinkAudioSource(urdfLinkIndex, audioSource))
{
int flags = mb->getLink(link).m_collider->getCollisionFlags();
mb->getLink(i).m_collider->setCollisionFlags(flags | btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER);
audioSource.m_userIndex = m_data->m_soundEngine.loadWavFile(audioSource.m_uri.c_str());
if (audioSource.m_userIndex >= 0)
{
bodyHandle->m_audioSources.insert(link, audioSource);
}
}
}
#endif
}
std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex()));
m_data->m_strings.push_back(baseName);
mb->setBaseName(baseName->c_str());
#if 0
btAlignedObjectArray<char> urdf;
mb->dumpUrdf(urdf);
FILE* f = fopen("e:/pybullet.urdf", "w");
if (f)
{
fwrite(&urdf[0], urdf.size(), 1, f);
fclose(f);
}
#endif
}
else
{
int segmentationMask = bodyUniqueId;
if (rb)
{
int graphicsIndex = -1;
{
graphicsIndex = rb->getUserIndex();
}
if (graphicsIndex >= 0)
{
if (m_data->m_graphicsIndexToSegmentationMask.size() < (graphicsIndex + 1))
{
m_data->m_graphicsIndexToSegmentationMask.resize(graphicsIndex + 1);
}
m_data->m_graphicsIndexToSegmentationMask[graphicsIndex] = segmentationMask;
}
}
//b3Warning("No multibody loaded from URDF. Could add btRigidBody+btTypedConstraint solution later.");
bodyHandle->m_rigidBody = rb;
rb->setUserIndex2(bodyUniqueId);
m_data->m_sdfRecentLoadedBodies.push_back(bodyUniqueId);
std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex()));
m_data->m_strings.push_back(baseName);
bodyHandle->m_bodyName = *baseName;
int numJoints = creation.getNum6DofConstraints();
bodyHandle->m_rigidBodyJoints.reserve(numJoints);
bodyHandle->m_rigidBodyJointNames.reserve(numJoints);
bodyHandle->m_rigidBodyLinkNames.reserve(numJoints);
for (int i = 0; i < numJoints; i++)
{
int urdfLinkIndex = creation.m_mb2urdfLink[i];
btGeneric6DofSpring2Constraint* con = creation.get6DofConstraint(i);
std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(linkName);
std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(jointName);
bodyHandle->m_rigidBodyJointNames.push_back(*jointName);
bodyHandle->m_rigidBodyLinkNames.push_back(*linkName);
bodyHandle->m_rigidBodyJoints.push_back(con);
}
}
{
if (m_data->m_pluginManager.getRenderInterface())
{
int currentOpenGLTextureIndex = 0;
int totalNumVisualShapes = m_data->m_pluginManager.getRenderInterface()->getNumVisualShapes(bodyUniqueId);
for (int shapeIndex = 0; shapeIndex < totalNumVisualShapes; shapeIndex++)
{
b3VisualShapeData tmpShape;
int success = m_data->m_pluginManager.getRenderInterface()->getVisualShapesData(bodyUniqueId, shapeIndex, &tmpShape);
if (success)
{
if (tmpShape.m_tinyRendererTextureId >= 0)
{
int openglTextureUniqueId = -1;
//find companion opengl texture unique id and create a 'textureUid'
if (currentOpenGLTextureIndex < u2b.getNumAllocatedTextures())
{
openglTextureUniqueId = u2b.getAllocatedTexture(currentOpenGLTextureIndex++);
}
//if (openglTextureUniqueId>=0)
{
int texHandle = m_data->m_textureHandles.allocHandle();
InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(texHandle);
if (texH)
{
texH->m_tinyRendererTextureId = tmpShape.m_tinyRendererTextureId;
texH->m_openglTextureId = openglTextureUniqueId;
}
}
}
}
}
}
}
const UrdfModel* urdfModel = u2b.getUrdfModel();
if (urdfModel) {
addUserData(urdfModel->m_userData, bodyUniqueId);
for (int linkIndex = 0; linkIndex < urdfModel->m_links.size(); ++linkIndex) {
const UrdfLink* link = *urdfModel->m_links.getAtIndex(linkIndex);
addUserData(link->m_userData, bodyUniqueId, linkIndex - 1);
for (int visualShapeIndex = 0; visualShapeIndex < link->m_visualArray.size(); ++visualShapeIndex) {
addUserData(link->m_visualArray.at(visualShapeIndex).m_userData, bodyUniqueId, linkIndex - 1, visualShapeIndex);
}
}
}
b3Notification notification;
notification.m_notificationType = BODY_ADDED;
notification.m_bodyArgs.m_bodyUniqueId = bodyUniqueId;
m_data->m_pluginManager.addNotification(notification);
}
for (int i = 0; i < u2b.getNumAllocatedTextures(); i++)
{
int texId = u2b.getAllocatedTexture(i);
m_data->m_allocatedTextures.push_back(texId);
}
/*
int texHandle = m_data->m_textureHandles.allocHandle();
InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(texHandle);
if(texH)
{
texH->m_tinyRendererTextureId = -1;
texH->m_openglTextureId = -1;
*/
for (int i = 0; i < u2b.getNumAllocatedMeshInterfaces(); i++)
{
m_data->m_meshInterfaces.push_back(u2b.getAllocatedMeshInterface(i));
}
for (int i = 0; i < u2b.getNumAllocatedCollisionShapes(); i++)
{
btCollisionShape* shape = u2b.getAllocatedCollisionShape(i);
m_data->m_collisionShapes.push_back(shape);
UrdfCollision urdfCollision;
if (u2b.getUrdfFromCollisionShape(shape, urdfCollision))
{
m_data->m_bulletCollisionShape2UrdfCollision.insert(shape, urdfCollision);
}
if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
{
btCompoundShape* compound = (btCompoundShape*)shape;
for (int c = 0; c < compound->getNumChildShapes(); c++)
{
btCollisionShape* childShape = compound->getChildShape(c);
if (u2b.getUrdfFromCollisionShape(childShape, urdfCollision))
{
m_data->m_bulletCollisionShape2UrdfCollision.insert(childShape, urdfCollision);
}
}
}
}
m_data->m_saveWorldBodyData.push_back(sd);
syncPhysicsToGraphics2();
return loadOk;
}
struct MyMJCFLogger2 : public MJCFErrorLogger
{
virtual void reportError(const char* error)
{
b3Error(error);
}
virtual void reportWarning(const char* warning)
{
b3Warning(warning);
}
virtual void printMessage(const char* msg)
{
b3Printf(msg);
}
};
bool PhysicsServerCommandProcessor::loadMjcf(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags)
{
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadSdf: No valid m_dynamicsWorld");
return false;
}
m_data->m_sdfRecentLoadedBodies.clear();
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
BulletMJCFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), fileIO, flags);
bool useFixedBase = false;
MyMJCFLogger2 logger;
bool loadOk = u2b.loadMJCF(fileName, &logger, useFixedBase);
if (loadOk)
{
processImportedObjects(fileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, u2b);
}
return loadOk;
}
bool PhysicsServerCommandProcessor::loadSdf(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags, btScalar globalScaling)
{
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadSdf: No valid m_dynamicsWorld");
return false;
}
m_data->m_sdfRecentLoadedBodies.clear();
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), fileIO, globalScaling, flags);
u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer);
bool forceFixedBase = false;
bool loadOk = u2b.loadSDF(fileName, forceFixedBase);
if (loadOk)
{
processImportedObjects(fileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, u2b);
}
return loadOk;
}
bool PhysicsServerCommandProcessor::loadUrdf(const char* fileName, const btVector3& pos, const btQuaternion& orn,
bool useMultiBody, bool useFixedBase, int* bodyUniqueIdPtr, char* bufferServerToClient, int bufferSizeInBytes, int orgFlags, btScalar globalScaling)
{
//clear the LOAD_SDF_FILE=1 bit, which is reserved for internal use of loadSDF command.
int flags = orgFlags & ~1;
m_data->m_sdfRecentLoadedBodies.clear();
*bodyUniqueIdPtr = -1;
BT_PROFILE("loadURDF");
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadUrdf: No valid m_dynamicsWorld");
return false;
}
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), fileIO, globalScaling, flags);
u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer);
bool loadOk = u2b.loadURDF(fileName, useFixedBase);
if (loadOk)
{
btTransform rootTrans;
rootTrans.setOrigin(pos);
rootTrans.setRotation(orn);
u2b.setRootTransformInWorld(rootTrans);
bool ok = processImportedObjects(fileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, u2b);
if (ok)
{
if (m_data->m_sdfRecentLoadedBodies.size() == 1)
{
*bodyUniqueIdPtr = m_data->m_sdfRecentLoadedBodies[0];
}
m_data->m_sdfRecentLoadedBodies.clear();
}
return ok;
}
return false;
}
void PhysicsServerCommandProcessor::replayLogCommand(char* bufferServerToClient, int bufferSizeInBytes)
{
if (m_data->m_logPlayback)
{
SharedMemoryCommand clientCmd;
SharedMemoryStatus serverStatus;
bool hasCommand = m_data->m_logPlayback->processNextCommand(&clientCmd);
if (hasCommand)
{
processCommand(clientCmd, serverStatus, bufferServerToClient, bufferSizeInBytes);
}
}
}
int PhysicsServerCommandProcessor::createBodyInfoStream(int bodyUniqueId, char* bufferServerToClient, int bufferSizeInBytes)
{
int streamSizeInBytes = 0;
//serialize the btMultiBody and send the data to the client. This is one way to get the link/joint names across the (shared memory) wire
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (!bodyHandle) return 0;
if (bodyHandle->m_multiBody)
{
btMultiBody* mb = bodyHandle->m_multiBody;
btDefaultSerializer ser(bufferSizeInBytes, (unsigned char*)bufferServerToClient);
ser.startSerialization();
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
ser.m_skipPointers.insert(mb->getBaseCollider(), 0);
if (mb->getBaseName())
{
ser.registerNameForPointer(mb->getBaseName(), mb->getBaseName());
}
bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks());
for (int i = 0; i < mb->getNumLinks(); i++)
{
//disable serialization of the collision objects
ser.m_skipPointers.insert(mb->getLink(i).m_collider, 0);
ser.registerNameForPointer(mb->getLink(i).m_linkName, mb->getLink(i).m_linkName);
ser.registerNameForPointer(mb->getLink(i).m_jointName, mb->getLink(i).m_jointName);
}
ser.registerNameForPointer(mb->getBaseName(), mb->getBaseName());
int len = mb->calculateSerializeBufferSize();
btChunk* chunk = ser.allocate(len, 1);
const char* structType = mb->serialize(chunk->m_oldPtr, &ser);
ser.finalizeChunk(chunk, structType, BT_MULTIBODY_CODE, mb);
streamSizeInBytes = ser.getCurrentBufferSize();
}
else if (bodyHandle->m_rigidBody)
{
btRigidBody* rb = bodyHandle->m_rigidBody;
btDefaultSerializer ser(bufferSizeInBytes, (unsigned char*)bufferServerToClient);
ser.startSerialization();
ser.registerNameForPointer(bodyHandle->m_rigidBody, bodyHandle->m_bodyName.c_str());
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
for (int i = 0; i < bodyHandle->m_rigidBodyJoints.size(); i++)
{
const btGeneric6DofSpring2Constraint* con = bodyHandle->m_rigidBodyJoints.at(i);
ser.registerNameForPointer(con, bodyHandle->m_rigidBodyJointNames[i].c_str());
ser.registerNameForPointer(&con->getRigidBodyB(), bodyHandle->m_rigidBodyLinkNames[i].c_str());
const btRigidBody& bodyA = con->getRigidBodyA();
int len = con->calculateSerializeBufferSize();
btChunk* chunk = ser.allocate(len, 1);
const char* structType = con->serialize(chunk->m_oldPtr, &ser);
ser.finalizeChunk(chunk, structType, BT_CONSTRAINT_CODE, (void*)con);
}
streamSizeInBytes = ser.getCurrentBufferSize();
}
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
else if (bodyHandle->m_softBody)
{
//minimum serialization, registerNameForPointer
btSoftBody* sb = bodyHandle->m_softBody;
btDefaultSerializer ser(bufferSizeInBytes, (unsigned char*)bufferServerToClient);
ser.startSerialization();
int len = sb->calculateSerializeBufferSize();
btChunk* chunk = ser.allocate(len, 1);
const char* structType = sb->serialize(chunk->m_oldPtr, &ser);
ser.finalizeChunk(chunk, structType, BT_SOFTBODY_CODE, sb);
streamSizeInBytes = ser.getCurrentBufferSize();
}
#endif
return streamSizeInBytes;
}
bool PhysicsServerCommandProcessor::processStateLoggingCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
BT_PROFILE("CMD_STATE_LOGGING");
serverStatusOut.m_type = CMD_STATE_LOGGING_FAILED;
bool hasStatus = true;
if (clientCmd.m_updateFlags & STATE_LOGGING_START_LOG)
{
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_ALL_COMMANDS)
{
if (m_data->m_commandLogger == 0)
{
enableCommandLogging(true, clientCmd.m_stateLoggingArguments.m_fileName);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
int loggerUid = m_data->m_stateLoggersUniqueId++;
m_data->m_commandLoggingUid = loggerUid;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_REPLAY_ALL_COMMANDS)
{
if (m_data->m_logPlayback == 0)
{
replayFromLogFile(clientCmd.m_stateLoggingArguments.m_fileName);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
int loggerUid = m_data->m_stateLoggersUniqueId++;
m_data->m_logPlaybackUid = loggerUid;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_PROFILE_TIMINGS)
{
if (m_data->m_profileTimingLoggingUid < 0)
{
b3ChromeUtilsStartTimings();
m_data->m_profileTimingFileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
m_data->m_profileTimingLoggingUid = loggerUid;
}
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_VIDEO_MP4)
{
//if (clientCmd.m_stateLoggingArguments.m_fileName)
{
int loggerUid = m_data->m_stateLoggersUniqueId++;
VideoMP4Loggger* logger = new VideoMP4Loggger(loggerUid, clientCmd.m_stateLoggingArguments.m_fileName, this->m_data->m_guiHelper);
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_MINITAUR)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
//either provide the minitaur by object unique Id, or search for first multibody with 8 motors...
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_OBJECT_UNIQUE_ID) && (clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds > 0))
{
int bodyUniqueId = clientCmd.m_stateLoggingArguments.m_bodyUniqueIds[0];
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body)
{
if (body->m_multiBody)
{
btAlignedObjectArray<std::string> motorNames;
motorNames.push_back("motor_front_leftR_joint");
motorNames.push_back("motor_front_leftL_joint");
motorNames.push_back("motor_back_leftR_joint");
motorNames.push_back("motor_back_leftL_joint");
motorNames.push_back("motor_front_rightL_joint");
motorNames.push_back("motor_front_rightR_joint");
motorNames.push_back("motor_back_rightL_joint");
motorNames.push_back("motor_back_rightR_joint");
btAlignedObjectArray<int> motorIdList;
for (int m = 0; m < motorNames.size(); m++)
{
for (int i = 0; i < body->m_multiBody->getNumLinks(); i++)
{
std::string jointName;
if (body->m_multiBody->getLink(i).m_jointName)
{
jointName = body->m_multiBody->getLink(i).m_jointName;
}
if (motorNames[m] == jointName)
{
motorIdList.push_back(i);
}
}
}
if (motorIdList.size() == 8)
{
int loggerUid = m_data->m_stateLoggersUniqueId++;
MinitaurStateLogger* logger = new MinitaurStateLogger(loggerUid, fileName, body->m_multiBody, motorIdList);
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
}
}
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_GENERIC_ROBOT)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
int maxLogDof = 12;
if ((clientCmd.m_updateFlags & STATE_LOGGING_MAX_LOG_DOF))
{
maxLogDof = clientCmd.m_stateLoggingArguments.m_maxLogDof;
}
int logFlags = 0;
if (clientCmd.m_updateFlags & STATE_LOGGING_LOG_FLAGS)
{
logFlags = clientCmd.m_stateLoggingArguments.m_logFlags;
}
GenericRobotStateLogger* logger = new GenericRobotStateLogger(loggerUid, fileName, m_data->m_dynamicsWorld, maxLogDof, logFlags);
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_OBJECT_UNIQUE_ID) && (clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds > 0))
{
logger->m_filterObjectUniqueId = true;
for (int i = 0; i < clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds; ++i)
{
int objectUniqueId = clientCmd.m_stateLoggingArguments.m_bodyUniqueIds[i];
logger->m_bodyIdList.push_back(objectUniqueId);
}
}
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_CONTACT_POINTS)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
ContactPointsStateLogger* logger = new ContactPointsStateLogger(loggerUid, fileName, m_data->m_dynamicsWorld);
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_LINK_INDEX_A) && clientCmd.m_stateLoggingArguments.m_linkIndexA >= -1)
{
logger->m_filterLinkA = true;
logger->m_linkIndexA = clientCmd.m_stateLoggingArguments.m_linkIndexA;
}
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_LINK_INDEX_B) && clientCmd.m_stateLoggingArguments.m_linkIndexB >= -1)
{
logger->m_filterLinkB = true;
logger->m_linkIndexB = clientCmd.m_stateLoggingArguments.m_linkIndexB;
}
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_BODY_UNIQUE_ID_A) && clientCmd.m_stateLoggingArguments.m_bodyUniqueIdA > -1)
{
logger->m_bodyUniqueIdA = clientCmd.m_stateLoggingArguments.m_bodyUniqueIdA;
}
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_BODY_UNIQUE_ID_B) && clientCmd.m_stateLoggingArguments.m_bodyUniqueIdB > -1)
{
logger->m_bodyUniqueIdB = clientCmd.m_stateLoggingArguments.m_bodyUniqueIdB;
}
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_VR_CONTROLLERS)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
int deviceFilterType = VR_DEVICE_CONTROLLER;
if (clientCmd.m_updateFlags & STATE_LOGGING_FILTER_DEVICE_TYPE)
{
deviceFilterType = clientCmd.m_stateLoggingArguments.m_deviceFilterType;
}
VRControllerStateLogger* logger = new VRControllerStateLogger(loggerUid, deviceFilterType, fileName);
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
if ((clientCmd.m_updateFlags & STATE_LOGGING_STOP_LOG) && clientCmd.m_stateLoggingArguments.m_loggingUniqueId >= 0)
{
if (clientCmd.m_stateLoggingArguments.m_loggingUniqueId == m_data->m_logPlaybackUid)
{
if (m_data->m_logPlayback)
{
delete m_data->m_logPlayback;
m_data->m_logPlayback = 0;
m_data->m_logPlaybackUid = -1;
}
}
if (clientCmd.m_stateLoggingArguments.m_loggingUniqueId == m_data->m_commandLoggingUid)
{
if (m_data->m_commandLogger)
{
enableCommandLogging(false, 0);
serverStatusOut.m_type = CMD_STATE_LOGGING_COMPLETED;
m_data->m_commandLoggingUid = -1;
}
}
if (clientCmd.m_stateLoggingArguments.m_loggingUniqueId == m_data->m_profileTimingLoggingUid)
{
serverStatusOut.m_type = CMD_STATE_LOGGING_COMPLETED;
b3ChromeUtilsStopTimingsAndWriteJsonFile(m_data->m_profileTimingFileName.c_str());
m_data->m_profileTimingLoggingUid = -1;
}
else
{
serverStatusOut.m_type = CMD_STATE_LOGGING_COMPLETED;
for (int i = 0; i < m_data->m_stateLoggers.size(); i++)
{
if (m_data->m_stateLoggers[i]->m_loggingUniqueId == clientCmd.m_stateLoggingArguments.m_loggingUniqueId)
{
m_data->m_stateLoggers[i]->stop();
delete m_data->m_stateLoggers[i];
m_data->m_stateLoggers.removeAtIndex(i);
}
}
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestCameraImageCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_CAMERA_IMAGE_DATA");
int startPixelIndex = clientCmd.m_requestPixelDataArguments.m_startPixelIndex;
int width = clientCmd.m_requestPixelDataArguments.m_pixelWidth;
int height = clientCmd.m_requestPixelDataArguments.m_pixelHeight;
int numPixelsCopied = 0;
if ((clientCmd.m_requestPixelDataArguments.m_startPixelIndex == 0) &&
(clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT) != 0)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->setWidthAndHeight(clientCmd.m_requestPixelDataArguments.m_pixelWidth,
clientCmd.m_requestPixelDataArguments.m_pixelHeight);
}
}
int flags = 0;
if (clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_FLAGS)
{
flags = clientCmd.m_requestPixelDataArguments.m_flags;
}
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->setFlags(flags);
}
int numTotalPixels = width * height;
int numRemainingPixels = numTotalPixels - startPixelIndex;
if (numRemainingPixels > 0)
{
int totalBytesPerPixel = 4 + 4 + 4; //4 for rgb, 4 for depth, 4 for segmentation mask
int maxNumPixels = bufferSizeInBytes / totalBytesPerPixel - 1;
unsigned char* pixelRGBA = (unsigned char*)bufferServerToClient;
int numRequestedPixels = btMin(maxNumPixels, numRemainingPixels);
float* depthBuffer = (float*)(bufferServerToClient + numRequestedPixels * 4);
int* segmentationMaskBuffer = (int*)(bufferServerToClient + numRequestedPixels * 8);
serverStatusOut.m_numDataStreamBytes = numRequestedPixels * totalBytesPerPixel;
float viewMat[16];
float projMat[16];
float projTextureViewMat[16];
float projTextureProjMat[16];
for (int i = 0; i < 16; i++)
{
viewMat[i] = clientCmd.m_requestPixelDataArguments.m_viewMatrix[i];
projMat[i] = clientCmd.m_requestPixelDataArguments.m_projectionMatrix[i];
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES) == 0)
{
b3OpenGLVisualizerCameraInfo tmpCamResult;
bool result = this->m_data->m_guiHelper->getCameraInfo(
&tmpCamResult.m_width,
&tmpCamResult.m_height,
tmpCamResult.m_viewMatrix,
tmpCamResult.m_projectionMatrix,
tmpCamResult.m_camUp,
tmpCamResult.m_camForward,
tmpCamResult.m_horizontal,
tmpCamResult.m_vertical,
&tmpCamResult.m_yaw,
&tmpCamResult.m_pitch,
&tmpCamResult.m_dist,
tmpCamResult.m_target);
if (result)
{
for (int i = 0; i < 16; i++)
{
viewMat[i] = tmpCamResult.m_viewMatrix[i];
projMat[i] = tmpCamResult.m_projectionMatrix[i];
}
}
}
bool handled = false;
if ((clientCmd.m_updateFlags & ER_BULLET_HARDWARE_OPENGL) != 0)
{
if ((flags & ER_USE_PROJECTIVE_TEXTURE) != 0)
{
this->m_data->m_guiHelper->setProjectiveTexture(true);
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_PROJECTIVE_TEXTURE_MATRICES) != 0)
{
for (int i = 0; i < 16; i++)
{
projTextureViewMat[i] = clientCmd.m_requestPixelDataArguments.m_projectiveTextureViewMatrix[i];
projTextureProjMat[i] = clientCmd.m_requestPixelDataArguments.m_projectiveTextureProjectionMatrix[i];
}
}
else // If no specified matrices for projective texture, then use the camera matrices.
{
for (int i = 0; i < 16; i++)
{
projTextureViewMat[i] = viewMat[i];
projTextureProjMat[i] = projMat[i];
}
}
this->m_data->m_guiHelper->setProjectiveTextureMatrices(projTextureViewMat, projTextureProjMat);
}
else
{
this->m_data->m_guiHelper->setProjectiveTexture(false);
}
if ((flags & ER_NO_SEGMENTATION_MASK) != 0)
{
segmentationMaskBuffer = 0;
}
m_data->m_guiHelper->copyCameraImageData(viewMat,
projMat, pixelRGBA, numRequestedPixels,
depthBuffer, numRequestedPixels,
segmentationMaskBuffer, numRequestedPixels,
startPixelIndex, width, height, &numPixelsCopied);
if (numPixelsCopied > 0)
{
//convert segmentation mask
if (segmentationMaskBuffer)
{
for (int i = 0; i < numPixelsCopied; i++)
{
int graphicsSegMask = segmentationMaskBuffer[i];
int segMask = -1;
if ((graphicsSegMask >= 0) && (graphicsSegMask < m_data->m_graphicsIndexToSegmentationMask.size()))
{
segMask = m_data->m_graphicsIndexToSegmentationMask[graphicsSegMask];
}
if ((flags & ER_SEGMENTATION_MASK_OBJECT_AND_LINKINDEX) == 0)
{
if (segMask >= 0)
{
segMask &= ((1 << 24) - 1);
}
}
segmentationMaskBuffer[i] = segMask;
}
}
handled = true;
m_data->m_guiHelper->debugDisplayCameraImageData(viewMat,
projMat, pixelRGBA, numRequestedPixels,
depthBuffer, numRequestedPixels,
segmentationMaskBuffer, numRequestedPixels,
startPixelIndex, width, height, &numPixelsCopied);
}
}
if (!handled)
{
if (m_data->m_pluginManager.getRenderInterface())
{
if (clientCmd.m_requestPixelDataArguments.m_startPixelIndex == 0)
{
// printf("-------------------------------\nRendering\n");
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_DIRECTION) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightDirection(clientCmd.m_requestPixelDataArguments.m_lightDirection[0], clientCmd.m_requestPixelDataArguments.m_lightDirection[1], clientCmd.m_requestPixelDataArguments.m_lightDirection[2]);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_COLOR) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightColor(clientCmd.m_requestPixelDataArguments.m_lightColor[0], clientCmd.m_requestPixelDataArguments.m_lightColor[1], clientCmd.m_requestPixelDataArguments.m_lightColor[2]);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_DISTANCE) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightDistance(clientCmd.m_requestPixelDataArguments.m_lightDistance);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_SHADOW) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setShadow((clientCmd.m_requestPixelDataArguments.m_hasShadow != 0));
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_AMBIENT_COEFF) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightAmbientCoeff(clientCmd.m_requestPixelDataArguments.m_lightAmbientCoeff);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_DIFFUSE_COEFF) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightDiffuseCoeff(clientCmd.m_requestPixelDataArguments.m_lightDiffuseCoeff);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_SPECULAR_COEFF) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightSpecularCoeff(clientCmd.m_requestPixelDataArguments.m_lightSpecularCoeff);
}
for (int i = 0; i < m_data->m_dynamicsWorld->getNumCollisionObjects(); i++)
{
const btCollisionObject* colObj = m_data->m_dynamicsWorld->getCollisionObjectArray()[i];
m_data->m_pluginManager.getRenderInterface()->syncTransform(colObj->getUserIndex3(), colObj->getWorldTransform(), colObj->getCollisionShape()->getLocalScaling());
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES) != 0)
{
m_data->m_pluginManager.getRenderInterface()->render(
clientCmd.m_requestPixelDataArguments.m_viewMatrix,
clientCmd.m_requestPixelDataArguments.m_projectionMatrix);
}
else
{
b3OpenGLVisualizerCameraInfo tmpCamResult;
bool result = this->m_data->m_guiHelper->getCameraInfo(
&tmpCamResult.m_width,
&tmpCamResult.m_height,
tmpCamResult.m_viewMatrix,
tmpCamResult.m_projectionMatrix,
tmpCamResult.m_camUp,
tmpCamResult.m_camForward,
tmpCamResult.m_horizontal,
tmpCamResult.m_vertical,
&tmpCamResult.m_yaw,
&tmpCamResult.m_pitch,
&tmpCamResult.m_dist,
tmpCamResult.m_target);
if (result)
{
m_data->m_pluginManager.getRenderInterface()->render(tmpCamResult.m_viewMatrix, tmpCamResult.m_projectionMatrix);
}
else
{
m_data->m_pluginManager.getRenderInterface()->render();
}
}
}
}
if (m_data->m_pluginManager.getRenderInterface())
{
if ((flags & ER_USE_PROJECTIVE_TEXTURE) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setProjectiveTexture(true);
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_PROJECTIVE_TEXTURE_MATRICES) != 0)
{
for (int i = 0; i < 16; i++)
{
projTextureViewMat[i] = clientCmd.m_requestPixelDataArguments.m_projectiveTextureViewMatrix[i];
projTextureProjMat[i] = clientCmd.m_requestPixelDataArguments.m_projectiveTextureProjectionMatrix[i];
}
}
else // If no specified matrices for projective texture, then use the camera matrices.
{
for (int i = 0; i < 16; i++)
{
projTextureViewMat[i] = viewMat[i];
projTextureProjMat[i] = projMat[i];
}
}
m_data->m_pluginManager.getRenderInterface()->setProjectiveTextureMatrices(projTextureViewMat, projTextureProjMat);
}
else
{
m_data->m_pluginManager.getRenderInterface()->setProjectiveTexture(false);
}
if ((flags & ER_NO_SEGMENTATION_MASK) != 0)
{
segmentationMaskBuffer = 0;
}
m_data->m_pluginManager.getRenderInterface()->copyCameraImageData(pixelRGBA, numRequestedPixels,
depthBuffer, numRequestedPixels,
segmentationMaskBuffer, numRequestedPixels,
startPixelIndex, &width, &height, &numPixelsCopied);
m_data->m_pluginManager.getRenderInterface()->setProjectiveTexture(false);
}
m_data->m_guiHelper->debugDisplayCameraImageData(clientCmd.m_requestPixelDataArguments.m_viewMatrix,
clientCmd.m_requestPixelDataArguments.m_projectionMatrix, pixelRGBA, numRequestedPixels,
depthBuffer, numRequestedPixels,
segmentationMaskBuffer, numRequestedPixels,
startPixelIndex, width, height, &numPixelsCopied);
}
//each pixel takes 4 RGBA values and 1 float = 8 bytes
}
else
{
}
serverStatusOut.m_type = CMD_CAMERA_IMAGE_COMPLETED;
serverStatusOut.m_sendPixelDataArguments.m_numPixelsCopied = numPixelsCopied;
serverStatusOut.m_sendPixelDataArguments.m_numRemainingPixels = numRemainingPixels - numPixelsCopied;
serverStatusOut.m_sendPixelDataArguments.m_startingPixelIndex = startPixelIndex;
serverStatusOut.m_sendPixelDataArguments.m_imageWidth = width;
serverStatusOut.m_sendPixelDataArguments.m_imageHeight = height;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSaveWorldCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = false;
BT_PROFILE("CMD_SAVE_WORLD");
serverStatusOut.m_type = CMD_SAVE_WORLD_FAILED;
///this is a very rudimentary way to save the state of the world, for scene authoring
///many todo's, for example save the state of motor controllers etc.
{
//saveWorld(clientCmd.m_sdfArguments.m_sdfFileName);
int constraintCount = 0;
FILE* f = fopen(clientCmd.m_sdfArguments.m_sdfFileName, "w");
if (f)
{
char line[2048];
{
sprintf(line, "import pybullet as p\n");
int len = strlen(line);
fwrite(line, len, 1, f);
}
{
sprintf(line, "cin = p.connect(p.SHARED_MEMORY)\n");
int len = strlen(line);
fwrite(line, len, 1, f);
}
{
sprintf(line, "if (cin < 0):\n");
int len = strlen(line);
fwrite(line, len, 1, f);
}
{
sprintf(line, " cin = p.connect(p.GUI)\n");
int len = strlen(line);
fwrite(line, len, 1, f);
}
//for each objects ...
for (int i = 0; i < m_data->m_saveWorldBodyData.size(); i++)
{
SaveWorldObjectData& sd = m_data->m_saveWorldBodyData[i];
for (int i = 0; i < sd.m_bodyUniqueIds.size(); i++)
{
{
int bodyUniqueId = sd.m_bodyUniqueIds[i];
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body)
{
if (body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btTransform comTr = mb->getBaseWorldTransform();
btTransform tr = comTr * body->m_rootLocalInertialFrame.inverse();
if (strstr(sd.m_fileName.c_str(), ".urdf"))
{
sprintf(line, "objects = [p.loadURDF(\"%s\", %f,%f,%f,%f,%f,%f,%f)]\n", sd.m_fileName.c_str(),
tr.getOrigin()[0], tr.getOrigin()[1], tr.getOrigin()[2],
tr.getRotation()[0], tr.getRotation()[1], tr.getRotation()[2], tr.getRotation()[3]);
int len = strlen(line);
fwrite(line, len, 1, f);
}
if (strstr(sd.m_fileName.c_str(), ".sdf") && i == 0)
{
sprintf(line, "objects = p.loadSDF(\"%s\")\n", sd.m_fileName.c_str());
int len = strlen(line);
fwrite(line, len, 1, f);
}
if (strstr(sd.m_fileName.c_str(), ".xml") && i == 0)
{
sprintf(line, "objects = p.loadMJCF(\"%s\")\n", sd.m_fileName.c_str());
int len = strlen(line);
fwrite(line, len, 1, f);
}
if (strstr(sd.m_fileName.c_str(), ".sdf") || strstr(sd.m_fileName.c_str(), ".xml") || ((strstr(sd.m_fileName.c_str(), ".urdf")) && mb->getNumLinks()))
{
sprintf(line, "ob = objects[%d]\n", i);
int len = strlen(line);
fwrite(line, len, 1, f);
}
if (strstr(sd.m_fileName.c_str(), ".sdf") || strstr(sd.m_fileName.c_str(), ".xml"))
{
sprintf(line, "p.resetBasePositionAndOrientation(ob,[%f,%f,%f],[%f,%f,%f,%f])\n",
comTr.getOrigin()[0], comTr.getOrigin()[1], comTr.getOrigin()[2],
comTr.getRotation()[0], comTr.getRotation()[1], comTr.getRotation()[2], comTr.getRotation()[3]);
int len = strlen(line);
fwrite(line, len, 1, f);
}
if (mb->getNumLinks())
{
{
sprintf(line, "jointPositions=[");
int len = strlen(line);
fwrite(line, len, 1, f);
}
for (int i = 0; i < mb->getNumLinks(); i++)
{
btScalar jointPos = mb->getJointPosMultiDof(i)[0];
if (i < mb->getNumLinks() - 1)
{
sprintf(line, " %f,", jointPos);
int len = strlen(line);
fwrite(line, len, 1, f);
}
else
{
sprintf(line, " %f ", jointPos);
int len = strlen(line);
fwrite(line, len, 1, f);
}
}
{
sprintf(line, "]\nfor jointIndex in range (p.getNumJoints(ob)):\n\tp.resetJointState(ob,jointIndex,jointPositions[jointIndex])\n\n");
int len = strlen(line);
fwrite(line, len, 1, f);
}
}
}
else
{
//todo: btRigidBody/btSoftBody etc case
}
}
}
}
//for URDF, load at origin, then reposition...
struct SaveWorldObjectData
{
b3AlignedObjectArray<int> m_bodyUniqueIds;
std::string m_fileName;
};
}
//user constraints
{
for (int i = 0; i < m_data->m_userConstraints.size(); i++)
{
InteralUserConstraintData* ucptr = m_data->m_userConstraints.getAtIndex(i);
b3UserConstraint& uc = ucptr->m_userConstraintData;
int parentBodyIndex = uc.m_parentBodyIndex;
int parentJointIndex = uc.m_parentJointIndex;
int childBodyIndex = uc.m_childBodyIndex;
int childJointIndex = uc.m_childJointIndex;
btVector3 jointAxis(uc.m_jointAxis[0], uc.m_jointAxis[1], uc.m_jointAxis[2]);
btVector3 pivotParent(uc.m_parentFrame[0], uc.m_parentFrame[1], uc.m_parentFrame[2]);
btVector3 pivotChild(uc.m_childFrame[0], uc.m_childFrame[1], uc.m_childFrame[2]);
btQuaternion ornFrameParent(uc.m_parentFrame[3], uc.m_parentFrame[4], uc.m_parentFrame[5], uc.m_parentFrame[6]);
btQuaternion ornFrameChild(uc.m_childFrame[3], uc.m_childFrame[4], uc.m_childFrame[5], uc.m_childFrame[6]);
{
char jointTypeStr[1024] = "FIXED";
bool hasKnownJointType = true;
switch (uc.m_jointType)
{
case eRevoluteType:
{
sprintf(jointTypeStr, "p.JOINT_REVOLUTE");
break;
}
case ePrismaticType:
{
sprintf(jointTypeStr, "p.JOINT_PRISMATIC");
break;
}
case eSphericalType:
{
sprintf(jointTypeStr, "p.JOINT_SPHERICAL");
break;
}
case ePlanarType:
{
sprintf(jointTypeStr, "p.JOINT_PLANAR");
break;
}
case eFixedType:
{
sprintf(jointTypeStr, "p.JOINT_FIXED");
break;
}
case ePoint2PointType:
{
sprintf(jointTypeStr, "p.JOINT_POINT2POINT");
break;
}
case eGearType:
{
sprintf(jointTypeStr, "p.JOINT_GEAR");
break;
}
default:
{
hasKnownJointType = false;
b3Warning("unknown constraint type in SAVE_WORLD");
}
};
if (hasKnownJointType)
{
{
sprintf(line, "cid%d = p.createConstraint(%d,%d,%d,%d,%s,[%f,%f,%f],[%f,%f,%f],[%f,%f,%f],[%f,%f,%f,%f],[%f,%f,%f,%f])\n",
constraintCount,
parentBodyIndex,
parentJointIndex,
childBodyIndex,
childJointIndex,
jointTypeStr,
jointAxis[0], jointAxis[1], jointAxis[2],
pivotParent[0], pivotParent[1], pivotParent[2],
pivotChild[0], pivotChild[1], pivotChild[2],
ornFrameParent[0], ornFrameParent[1], ornFrameParent[2], ornFrameParent[3],
ornFrameChild[0], ornFrameChild[1], ornFrameChild[2], ornFrameChild[3]);
int len = strlen(line);
fwrite(line, len, 1, f);
}
{
sprintf(line, "p.changeConstraint(cid%d,maxForce=%f)\n", constraintCount, uc.m_maxAppliedForce);
int len = strlen(line);
fwrite(line, len, 1, f);
constraintCount++;
}
}
}
}
}
{
btVector3 grav = this->m_data->m_dynamicsWorld->getGravity();
sprintf(line, "p.setGravity(%f,%f,%f)\n", grav[0], grav[1], grav[2]);
int len = strlen(line);
fwrite(line, len, 1, f);
}
{
sprintf(line, "p.stepSimulation()\np.disconnect()\n");
int len = strlen(line);
fwrite(line, len, 1, f);
}
fclose(f);
}
serverStatusOut.m_type = CMD_SAVE_WORLD_COMPLETED;
hasStatus = true;
}
return hasStatus;
}
#define MYLINELENGTH 16 * 32768
static unsigned char* MyGetRawHeightfieldData(CommonFileIOInterface& fileIO, PHY_ScalarType type, const char* fileName, int& width, int& height,
btScalar& minHeight,
btScalar& maxHeight)
{
std::string ext;
std::string fn(fileName);
std::string ext_ = fn.substr(fn.size() - 4);
for (std::string::iterator i = ext_.begin(); i != ext_.end(); ++i)
{
ext += char(tolower(*i));
}
if (ext != ".txt")
{
char relativeFileName[1024];
int found = fileIO.findResourcePath(fileName, relativeFileName, 1024);
b3AlignedObjectArray<char> buffer;
buffer.reserve(1024);
int fileId = fileIO.fileOpen(relativeFileName, "rb");
if (fileId >= 0)
{
int size = fileIO.getFileSize(fileId);
if (size > 0)
{
buffer.resize(size);
int actual = fileIO.fileRead(fileId, &buffer[0], size);
if (actual != size)
{
b3Warning("STL filesize mismatch!\n");
buffer.resize(0);
}
}
fileIO.fileClose(fileId);
}
if (buffer.size())
{
int n;
unsigned char* image = stbi_load_from_memory((const unsigned char*)&buffer[0], buffer.size(), &width, &height, &n, 3);
if (image)
{
fileIO.fileClose(fileId);
int nElements = width * height;
int bytesPerElement = sizeof(btScalar);
btAssert(bytesPerElement > 0 && "bad bytes per element");
int nBytes = nElements * bytesPerElement;
unsigned char* raw = new unsigned char[nBytes];
btAssert(raw && "out of memory");
unsigned char* p = raw;
for (int j = 0; j < height; ++j)
{
for (int i = 0; i < width; ++i)
{
float z = double(image[(width - 1 - i) * 3 + width * j * 3]) * (1. / 255.);
btScalar* pf = (btScalar*)p;
*pf = z;
p += bytesPerElement;
// update min/max
if (!i && !j)
{
minHeight = z;
maxHeight = z;
}
else
{
if (z < minHeight)
{
minHeight = z;
}
if (z > maxHeight)
{
maxHeight = z;
}
}
}
}
free(image);
return raw;
}
}
}
if (ext == ".txt")
{
//read a csv file as used in DeepLoco
{
char relativePath[1024];
int found = fileIO.findResourcePath(fileName, relativePath, 1024);
btAlignedObjectArray<char> lineBuffer;
lineBuffer.resize(MYLINELENGTH);
int slot = fileIO.fileOpen(relativePath, "r");
int rows = 0;
int cols = 0;
btAlignedObjectArray<double> allValues;
if (slot >= 0)
{
char* lineChar;
while (lineChar = fileIO.readLine(slot, &lineBuffer[0], MYLINELENGTH))
{
rows = 0;
std::string line(lineChar);
int pos = 0;
while (pos < line.length())
{
int nextPos = pos + 1;
while (nextPos < line.length())
{
if (line[nextPos - 1] == ',')
{
break;
}
nextPos++;
}
std::string substr = line.substr(pos, nextPos - pos - 1);
double v;
if (sscanf(substr.c_str(), "%lf", &v) == 1)
{
allValues.push_back(v);
rows++;
}
pos = nextPos;
}
cols++;
}
width = rows;
height = cols;
fileIO.fileClose(slot);
int nElements = width * height;
// std::cerr << " nElements = " << nElements << "\n";
int bytesPerElement = sizeof(btScalar);
// std::cerr << " bytesPerElement = " << bytesPerElement << "\n";
btAssert(bytesPerElement > 0 && "bad bytes per element");
long nBytes = nElements * bytesPerElement;
// std::cerr << " nBytes = " << nBytes << "\n";
unsigned char* raw = new unsigned char[nBytes];
btAssert(raw && "out of memory");
unsigned char* p = raw;
for (int i = 0; i < width; ++i)
{
for (int j = 0; j < height; ++j)
{
double z = allValues[i + width * j];
//convertFromFloat(p, z, type);
btScalar* pf = (btScalar*)p;
*pf = z;
p += bytesPerElement;
// update min/max
if (!i && !j)
{
minHeight = z;
maxHeight = z;
}
else
{
if (z < minHeight)
{
minHeight = z;
}
if (z > maxHeight)
{
maxHeight = z;
}
}
}
}
return raw;
}
}
}
return 0;
}
class MyTriangleCollector4 : public btTriangleCallback
{
public:
btAlignedObjectArray<GLInstanceVertex>* m_pVerticesOut;
btAlignedObjectArray<int>* m_pIndicesOut;
MyTriangleCollector4()
{
m_pVerticesOut = 0;
m_pIndicesOut = 0;
}
virtual void processTriangle(btVector3* tris, int partId, int triangleIndex)
{
for (int k = 0; k < 3; k++)
{
GLInstanceVertex v;
v.xyzw[3] = 0;
v.uv[0] = v.uv[1] = 0.5f;
btVector3 normal = (tris[0] - tris[1]).cross(tris[0] - tris[2]);
normal.safeNormalize();
for (int l = 0; l < 3; l++)
{
v.xyzw[l] = tris[k][l];
v.normal[l] = normal[l];
}
m_pIndicesOut->push_back(m_pVerticesOut->size());
m_pVerticesOut->push_back(v);
}
}
};
bool PhysicsServerCommandProcessor::processCreateCollisionShapeCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_type = CMD_CREATE_COLLISION_SHAPE_FAILED;
btMultiBodyWorldImporter* worldImporter = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld);
btCollisionShape* shape = 0;
b3AlignedObjectArray<UrdfCollision> urdfCollisionObjects;
btCompoundShape* compound = 0;
if (clientCmd.m_createUserShapeArgs.m_numUserShapes > 1)
{
compound = worldImporter->createCompoundShape();
compound->setMargin(m_data->m_defaultCollisionMargin);
}
for (int i = 0; i < clientCmd.m_createUserShapeArgs.m_numUserShapes; i++)
{
GLInstanceGraphicsShape* glmesh = 0;
char pathPrefix[1024] = "";
char relativeFileName[1024] = "";
UrdfCollision urdfColObj;
btTransform childTransform;
childTransform.setIdentity();
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_hasChildTransform)
{
childTransform.setOrigin(btVector3(clientCmd.m_createUserShapeArgs.m_shapes[i].m_childPosition[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childPosition[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childPosition[2]));
childTransform.setRotation(btQuaternion(
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[2],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[3]));
if (compound == 0)
{
compound = worldImporter->createCompoundShape();
}
}
urdfColObj.m_linkLocalFrame = childTransform;
urdfColObj.m_sourceFileLocation = "memory";
urdfColObj.m_name = "memory";
urdfColObj.m_geometry.m_type = URDF_GEOM_UNKNOWN;
switch (clientCmd.m_createUserShapeArgs.m_shapes[i].m_type)
{
case GEOM_SPHERE:
{
double radius = clientCmd.m_createUserShapeArgs.m_shapes[i].m_sphereRadius;
shape = worldImporter->createSphereShape(radius);
shape->setMargin(m_data->m_defaultCollisionMargin);
if (compound)
{
compound->addChildShape(childTransform, shape);
}
urdfColObj.m_geometry.m_type = URDF_GEOM_SPHERE;
urdfColObj.m_geometry.m_sphereRadius = radius;
break;
}
case GEOM_BOX:
{
//double halfExtents[3] = clientCmd.m_createUserShapeArgs.m_shapes[i].m_sphereRadius;
btVector3 halfExtents(
clientCmd.m_createUserShapeArgs.m_shapes[i].m_boxHalfExtents[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_boxHalfExtents[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_boxHalfExtents[2]);
shape = worldImporter->createBoxShape(halfExtents);
shape->setMargin(m_data->m_defaultCollisionMargin);
if (compound)
{
compound->addChildShape(childTransform, shape);
}
urdfColObj.m_geometry.m_type = URDF_GEOM_BOX;
urdfColObj.m_geometry.m_boxSize = 2. * halfExtents;
break;
}
case GEOM_CAPSULE:
{
shape = worldImporter->createCapsuleShapeZ(clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius,
clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight);
shape->setMargin(m_data->m_defaultCollisionMargin);
if (compound)
{
compound->addChildShape(childTransform, shape);
}
urdfColObj.m_geometry.m_type = URDF_GEOM_CAPSULE;
urdfColObj.m_geometry.m_capsuleRadius = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius;
urdfColObj.m_geometry.m_capsuleHeight = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight;
break;
}
case GEOM_CYLINDER:
{
shape = worldImporter->createCylinderShapeZ(clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius,
0.5 * clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight);
shape->setMargin(m_data->m_defaultCollisionMargin);
if (compound)
{
compound->addChildShape(childTransform, shape);
}
urdfColObj.m_geometry.m_type = URDF_GEOM_CYLINDER;
urdfColObj.m_geometry.m_capsuleRadius = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius;
urdfColObj.m_geometry.m_capsuleHeight = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight;
break;
}
case GEOM_HEIGHTFIELD:
{
int width;
int height;
btScalar minHeight, maxHeight;
PHY_ScalarType scalarType = PHY_FLOAT;
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
const unsigned char* heightfieldData = 0;
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_numHeightfieldColumns > 0 &&
clientCmd.m_createUserShapeArgs.m_shapes[i].m_numHeightfieldRows > 0)
{
width = clientCmd.m_createUserShapeArgs.m_shapes[i].m_numHeightfieldRows;
height = clientCmd.m_createUserShapeArgs.m_shapes[i].m_numHeightfieldColumns;
float* heightfieldDataSrc = (float*)bufferServerToClient;
heightfieldData = new unsigned char[width * height * sizeof(btScalar)];
btScalar* datafl = (btScalar*)heightfieldData;
minHeight = heightfieldDataSrc[0];
maxHeight = heightfieldDataSrc[0];
for (int i = 0; i < width * height; i++)
{
datafl[i] = heightfieldDataSrc[i];
minHeight = btMin(minHeight, (btScalar)datafl[i]);
maxHeight = btMax(maxHeight, (btScalar)datafl[i]);
}
}
else
{
heightfieldData = MyGetRawHeightfieldData(*fileIO, scalarType, clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshFileName, width, height, minHeight, maxHeight);
}
if (heightfieldData)
{
//replace heightfield data or create new heightfield
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_replaceHeightfieldIndex >= 0)
{
int collisionShapeUid = clientCmd.m_createUserShapeArgs.m_shapes[i].m_replaceHeightfieldIndex;
InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(collisionShapeUid);
if (handle && handle->m_collisionShape && handle->m_collisionShape->getShapeType() == TERRAIN_SHAPE_PROXYTYPE)
{
btHeightfieldTerrainShape* terrainShape = (btHeightfieldTerrainShape*)handle->m_collisionShape;
btScalar* heightfieldDest = (btScalar*)terrainShape->getHeightfieldRawData();
//replace the data
btScalar* datafl = (btScalar*)heightfieldData;
for (int i = 0; i < width * height; i++)
{
heightfieldDest[i] = datafl[i];
}
//update graphics
btAlignedObjectArray<GLInstanceVertex> gfxVertices;
btAlignedObjectArray<int> indices;
int strideInBytes = 9 * sizeof(float);
MyTriangleCollector4 col;
col.m_pVerticesOut = &gfxVertices;
col.m_pIndicesOut = &indices;
btVector3 aabbMin, aabbMax;
for (int k = 0; k < 3; k++)
{
aabbMin[k] = -BT_LARGE_FLOAT;
aabbMax[k] = BT_LARGE_FLOAT;
}
terrainShape->processAllTriangles(&col, aabbMin, aabbMax);
if (gfxVertices.size() && indices.size())
{
m_data->m_guiHelper->updateShape(terrainShape->getUserIndex(), &gfxVertices[0].xyzw[0]);
}
terrainShape->clearAccelerator();
terrainShape->buildAccelerator();
btTriangleInfoMap* oldTriangleInfoMap = terrainShape->getTriangleInfoMap();
delete (oldTriangleInfoMap);
terrainShape->setTriangleInfoMap(0);
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_CONCAVE_INTERNAL_EDGE)
{
btTriangleInfoMap* triangleInfoMap = new btTriangleInfoMap();
btGenerateInternalEdgeInfo(terrainShape, triangleInfoMap);
}
serverStatusOut.m_createUserShapeResultArgs.m_userShapeUniqueId = collisionShapeUid;
delete worldImporter;
serverStatusOut.m_type = CMD_CREATE_COLLISION_SHAPE_COMPLETED;
}
delete heightfieldData;
return hasStatus;
}
else
{
btScalar gridSpacing = 0.5;
btScalar gridHeightScale = 1. / 256.;
bool flipQuadEdges = false;
int upAxis = 2;
/*btHeightfieldTerrainShape* heightfieldShape = worldImporter->createHeightfieldShape( width, height,
heightfieldData,
gridHeightScale,
minHeight, maxHeight,
upAxis, int(scalarType), flipQuadEdges);
*/
btHeightfieldTerrainShape* heightfieldShape = new btHeightfieldTerrainShape(width, height,
heightfieldData,
gridHeightScale,
minHeight, maxHeight,
upAxis, scalarType, flipQuadEdges);
m_data->m_collisionShapes.push_back(heightfieldShape);
heightfieldShape->setUserValue3(clientCmd.m_createUserShapeArgs.m_shapes[i].m_heightfieldTextureScaling);
shape = heightfieldShape;
if (upAxis == 2)
heightfieldShape->setFlipTriangleWinding(true);
// scale the shape
btVector3 localScaling(clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[2]);
heightfieldShape->setLocalScaling(localScaling);
//buildAccelerator is optional, it may not support all features.
heightfieldShape->buildAccelerator();
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_CONCAVE_INTERNAL_EDGE)
{
btTriangleInfoMap* triangleInfoMap = new btTriangleInfoMap();
btGenerateInternalEdgeInfo(heightfieldShape, triangleInfoMap);
}
this->m_data->m_heightfieldDatas.push_back(heightfieldData);
}
}
break;
}
case GEOM_PLANE:
{
btVector3 planeNormal(clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[2]);
shape = worldImporter->createPlaneShape(planeNormal, clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeConstant);
shape->setMargin(m_data->m_defaultCollisionMargin);
if (compound)
{
compound->addChildShape(childTransform, shape);
}
urdfColObj.m_geometry.m_type = URDF_GEOM_PLANE;
urdfColObj.m_geometry.m_planeNormal.setValue(
clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[2]);
break;
}
case GEOM_MESH:
{
btVector3 meshScale(clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[2]);
const std::string& urdf_path = "";
std::string fileName = clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshFileName;
urdfColObj.m_geometry.m_type = URDF_GEOM_MESH;
urdfColObj.m_geometry.m_meshFileName = fileName;
urdfColObj.m_geometry.m_meshScale = meshScale;
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
pathPrefix[0] = 0;
if (fileIO->findResourcePath(fileName.c_str(), relativeFileName, 1024))
{
b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024);
}
const std::string& error_message_prefix = "";
std::string out_found_filename;
int out_type;
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_numVertices)
{
int numVertices = clientCmd.m_createUserShapeArgs.m_shapes[i].m_numVertices;
int numIndices = clientCmd.m_createUserShapeArgs.m_shapes[i].m_numIndices;
//int totalUploadSizeInBytes = numVertices * sizeof(double) * 3 + numIndices * sizeof(int);
char* data = bufferServerToClient;
double* vertexUpload = (double*)data;
int* indexUpload = (int*)(data + numVertices * sizeof(double) * 3);
if (compound == 0)
{
compound = worldImporter->createCompoundShape();
}
compound->setMargin(m_data->m_defaultCollisionMargin);
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_numIndices)
{
BT_PROFILE("convert trimesh2");
btTriangleMesh* meshInterface = new btTriangleMesh();
this->m_data->m_meshInterfaces.push_back(meshInterface);
{
BT_PROFILE("convert vertices2");
for (int j = 0; j < clientCmd.m_createUserShapeArgs.m_shapes[i].m_numIndices / 3; j++)
{
int i0 = indexUpload[j * 3 + 0];
int i1 = indexUpload[j * 3 + 1];
int i2 = indexUpload[j * 3 + 2];
btVector3 v0(vertexUpload[i0 * 3 + 0],
vertexUpload[i0 * 3 + 1],
vertexUpload[i0 * 3 + 2]);
btVector3 v1(vertexUpload[i1 * 3 + 0],
vertexUpload[i1 * 3 + 1],
vertexUpload[i1 * 3 + 2]);
btVector3 v2(vertexUpload[i2 * 3 + 0],
vertexUpload[i2 * 3 + 1],
vertexUpload[i2 * 3 + 2]);
meshInterface->addTriangle(v0 * meshScale, v1 * meshScale, v2 * meshScale);
}
}
{
BT_PROFILE("create btBvhTriangleMeshShape");
btBvhTriangleMeshShape* trimesh = new btBvhTriangleMeshShape(meshInterface, true, true);
m_data->m_collisionShapes.push_back(trimesh);
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_CONCAVE_INTERNAL_EDGE)
{
btTriangleInfoMap* triangleInfoMap = new btTriangleInfoMap();
btGenerateInternalEdgeInfo(trimesh, triangleInfoMap);
}
shape = trimesh;
if (compound)
{
compound->addChildShape(childTransform, shape);
shape->setMargin(m_data->m_defaultCollisionMargin);
}
}
}
else
{
btConvexHullShape* convexHull = worldImporter->createConvexHullShape();
convexHull->setMargin(m_data->m_defaultCollisionMargin);
for (int v = 0; v < clientCmd.m_createUserShapeArgs.m_shapes[i].m_numVertices; v++)
{
btVector3 pt(vertexUpload[v * 3 + 0],
vertexUpload[v * 3 + 1],
vertexUpload[v * 3 + 2]);
convexHull->addPoint(pt * meshScale, false);
}
convexHull->recalcLocalAabb();
convexHull->optimizeConvexHull();
compound->addChildShape(childTransform, convexHull);
}
urdfColObj.m_geometry.m_meshFileType = UrdfGeometry::MEMORY_VERTICES;
break;
}
bool foundFile = UrdfFindMeshFile(fileIO, pathPrefix, relativeFileName, error_message_prefix, &out_found_filename, &out_type);
if (foundFile)
{
urdfColObj.m_geometry.m_meshFileType = out_type;
if (out_type == UrdfGeometry::FILE_STL)
{
CommonFileIOInterface* fileIO(m_data->m_pluginManager.getFileIOInterface());
glmesh = LoadMeshFromSTL(relativeFileName, fileIO);
}
if (out_type == UrdfGeometry::FILE_OBJ)
{
//create a convex hull for each shape, and store it in a btCompoundShape
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_FORCE_CONCAVE_TRIMESH)
{
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
glmesh = LoadMeshFromObj(relativeFileName, pathPrefix, fileIO);
}
else
{
std::vector<tinyobj::shape_t> shapes;
tinyobj::attrib_t attribute;
std::string err = tinyobj::LoadObj(attribute, shapes, out_found_filename.c_str(), "", fileIO);
//shape = createConvexHullFromShapes(shapes, collision->m_geometry.m_meshScale);
//static btCollisionShape* createConvexHullFromShapes(std::vector<tinyobj::shape_t>& shapes, const btVector3& geomScale)
B3_PROFILE("createConvexHullFromShapes");
if (compound == 0)
{
compound = worldImporter->createCompoundShape();
}
compound->setMargin(m_data->m_defaultCollisionMargin);
for (int s = 0; s < (int)shapes.size(); s++)
{
btConvexHullShape* convexHull = worldImporter->createConvexHullShape();
convexHull->setMargin(m_data->m_defaultCollisionMargin);
tinyobj::shape_t& shape = shapes[s];
int faceCount = shape.mesh.indices.size();
for (int f = 0; f < faceCount; f += 3)
{
btVector3 pt;
pt.setValue(attribute.vertices[3 * shape.mesh.indices[f + 0].vertex_index + 0],
attribute.vertices[3 * shape.mesh.indices[f + 0].vertex_index + 1],
attribute.vertices[3 * shape.mesh.indices[f + 0].vertex_index + 2]);
convexHull->addPoint(pt * meshScale, false);
pt.setValue(attribute.vertices[3 * shape.mesh.indices[f + 1].vertex_index + 0],
attribute.vertices[3 * shape.mesh.indices[f + 1].vertex_index + 1],
attribute.vertices[3 * shape.mesh.indices[f + 1].vertex_index + 2]);
convexHull->addPoint(pt * meshScale, false);
pt.setValue(attribute.vertices[3 * shape.mesh.indices[f + 2].vertex_index + 0],
attribute.vertices[3 * shape.mesh.indices[f + 2].vertex_index + 1],
attribute.vertices[3 * shape.mesh.indices[f + 2].vertex_index + 2]);
convexHull->addPoint(pt * meshScale, false);
}
convexHull->recalcLocalAabb();
convexHull->optimizeConvexHull();
compound->addChildShape(childTransform, convexHull);
}
}
}
}
break;
}
default:
{
}
}
if (urdfColObj.m_geometry.m_type != URDF_GEOM_UNKNOWN)
{
urdfCollisionObjects.push_back(urdfColObj);
}
if (glmesh)
{
btVector3 meshScale(clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[2]);
if (!glmesh || glmesh->m_numvertices <= 0)
{
b3Warning("%s: cannot extract mesh from '%s'\n", pathPrefix, relativeFileName);
delete glmesh;
}
else
{
btAlignedObjectArray<btVector3> convertedVerts;
convertedVerts.reserve(glmesh->m_numvertices);
for (int v = 0; v < glmesh->m_numvertices; v++)
{
convertedVerts.push_back(btVector3(
glmesh->m_vertices->at(v).xyzw[0] * meshScale[0],
glmesh->m_vertices->at(v).xyzw[1] * meshScale[1],
glmesh->m_vertices->at(v).xyzw[2] * meshScale[2]));
}
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_FORCE_CONCAVE_TRIMESH)
{
BT_PROFILE("convert trimesh");
btTriangleMesh* meshInterface = new btTriangleMesh();
this->m_data->m_meshInterfaces.push_back(meshInterface);
{
BT_PROFILE("convert vertices");
for (int i = 0; i < glmesh->m_numIndices / 3; i++)
{
const btVector3& v0 = convertedVerts[glmesh->m_indices->at(i * 3)];
const btVector3& v1 = convertedVerts[glmesh->m_indices->at(i * 3 + 1)];
const btVector3& v2 = convertedVerts[glmesh->m_indices->at(i * 3 + 2)];
meshInterface->addTriangle(v0, v1, v2);
}
}
{
BT_PROFILE("create btBvhTriangleMeshShape");
btBvhTriangleMeshShape* trimesh = new btBvhTriangleMeshShape(meshInterface, true, true);
m_data->m_collisionShapes.push_back(trimesh);
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_CONCAVE_INTERNAL_EDGE)
{
btTriangleInfoMap* triangleInfoMap = new btTriangleInfoMap();
btGenerateInternalEdgeInfo(trimesh, triangleInfoMap);
}
//trimesh->setLocalScaling(collision->m_geometry.m_meshScale);
shape = trimesh;
if (compound)
{
compound->addChildShape(childTransform, shape);
shape->setMargin(m_data->m_defaultCollisionMargin);
}
}
delete glmesh;
}
else
{
//convex mesh
if (compound == 0)
{
compound = worldImporter->createCompoundShape();
}
compound->setMargin(m_data->m_defaultCollisionMargin);
{
btConvexHullShape* convexHull = worldImporter->createConvexHullShape();
convexHull->setMargin(m_data->m_defaultCollisionMargin);
for (int v = 0; v < convertedVerts.size(); v++)
{
btVector3 pt = convertedVerts[v];
convexHull->addPoint(pt, false);
}
convexHull->recalcLocalAabb();
convexHull->optimizeConvexHull();
compound->addChildShape(childTransform, convexHull);
}
}
}
}
}
if (compound && compound->getNumChildShapes())
{
shape = compound;
}
if (shape)
{
int collisionShapeUid = m_data->m_userCollisionShapeHandles.allocHandle();
InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(collisionShapeUid);
handle->m_collisionShape = shape;
for (int i = 0; i < urdfCollisionObjects.size(); i++)
{
handle->m_urdfCollisionObjects.push_back(urdfCollisionObjects[i]);
}
serverStatusOut.m_createUserShapeResultArgs.m_userShapeUniqueId = collisionShapeUid;
m_data->m_worldImporters.push_back(worldImporter);
serverStatusOut.m_type = CMD_CREATE_COLLISION_SHAPE_COMPLETED;
}
else
{
delete worldImporter;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestMeshDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_MESH_DATA");
serverStatusOut.m_type = CMD_REQUEST_MESH_DATA_FAILED;
serverStatusOut.m_numDataStreamBytes = 0;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_requestMeshDataArgs.m_bodyUniqueId);
if (bodyHandle)
{
if (bodyHandle->m_multiBody)
{
//todo
}
if (bodyHandle->m_rigidBody)
{
//todo
}
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
if (bodyHandle->m_softBody)
{
btSoftBody* psb = bodyHandle->m_softBody;
int totalBytesPerVertex = sizeof(btVector3);
bool separateRenderMesh = (psb->m_renderNodes.size() != 0);
int numVertices = separateRenderMesh ? psb->m_renderNodes.size() : psb->m_nodes.size();
int maxNumVertices = bufferSizeInBytes / totalBytesPerVertex - 1;
int numVerticesRemaining = numVertices - clientCmd.m_requestMeshDataArgs.m_startingVertex;
int verticesCopied = btMin(maxNumVertices, numVerticesRemaining);
btVector3* verticesOut = (btVector3*)bufferServerToClient;
for (int i = 0; i < verticesCopied; ++i)
{
if (separateRenderMesh)
{
const btSoftBody::Node& n = psb->m_renderNodes[i + clientCmd.m_requestMeshDataArgs.m_startingVertex];
verticesOut[i] = n.m_x;
}
else
{
const btSoftBody::Node& n = psb->m_nodes[i + clientCmd.m_requestMeshDataArgs.m_startingVertex];
verticesOut[i] = n.m_x;
}
}
serverStatusOut.m_type = CMD_REQUEST_MESH_DATA_COMPLETED;
serverStatusOut.m_sendMeshDataArgs.m_numVerticesCopied = verticesCopied;
serverStatusOut.m_sendMeshDataArgs.m_startingVertex = clientCmd.m_requestMeshDataArgs.m_startingVertex;
serverStatusOut.m_sendMeshDataArgs.m_numVerticesRemaining = numVerticesRemaining - verticesCopied;
}
#endif //SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
}
serverStatusOut.m_numDataStreamBytes = 0;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateVisualShapeCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_type = CMD_CREATE_VISUAL_SHAPE_FAILED;
double globalScaling = 1.f;
int flags = 0;
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), fileIO, globalScaling, flags);
u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer);
btTransform localInertiaFrame;
localInertiaFrame.setIdentity();
const char* pathPrefix = "";
int visualShapeUniqueId = -1;
UrdfVisual visualShape;
for (int userShapeIndex = 0; userShapeIndex < clientCmd.m_createUserShapeArgs.m_numUserShapes; userShapeIndex++)
{
btTransform childTrans;
childTrans.setIdentity();
visualShape.m_geometry.m_type = (UrdfGeomTypes)clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_type;
char relativeFileName[1024];
char pathPrefix[1024];
pathPrefix[0] = 0;
const b3CreateUserShapeData& visShape = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex];
switch (visualShape.m_geometry.m_type)
{
case URDF_GEOM_CYLINDER:
{
visualShape.m_geometry.m_capsuleHeight = visShape.m_capsuleHeight;
visualShape.m_geometry.m_capsuleRadius = visShape.m_capsuleRadius;
break;
}
case URDF_GEOM_BOX:
{
visualShape.m_geometry.m_boxSize.setValue(2. * visShape.m_boxHalfExtents[0],
2. * visShape.m_boxHalfExtents[1],
2. * visShape.m_boxHalfExtents[2]);
break;
}
case URDF_GEOM_SPHERE:
{
visualShape.m_geometry.m_sphereRadius = visShape.m_sphereRadius;
break;
}
case URDF_GEOM_CAPSULE:
{
visualShape.m_geometry.m_hasFromTo = visShape.m_hasFromTo;
if (visualShape.m_geometry.m_hasFromTo)
{
visualShape.m_geometry.m_capsuleFrom.setValue(visShape.m_capsuleFrom[0],
visShape.m_capsuleFrom[1],
visShape.m_capsuleFrom[2]);
visualShape.m_geometry.m_capsuleTo.setValue(visShape.m_capsuleTo[0],
visShape.m_capsuleTo[1],
visShape.m_capsuleTo[2]);
}
else
{
visualShape.m_geometry.m_capsuleHeight = visShape.m_capsuleHeight;
visualShape.m_geometry.m_capsuleRadius = visShape.m_capsuleRadius;
}
break;
}
case URDF_GEOM_MESH:
{
std::string fileName = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshFileName;
if (fileName.length())
{
const std::string& error_message_prefix = "";
std::string out_found_filename;
int out_type;
if (fileIO->findResourcePath(fileName.c_str(), relativeFileName, 1024))
{
b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024);
}
bool foundFile = UrdfFindMeshFile(fileIO, pathPrefix, relativeFileName, error_message_prefix, &out_found_filename, &out_type);
if (foundFile)
{
visualShape.m_geometry.m_meshFileType = out_type;
visualShape.m_geometry.m_meshFileName = fileName;
}
else
{
}
}
else
{
visualShape.m_geometry.m_meshFileType = UrdfGeometry::MEMORY_VERTICES;
int numVertices = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_numVertices;
int numIndices = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_numIndices;
int numUVs = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_numUVs;
int numNormals = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_numNormals;
if (numVertices > 0 && numIndices > 0)
{
char* data = bufferServerToClient;
double* vertexUpload = (double*)data;
int* indexUpload = (int*)(data + numVertices * sizeof(double) * 3);
double* normalUpload = (double*)(data + numVertices * sizeof(double) * 3 + numIndices * sizeof(int));
double* uvUpload = (double*)(data + numVertices * sizeof(double) * 3 + numIndices * sizeof(int) + numNormals * sizeof(double) * 3);
for (int i = 0; i < numIndices; i++)
{
visualShape.m_geometry.m_indices.push_back(indexUpload[i]);
}
for (int i = 0; i < numVertices; i++)
{
btVector3 v0(vertexUpload[i * 3 + 0],
vertexUpload[i * 3 + 1],
vertexUpload[i * 3 + 2]);
visualShape.m_geometry.m_vertices.push_back(v0);
}
for (int i = 0; i < numNormals; i++)
{
btVector3 normal(normalUpload[i * 3 + 0],
normalUpload[i * 3 + 1],
normalUpload[i * 3 + 2]);
visualShape.m_geometry.m_normals.push_back(normal);
}
for (int i = 0; i < numUVs; i++)
{
btVector3 uv(uvUpload[i * 2 + 0], uvUpload[i * 2 + 1], 0);
visualShape.m_geometry.m_uvs.push_back(uv);
}
}
}
visualShape.m_geometry.m_meshScale.setValue(clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshScale[0],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshScale[1],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshScale[2]);
break;
}
default:
{
}
};
visualShape.m_name = "in_memory";
visualShape.m_materialName = "";
visualShape.m_sourceFileLocation = "in_memory_unknown_line";
visualShape.m_linkLocalFrame.setIdentity();
visualShape.m_geometry.m_hasLocalMaterial = false;
bool hasRGBA = (clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_visualFlags & GEOM_VISUAL_HAS_RGBA_COLOR) != 0;
;
bool hasSpecular = (clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_visualFlags & GEOM_VISUAL_HAS_SPECULAR_COLOR) != 0;
;
visualShape.m_geometry.m_hasLocalMaterial = hasRGBA | hasSpecular;
if (visualShape.m_geometry.m_hasLocalMaterial)
{
if (hasRGBA)
{
visualShape.m_geometry.m_localMaterial.m_matColor.m_rgbaColor.setValue(
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[0],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[1],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[2],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[3]);
}
else
{
visualShape.m_geometry.m_localMaterial.m_matColor.m_rgbaColor.setValue(1, 1, 1, 1);
}
if (hasSpecular)
{
visualShape.m_geometry.m_localMaterial.m_matColor.m_specularColor.setValue(
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_specularColor[0],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_specularColor[1],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_specularColor[2]);
}
else
{
visualShape.m_geometry.m_localMaterial.m_matColor.m_specularColor.setValue(0.4, 0.4, 0.4);
}
}
if (clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_hasChildTransform != 0)
{
childTrans.setOrigin(btVector3(clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childPosition[0],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childPosition[1],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childPosition[2]));
childTrans.setRotation(btQuaternion(
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[0],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[1],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[2],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[3]));
}
if (visualShapeUniqueId < 0)
{
visualShapeUniqueId = m_data->m_userVisualShapeHandles.allocHandle();
}
InternalVisualShapeHandle* visualHandle = m_data->m_userVisualShapeHandles.getHandle(visualShapeUniqueId);
visualHandle->m_OpenGLGraphicsIndex = -1;
visualHandle->m_tinyRendererVisualShapeIndex = -1;
//tinyrenderer doesn't separate shape versus instance, so create it when creating the multibody instance
//store needed info for tinyrenderer
visualShape.m_linkLocalFrame = childTrans;
visualHandle->m_visualShapes.push_back(visualShape);
visualHandle->m_pathPrefixes.push_back(pathPrefix[0] ? pathPrefix : "");
serverStatusOut.m_createUserShapeResultArgs.m_userShapeUniqueId = visualShapeUniqueId;
serverStatusOut.m_type = CMD_CREATE_VISUAL_SHAPE_COMPLETED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCustomCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CUSTOM_COMMAND_FAILED;
serverCmd.m_customCommandResultArgs.m_pluginUniqueId = -1;
if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_LOAD_PLUGIN)
{
//pluginPath could be registered or load from disk
const char* postFix = "";
if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_LOAD_PLUGIN_POSTFIX)
{
postFix = clientCmd.m_customCommandArgs.m_postFix;
}
int pluginUniqueId = m_data->m_pluginManager.loadPlugin(clientCmd.m_customCommandArgs.m_pluginPath, postFix);
if (pluginUniqueId >= 0)
{
serverCmd.m_customCommandResultArgs.m_pluginUniqueId = pluginUniqueId;
serverCmd.m_type = CMD_CUSTOM_COMMAND_COMPLETED;
}
}
if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_UNLOAD_PLUGIN)
{
m_data->m_pluginManager.unloadPlugin(clientCmd.m_customCommandArgs.m_pluginUniqueId);
serverCmd.m_type = CMD_CUSTOM_COMMAND_COMPLETED;
}
if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_EXECUTE_PLUGIN_COMMAND)
{
int result = m_data->m_pluginManager.executePluginCommand(clientCmd.m_customCommandArgs.m_pluginUniqueId, &clientCmd.m_customCommandArgs.m_arguments);
serverCmd.m_customCommandResultArgs.m_executeCommandResult = result;
serverCmd.m_type = CMD_CUSTOM_COMMAND_COMPLETED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processUserDebugDrawCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_USER_DEBUG_DRAW");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_FAILED;
int trackingVisualShapeIndex = -1;
if (clientCmd.m_userDebugDrawArgs.m_parentObjectUniqueId >= 0)
{
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_userDebugDrawArgs.m_parentObjectUniqueId);
if (bodyHandle)
{
int linkIndex = -1;
if (bodyHandle->m_multiBody)
{
int linkIndex = clientCmd.m_userDebugDrawArgs.m_parentLinkIndex;
if (linkIndex == -1)
{
if (bodyHandle->m_multiBody->getBaseCollider())
{
trackingVisualShapeIndex = bodyHandle->m_multiBody->getBaseCollider()->getUserIndex();
}
}
else
{
if (linkIndex >= 0 && linkIndex < bodyHandle->m_multiBody->getNumLinks())
{
if (bodyHandle->m_multiBody->getLink(linkIndex).m_collider)
{
trackingVisualShapeIndex = bodyHandle->m_multiBody->getLink(linkIndex).m_collider->getUserIndex();
}
}
}
}
if (bodyHandle->m_rigidBody)
{
trackingVisualShapeIndex = bodyHandle->m_rigidBody->getUserIndex();
}
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_ADD_PARAMETER)
{
int uid = m_data->m_guiHelper->addUserDebugParameter(
clientCmd.m_userDebugDrawArgs.m_text,
clientCmd.m_userDebugDrawArgs.m_rangeMin,
clientCmd.m_userDebugDrawArgs.m_rangeMax,
clientCmd.m_userDebugDrawArgs.m_startValue);
serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
if (clientCmd.m_updateFlags & USER_DEBUG_READ_PARAMETER)
{
int ok = m_data->m_guiHelper->readUserDebugParameter(
clientCmd.m_userDebugDrawArgs.m_itemUniqueId,
&serverCmd.m_userDebugDrawArgs.m_parameterValue);
if (ok)
{
serverCmd.m_type = CMD_USER_DEBUG_DRAW_PARAMETER_COMPLETED;
}
}
if ((clientCmd.m_updateFlags & USER_DEBUG_SET_CUSTOM_OBJECT_COLOR) || (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_CUSTOM_OBJECT_COLOR))
{
int bodyUniqueId = clientCmd.m_userDebugDrawArgs.m_objectUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body)
{
btCollisionObject* destColObj = 0;
if (body->m_multiBody)
{
if (clientCmd.m_userDebugDrawArgs.m_linkIndex == -1)
{
destColObj = body->m_multiBody->getBaseCollider();
}
else
{
if (clientCmd.m_userDebugDrawArgs.m_linkIndex >= 0 && clientCmd.m_userDebugDrawArgs.m_linkIndex < body->m_multiBody->getNumLinks())
{
destColObj = body->m_multiBody->getLink(clientCmd.m_userDebugDrawArgs.m_linkIndex).m_collider;
}
}
}
if (body->m_rigidBody)
{
destColObj = body->m_rigidBody;
}
if (destColObj)
{
if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_CUSTOM_OBJECT_COLOR)
{
destColObj->removeCustomDebugColor();
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
if (clientCmd.m_updateFlags & USER_DEBUG_SET_CUSTOM_OBJECT_COLOR)
{
btVector3 objectColorRGB;
objectColorRGB.setValue(clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[0],
clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[1],
clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[2]);
destColObj->setCustomDebugColor(objectColorRGB);
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
}
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_HAS_TEXT)
{
//addUserDebugText3D( const double orientation[4], const double textColorRGB[3], double size, double lifeTime, int trackingObjectUniqueId, int optionFlags){return -1;}
int optionFlags = clientCmd.m_userDebugDrawArgs.m_optionFlags;
if ((clientCmd.m_updateFlags & USER_DEBUG_HAS_TEXT_ORIENTATION) == 0)
{
optionFlags |= DEB_DEBUG_TEXT_ALWAYS_FACE_CAMERA;
}
int replaceItemUniqueId = -1;
if ((clientCmd.m_updateFlags & USER_DEBUG_HAS_REPLACE_ITEM_UNIQUE_ID) != 0)
{
replaceItemUniqueId = clientCmd.m_userDebugDrawArgs.m_replaceItemUniqueId;
}
int uid = m_data->m_guiHelper->addUserDebugText3D(clientCmd.m_userDebugDrawArgs.m_text,
clientCmd.m_userDebugDrawArgs.m_textPositionXYZ,
clientCmd.m_userDebugDrawArgs.m_textOrientation,
clientCmd.m_userDebugDrawArgs.m_textColorRGB,
clientCmd.m_userDebugDrawArgs.m_textSize,
clientCmd.m_userDebugDrawArgs.m_lifeTime,
trackingVisualShapeIndex,
optionFlags,
replaceItemUniqueId);
if (uid >= 0)
{
serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_HAS_LINE)
{
int replaceItemUid = -1;
if (clientCmd.m_updateFlags & USER_DEBUG_HAS_REPLACE_ITEM_UNIQUE_ID)
{
replaceItemUid = clientCmd.m_userDebugDrawArgs.m_replaceItemUniqueId;
}
int uid = m_data->m_guiHelper->addUserDebugLine(
clientCmd.m_userDebugDrawArgs.m_debugLineFromXYZ,
clientCmd.m_userDebugDrawArgs.m_debugLineToXYZ,
clientCmd.m_userDebugDrawArgs.m_debugLineColorRGB,
clientCmd.m_userDebugDrawArgs.m_lineWidth,
clientCmd.m_userDebugDrawArgs.m_lifeTime,
trackingVisualShapeIndex,
replaceItemUid);
if (uid >= 0)
{
serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_ALL)
{
m_data->m_guiHelper->removeAllUserDebugItems();
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_ONE_ITEM)
{
m_data->m_guiHelper->removeUserDebugItem(clientCmd.m_userDebugDrawArgs.m_itemUniqueId);
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSetVRCameraStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SET_VR_CAMERA_STATE");
if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_POSITION)
{
gVRTeleportPos1[0] = clientCmd.m_vrCameraStateArguments.m_rootPosition[0];
gVRTeleportPos1[1] = clientCmd.m_vrCameraStateArguments.m_rootPosition[1];
gVRTeleportPos1[2] = clientCmd.m_vrCameraStateArguments.m_rootPosition[2];
}
if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_ORIENTATION)
{
gVRTeleportOrn[0] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[0];
gVRTeleportOrn[1] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[1];
gVRTeleportOrn[2] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[2];
gVRTeleportOrn[3] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[3];
}
if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_TRACKING_OBJECT)
{
gVRTrackingObjectUniqueId = clientCmd.m_vrCameraStateArguments.m_trackingObjectUniqueId;
}
if (clientCmd.m_updateFlags & VR_CAMERA_FLAG)
{
gVRTrackingObjectFlag = clientCmd.m_vrCameraStateArguments.m_trackingObjectFlag;
}
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestVREventsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
//BT_PROFILE("CMD_REQUEST_VR_EVENTS_DATA");
serverStatusOut.m_sendVREvents.m_numVRControllerEvents = 0;
for (int i = 0; i < MAX_VR_CONTROLLERS; i++)
{
b3VRControllerEvent& event = m_data->m_vrControllerEvents.m_vrEvents[i];
if (clientCmd.m_updateFlags & event.m_deviceType)
{
if (event.m_numButtonEvents + event.m_numMoveEvents)
{
serverStatusOut.m_sendVREvents.m_controllerEvents[serverStatusOut.m_sendVREvents.m_numVRControllerEvents++] = event;
event.m_numButtonEvents = 0;
event.m_numMoveEvents = 0;
for (int b = 0; b < MAX_VR_BUTTONS; b++)
{
event.m_buttons[b] = 0;
}
}
}
}
serverStatusOut.m_type = CMD_REQUEST_VR_EVENTS_DATA_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestMouseEventsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_sendMouseEvents.m_numMouseEvents = m_data->m_mouseEvents.size();
if (serverStatusOut.m_sendMouseEvents.m_numMouseEvents > MAX_MOUSE_EVENTS)
{
serverStatusOut.m_sendMouseEvents.m_numMouseEvents = MAX_MOUSE_EVENTS;
}
for (int i = 0; i < serverStatusOut.m_sendMouseEvents.m_numMouseEvents; i++)
{
serverStatusOut.m_sendMouseEvents.m_mouseEvents[i] = m_data->m_mouseEvents[i];
}
m_data->m_mouseEvents.resize(0);
serverStatusOut.m_type = CMD_REQUEST_MOUSE_EVENTS_DATA_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestKeyboardEventsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
//BT_PROFILE("CMD_REQUEST_KEYBOARD_EVENTS_DATA");
bool hasStatus = true;
serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents = m_data->m_keyboardEvents.size();
if (serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents > MAX_KEYBOARD_EVENTS)
{
serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents = MAX_KEYBOARD_EVENTS;
}
for (int i = 0; i < serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents; i++)
{
serverStatusOut.m_sendKeyboardEvents.m_keyboardEvents[i] = m_data->m_keyboardEvents[i];
}
btAlignedObjectArray<b3KeyboardEvent> events;
//remove out-of-date events
for (int i = 0; i < m_data->m_keyboardEvents.size(); i++)
{
b3KeyboardEvent event = m_data->m_keyboardEvents[i];
if (event.m_keyState & eButtonIsDown)
{
event.m_keyState = eButtonIsDown;
events.push_back(event);
}
}
m_data->m_keyboardEvents.resize(events.size());
for (int i = 0; i < events.size(); i++)
{
m_data->m_keyboardEvents[i] = events[i];
}
serverStatusOut.m_type = CMD_REQUEST_KEYBOARD_EVENTS_DATA_COMPLETED;
return hasStatus;
}
#if __cplusplus >= 201103L
#include <atomic>
struct CastSyncInfo
{
std::atomic<int> m_nextTaskNumber;
CastSyncInfo() : m_nextTaskNumber(0) {}
inline int getNextTask()
{
return m_nextTaskNumber++;
}
};
#else // __cplusplus >= 201103L
struct CastSyncInfo
{
volatile int m_nextTaskNumber;
btSpinMutex m_taskLock;
CastSyncInfo() : m_nextTaskNumber(0) {}
inline int getNextTask()
{
m_taskLock.lock();
const int taskNr = m_nextTaskNumber++;
m_taskLock.unlock();
return taskNr;
}
};
#endif // __cplusplus >= 201103L
struct BatchRayCaster
{
b3ThreadPool* m_threadPool;
CastSyncInfo* m_syncInfo;
const btCollisionWorld* m_world;
const b3RayData* m_rayInputBuffer;
b3RayHitInfo* m_hitInfoOutputBuffer;
int m_numRays;
BatchRayCaster(b3ThreadPool* threadPool, const btCollisionWorld* world, const b3RayData* rayInputBuffer, b3RayHitInfo* hitInfoOutputBuffer, int numRays)
: m_threadPool(threadPool), m_world(world), m_rayInputBuffer(rayInputBuffer), m_hitInfoOutputBuffer(hitInfoOutputBuffer), m_numRays(numRays)
{
m_syncInfo = new CastSyncInfo;
}
~BatchRayCaster()
{
delete m_syncInfo;
}
void castRays(int numWorkers)
{
#if BT_THREADSAFE
if (numWorkers <= 1)
{
castSequentially();
}
else
{
{
BT_PROFILE("BatchRayCaster_startingWorkerThreads");
int numTasks = btMin(m_threadPool->numWorkers(), numWorkers - 1);
for (int i = 0; i < numTasks; i++)
{
m_threadPool->runTask(i, BatchRayCaster::rayCastWorker, this);
}
}
rayCastWorker(this);
m_threadPool->waitForAllTasks();
}
#else // BT_THREADSAFE
castSequentially();
#endif // BT_THREADSAFE
}
static void rayCastWorker(void* arg)
{
BT_PROFILE("BatchRayCaster_raycastWorker");
BatchRayCaster* const obj = (BatchRayCaster*)arg;
const int numRays = obj->m_numRays;
int taskNr;
while (true)
{
{
BT_PROFILE("CastSyncInfo_getNextTask");
taskNr = obj->m_syncInfo->getNextTask();
}
if (taskNr >= numRays)
return;
obj->processRay(taskNr);
}
}
void castSequentially()
{
for (int i = 0; i < m_numRays; i++)
{
processRay(i);
}
}
void processRay(int ray)
{
BT_PROFILE("BatchRayCaster_processRay");
const double* from = m_rayInputBuffer[ray].m_rayFromPosition;
const double* to = m_rayInputBuffer[ray].m_rayToPosition;
btVector3 rayFromWorld(from[0], from[1], from[2]);
btVector3 rayToWorld(to[0], to[1], to[2]);
btCollisionWorld::ClosestRayResultCallback rayResultCallback(rayFromWorld, rayToWorld);
rayResultCallback.m_flags |= btTriangleRaycastCallback::kF_UseGjkConvexCastRaytest;
m_world->rayTest(rayFromWorld, rayToWorld, rayResultCallback);
b3RayHitInfo& hit = m_hitInfoOutputBuffer[ray];
if (rayResultCallback.hasHit())
{
hit.m_hitFraction = rayResultCallback.m_closestHitFraction;
int objectUniqueId = -1;
int linkIndex = -1;
const btRigidBody* body = btRigidBody::upcast(rayResultCallback.m_collisionObject);
if (body)
{
objectUniqueId = rayResultCallback.m_collisionObject->getUserIndex2();
}
else
{
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(rayResultCallback.m_collisionObject);
if (mblB && mblB->m_multiBody)
{
linkIndex = mblB->m_link;
objectUniqueId = mblB->m_multiBody->getUserIndex2();
}
}
hit.m_hitObjectUniqueId = objectUniqueId;
hit.m_hitObjectLinkIndex = linkIndex;
hit.m_hitPositionWorld[0] = rayResultCallback.m_hitPointWorld[0];
hit.m_hitPositionWorld[1] = rayResultCallback.m_hitPointWorld[1];
hit.m_hitPositionWorld[2] = rayResultCallback.m_hitPointWorld[2];
hit.m_hitNormalWorld[0] = rayResultCallback.m_hitNormalWorld[0];
hit.m_hitNormalWorld[1] = rayResultCallback.m_hitNormalWorld[1];
hit.m_hitNormalWorld[2] = rayResultCallback.m_hitNormalWorld[2];
}
else
{
hit.m_hitFraction = 1;
hit.m_hitObjectUniqueId = -1;
hit.m_hitObjectLinkIndex = -1;
hit.m_hitPositionWorld[0] = 0;
hit.m_hitPositionWorld[1] = 0;
hit.m_hitPositionWorld[2] = 0;
hit.m_hitNormalWorld[0] = 0;
hit.m_hitNormalWorld[1] = 0;
hit.m_hitNormalWorld[2] = 0;
}
}
};
void PhysicsServerCommandProcessor::createThreadPool()
{
#ifdef BT_THREADSAFE
if (m_data->m_threadPool == 0)
{
m_data->m_threadPool = new b3ThreadPool("PhysicsServerCommandProcessorThreadPool");
}
#endif //BT_THREADSAFE
}
bool PhysicsServerCommandProcessor::processRequestRaycastIntersectionsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_RAY_CAST_INTERSECTIONS");
serverStatusOut.m_raycastHits.m_numRaycastHits = 0;
const int numCommandRays = clientCmd.m_requestRaycastIntersections.m_numCommandRays;
const int numStreamingRays = clientCmd.m_requestRaycastIntersections.m_numStreamingRays;
const int totalRays = numCommandRays + numStreamingRays;
int numThreads = clientCmd.m_requestRaycastIntersections.m_numThreads;
if (numThreads == 0)
{
// When 0 is specified, Bullet can decide how many threads to use.
// About 16 rays per thread seems to work reasonably well.
numThreads = btMax(1, totalRays / 16);
}
if (numThreads > 1)
{
createThreadPool();
}
btAlignedObjectArray<b3RayData> rays;
rays.resize(totalRays);
if (numCommandRays)
{
memcpy(&rays[0], &clientCmd.m_requestRaycastIntersections.m_fromToRays[0], numCommandRays * sizeof(b3RayData));
}
if (numStreamingRays)
{
memcpy(&rays[numCommandRays], bufferServerToClient, numStreamingRays * sizeof(b3RayData));
}
if (clientCmd.m_requestRaycastIntersections.m_parentObjectUniqueId >= 0)
{
btTransform tr;
tr.setIdentity();
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_requestRaycastIntersections.m_parentObjectUniqueId);
if (bodyHandle)
{
int linkIndex = -1;
if (bodyHandle->m_multiBody)
{
int linkIndex = clientCmd.m_requestRaycastIntersections.m_parentLinkIndex;
if (linkIndex == -1)
{
tr = bodyHandle->m_multiBody->getBaseWorldTransform();
}
else
{
if (linkIndex >= 0 && linkIndex < bodyHandle->m_multiBody->getNumLinks())
{
tr = bodyHandle->m_multiBody->getLink(linkIndex).m_cachedWorldTransform;
}
}
}
if (bodyHandle->m_rigidBody)
{
tr = bodyHandle->m_rigidBody->getWorldTransform();
}
//convert all rays into world space
for (int i = 0; i < totalRays; i++)
{
btVector3 localPosTo(rays[i].m_rayToPosition[0], rays[i].m_rayToPosition[1], rays[i].m_rayToPosition[2]);
btVector3 worldPosTo = tr * localPosTo;
btVector3 localPosFrom(rays[i].m_rayFromPosition[0], rays[i].m_rayFromPosition[1], rays[i].m_rayFromPosition[2]);
btVector3 worldPosFrom = tr * localPosFrom;
rays[i].m_rayFromPosition[0] = worldPosFrom[0];
rays[i].m_rayFromPosition[1] = worldPosFrom[1];
rays[i].m_rayFromPosition[2] = worldPosFrom[2];
rays[i].m_rayToPosition[0] = worldPosTo[0];
rays[i].m_rayToPosition[1] = worldPosTo[1];
rays[i].m_rayToPosition[2] = worldPosTo[2];
}
}
}
BatchRayCaster batchRayCaster(m_data->m_threadPool, m_data->m_dynamicsWorld, &rays[0], (b3RayHitInfo*)bufferServerToClient, totalRays);
batchRayCaster.castRays(numThreads);
serverStatusOut.m_raycastHits.m_numRaycastHits = totalRays;
serverStatusOut.m_type = CMD_REQUEST_RAY_CAST_INTERSECTIONS_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestDebugLinesCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_DEBUG_LINES");
int curFlags = m_data->m_remoteDebugDrawer->getDebugMode();
int debugMode = clientCmd.m_requestDebugLinesArguments.m_debugMode; //clientCmd.btIDebugDraw::DBG_DrawWireframe|btIDebugDraw::DBG_DrawAabb;
int startingLineIndex = clientCmd.m_requestDebugLinesArguments.m_startingLineIndex;
if (startingLineIndex < 0)
{
b3Warning("startingLineIndex should be non-negative");
startingLineIndex = 0;
}
if (clientCmd.m_requestDebugLinesArguments.m_startingLineIndex == 0)
{
m_data->m_remoteDebugDrawer->m_lines2.resize(0);
//|btIDebugDraw::DBG_DrawAabb|
// btIDebugDraw::DBG_DrawConstraints |btIDebugDraw::DBG_DrawConstraintLimits ;
m_data->m_remoteDebugDrawer->setDebugMode(debugMode);
btIDebugDraw* oldDebugDrawer = m_data->m_dynamicsWorld->getDebugDrawer();
m_data->m_dynamicsWorld->setDebugDrawer(m_data->m_remoteDebugDrawer);
m_data->m_dynamicsWorld->debugDrawWorld();
m_data->m_dynamicsWorld->setDebugDrawer(oldDebugDrawer);
m_data->m_remoteDebugDrawer->setDebugMode(curFlags);
}
//9 floats per line: 3 floats for 'from', 3 floats for 'to' and 3 floats for 'color'
int bytesPerLine = (sizeof(float) * 9);
int maxNumLines = bufferSizeInBytes / bytesPerLine - 1;
if (startingLineIndex > m_data->m_remoteDebugDrawer->m_lines2.size())
{
b3Warning("m_startingLineIndex exceeds total number of debug lines");
startingLineIndex = m_data->m_remoteDebugDrawer->m_lines2.size();
}
int numLines = btMin(maxNumLines, m_data->m_remoteDebugDrawer->m_lines2.size() - startingLineIndex);
if (numLines)
{
float* linesFrom = (float*)bufferServerToClient;
float* linesTo = (float*)(bufferServerToClient + numLines * 3 * sizeof(float));
float* linesColor = (float*)(bufferServerToClient + 2 * numLines * 3 * sizeof(float));
for (int i = 0; i < numLines; i++)
{
linesFrom[i * 3] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_from.x();
linesTo[i * 3] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_to.x();
linesColor[i * 3] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_color.x();
linesFrom[i * 3 + 1] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_from.y();
linesTo[i * 3 + 1] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_to.y();
linesColor[i * 3 + 1] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_color.y();
linesFrom[i * 3 + 2] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_from.z();
linesTo[i * 3 + 2] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_to.z();
linesColor[i * 3 + 2] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_color.z();
}
}
serverStatusOut.m_type = CMD_DEBUG_LINES_COMPLETED;
serverStatusOut.m_numDataStreamBytes = numLines * bytesPerLine;
serverStatusOut.m_sendDebugLinesArgs.m_numDebugLines = numLines;
serverStatusOut.m_sendDebugLinesArgs.m_startingLineIndex = startingLineIndex;
serverStatusOut.m_sendDebugLinesArgs.m_numRemainingDebugLines = m_data->m_remoteDebugDrawer->m_lines2.size() - (startingLineIndex + numLines);
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSyncBodyInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SYNC_BODY_INFO");
b3AlignedObjectArray<int> usedHandles;
m_data->m_bodyHandles.getUsedHandles(usedHandles);
int actualNumBodies = 0;
int* bodyUids = (int*)bufferServerToClient;
for (int i = 0; i < usedHandles.size(); i++)
{
int usedHandle = usedHandles[i];
InternalBodyData* body = m_data->m_bodyHandles.getHandle(usedHandle);
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
if (body && (body->m_multiBody || body->m_rigidBody || body->m_softBody))
#else
if (body && (body->m_multiBody || body->m_rigidBody))
#endif
{
bodyUids[actualNumBodies++] = usedHandle;
}
}
serverStatusOut.m_sdfLoadedArgs.m_numBodies = actualNumBodies;
int usz = m_data->m_userConstraints.size();
int* constraintUid = bodyUids + actualNumBodies;
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = usz;
for (int i = 0; i < usz; i++)
{
int key = m_data->m_userConstraints.getKeyAtIndex(i).getUid1();
constraintUid[i] = key;
}
serverStatusOut.m_type = CMD_SYNC_BODY_INFO_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSyncUserDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SYNC_USER_DATA");
b3AlignedObjectArray<int> userDataHandles;
m_data->m_userDataHandles.getUsedHandles(userDataHandles);
if (userDataHandles.size())
{
memcpy(bufferServerToClient, &userDataHandles[0], sizeof(int) * userDataHandles.size());
}
serverStatusOut.m_syncUserDataArgs.m_numUserDataIdentifiers = userDataHandles.size();
serverStatusOut.m_type = CMD_SYNC_USER_DATA_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestUserDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_USER_DATA");
serverStatusOut.m_type = CMD_REQUEST_USER_DATA_FAILED;
SharedMemoryUserData* userData = m_data->m_userDataHandles.getHandle(clientCmd.m_userDataRequestArgs.m_userDataId);
if (!userData)
{
return hasStatus;
}
btAssert(bufferSizeInBytes >= userData->m_bytes.size());
serverStatusOut.m_userDataResponseArgs.m_userDataId = clientCmd.m_userDataRequestArgs.m_userDataId;
serverStatusOut.m_userDataResponseArgs.m_bodyUniqueId = userData->m_bodyUniqueId;
serverStatusOut.m_userDataResponseArgs.m_linkIndex = userData->m_linkIndex;
serverStatusOut.m_userDataResponseArgs.m_visualShapeIndex = userData->m_visualShapeIndex;
serverStatusOut.m_userDataResponseArgs.m_valueType = userData->m_type;
serverStatusOut.m_userDataResponseArgs.m_valueLength = userData->m_bytes.size();
serverStatusOut.m_type = CMD_REQUEST_USER_DATA_COMPLETED;
strcpy(serverStatusOut.m_userDataResponseArgs.m_key, userData->m_key.c_str());
if (userData->m_bytes.size())
{
memcpy(bufferServerToClient, &userData->m_bytes[0], userData->m_bytes.size());
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processAddUserDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_ADD_USER_DATA");
serverStatusOut.m_type = CMD_ADD_USER_DATA_FAILED;
const AddUserDataRequestArgs& addUserDataArgs = clientCmd.m_addUserDataRequestArgs;
if (addUserDataArgs.m_bodyUniqueId < 0 || addUserDataArgs.m_bodyUniqueId >= m_data->m_bodyHandles.getNumHandles())
{
return hasStatus;
}
int userDataHandle = addUserData(
addUserDataArgs.m_bodyUniqueId, addUserDataArgs.m_linkIndex,
addUserDataArgs.m_visualShapeIndex, addUserDataArgs.m_key,
bufferServerToClient, addUserDataArgs.m_valueLength,
addUserDataArgs.m_valueType);
if (userDataHandle < 0) {
return hasStatus;
}
serverStatusOut.m_type = CMD_ADD_USER_DATA_COMPLETED;
UserDataResponseArgs& userDataResponseArgs = serverStatusOut.m_userDataResponseArgs;
userDataResponseArgs.m_userDataId = userDataHandle;
userDataResponseArgs.m_bodyUniqueId = addUserDataArgs.m_bodyUniqueId;
userDataResponseArgs.m_linkIndex = addUserDataArgs.m_linkIndex;
userDataResponseArgs.m_visualShapeIndex = addUserDataArgs.m_visualShapeIndex;
userDataResponseArgs.m_valueLength = addUserDataArgs.m_valueLength;
userDataResponseArgs.m_valueType = addUserDataArgs.m_valueType;
strcpy(userDataResponseArgs.m_key, addUserDataArgs.m_key);
b3Notification notification;
notification.m_notificationType = USER_DATA_ADDED;
b3UserDataNotificationArgs& userDataArgs = notification.m_userDataArgs;
userDataArgs.m_userDataId = userDataHandle;
userDataArgs.m_bodyUniqueId = addUserDataArgs.m_bodyUniqueId;
userDataArgs.m_linkIndex = addUserDataArgs.m_linkIndex;
userDataArgs.m_visualShapeIndex = addUserDataArgs.m_visualShapeIndex;
strcpy(userDataArgs.m_key, addUserDataArgs.m_key);
m_data->m_pluginManager.addNotification(notification);
// Keep bufferServerToClient as-is.
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCollisionFilterCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
b3PluginCollisionInterface* collisionInterface = m_data->m_pluginManager.getCollisionInterface();
if (collisionInterface)
{
if (clientCmd.m_updateFlags & B3_COLLISION_FILTER_PAIR)
{
collisionInterface->setBroadphaseCollisionFilter(clientCmd.m_collisionFilterArgs.m_bodyUniqueIdA,
clientCmd.m_collisionFilterArgs.m_bodyUniqueIdB,
clientCmd.m_collisionFilterArgs.m_linkIndexA,
clientCmd.m_collisionFilterArgs.m_linkIndexB,
clientCmd.m_collisionFilterArgs.m_enableCollision);
btAlignedObjectArray<InternalBodyData*> bodies;
//now also 'refresh' the broadphase collision pairs involved
if (clientCmd.m_collisionFilterArgs.m_bodyUniqueIdA >= 0)
{
bodies.push_back(m_data->m_bodyHandles.getHandle(clientCmd.m_collisionFilterArgs.m_bodyUniqueIdA));
}
if (clientCmd.m_collisionFilterArgs.m_bodyUniqueIdB >= 0)
{
bodies.push_back(m_data->m_bodyHandles.getHandle(clientCmd.m_collisionFilterArgs.m_bodyUniqueIdB));
}
for (int i = 0; i < bodies.size(); i++)
{
InternalBodyData* body = bodies[i];
if (body)
{
if (body->m_multiBody)
{
if (body->m_multiBody->getBaseCollider())
{
m_data->m_dynamicsWorld->refreshBroadphaseProxy(body->m_multiBody->getBaseCollider());
}
for (int i = 0; i < body->m_multiBody->getNumLinks(); i++)
{
if (body->m_multiBody->getLinkCollider(i))
{
m_data->m_dynamicsWorld->refreshBroadphaseProxy(body->m_multiBody->getLinkCollider(i));
}
}
}
else
{
//btRigidBody case
if (body->m_rigidBody)
{
m_data->m_dynamicsWorld->refreshBroadphaseProxy(body->m_rigidBody);
}
}
}
}
}
if (clientCmd.m_updateFlags & B3_COLLISION_FILTER_GROUP_MASK)
{
InternalBodyData* body = m_data->m_bodyHandles.getHandle(clientCmd.m_collisionFilterArgs.m_bodyUniqueIdA);
btCollisionObject* colObj = 0;
if (body->m_multiBody)
{
if (clientCmd.m_collisionFilterArgs.m_linkIndexA == -1)
{
colObj = body->m_multiBody->getBaseCollider();
}
else
{
if (clientCmd.m_collisionFilterArgs.m_linkIndexA >= 0 && clientCmd.m_collisionFilterArgs.m_linkIndexA < body->m_multiBody->getNumLinks())
{
colObj = body->m_multiBody->getLinkCollider(clientCmd.m_collisionFilterArgs.m_linkIndexA);
}
}
}
else
{
if (body->m_rigidBody)
{
colObj = body->m_rigidBody;
}
}
if (colObj)
{
colObj->getBroadphaseHandle()->m_collisionFilterGroup = clientCmd.m_collisionFilterArgs.m_collisionFilterGroup;
colObj->getBroadphaseHandle()->m_collisionFilterMask = clientCmd.m_collisionFilterArgs.m_collisionFilterMask;
m_data->m_dynamicsWorld->refreshBroadphaseProxy(colObj);
}
}
}
return true;
}
bool PhysicsServerCommandProcessor::processRemoveUserDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REMOVE_USER_DATA");
serverStatusOut.m_type = CMD_REMOVE_USER_DATA_FAILED;
SharedMemoryUserData* userData = m_data->m_userDataHandles.getHandle(clientCmd.m_removeUserDataRequestArgs.m_userDataId);
if (!userData)
{
return hasStatus;
}
InternalBodyData* body = m_data->m_bodyHandles.getHandle(userData->m_bodyUniqueId);
if (!body)
{
return hasStatus;
}
body->m_userDataHandles.remove(clientCmd.m_removeUserDataRequestArgs.m_userDataId);
b3Notification notification;
notification.m_notificationType = USER_DATA_REMOVED;
b3UserDataNotificationArgs& userDataArgs = notification.m_userDataArgs;
userDataArgs.m_userDataId = clientCmd.m_removeUserDataRequestArgs.m_userDataId;
userDataArgs.m_bodyUniqueId = userData->m_bodyUniqueId;
userDataArgs.m_linkIndex = userData->m_linkIndex;
userDataArgs.m_visualShapeIndex = userData->m_visualShapeIndex;
strcpy(userDataArgs.m_key, userData->m_key.c_str());
m_data->m_userDataHandleLookup.remove(SharedMemoryUserDataHashKey(userData));
m_data->m_userDataHandles.freeHandle(clientCmd.m_removeUserDataRequestArgs.m_userDataId);
serverStatusOut.m_removeUserDataResponseArgs = clientCmd.m_removeUserDataRequestArgs;
serverStatusOut.m_type = CMD_REMOVE_USER_DATA_COMPLETED;
m_data->m_pluginManager.addNotification(notification);
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSendDesiredStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SEND_DESIRED_STATE");
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_SEND_DESIRED_STATE");
}
int bodyUniqueId = clientCmd.m_sendDesiredStateCommandArgument.m_bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btAssert(mb);
switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
case CONTROL_MODE_PD:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_PD");
}
b3PluginArguments args;
args.m_ints[1] = bodyUniqueId;
//find the joint motors and apply the desired velocity and maximum force/torque
{
args.m_numInts = 0;
args.m_numFloats = 0;
//syncBodies is expensive/slow, use it only once
m_data->m_pluginManager.executePluginCommand(m_data->m_pdControlPlugin, &args);
int velIndex = 6; //skip the 3 linear + 3 angular degree of freedom velocity entries of the base
int posIndex = 7; //skip 3 positional and 4 orientation (quaternion) positional degrees of freedom of the base
for (int link = 0; link < mb->getNumLinks(); link++)
{
if (supportsJointMotor(mb, link))
{
bool hasDesiredPosOrVel = false;
btScalar desiredVelocity = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT) != 0)
{
hasDesiredPosOrVel = true;
desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex];
args.m_floats[2] = 0.1; // kd
}
btScalar desiredPosition = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q) != 0)
{
hasDesiredPosOrVel = true;
desiredPosition = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex];
args.m_floats[3] = 0.1; // kp
}
if (hasDesiredPosOrVel)
{
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KP) != 0)
{
args.m_floats[3] = clientCmd.m_sendDesiredStateCommandArgument.m_Kp[velIndex];
}
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KD) != 0)
{
args.m_floats[2] = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[velIndex];
}
args.m_floats[1] = desiredVelocity;
//clamp position
if (mb->getLink(link).m_jointLowerLimit <= mb->getLink(link).m_jointUpperLimit)
{
btClamp(desiredPosition, mb->getLink(link).m_jointLowerLimit, mb->getLink(link).m_jointUpperLimit);
}
args.m_floats[0] = desiredPosition;
btScalar maxImp = 1000000.f;
if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0)
maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex];
args.m_floats[4] = maxImp;
args.m_ints[2] = link;
args.m_numInts = 3;
args.m_numFloats = 5;
args.m_ints[0] = eSetPDControl;
if (args.m_floats[4] < B3_EPSILON)
{
args.m_ints[0] = eRemovePDControl;
}
m_data->m_pluginManager.executePluginCommand(m_data->m_pdControlPlugin, &args);
}
}
velIndex += mb->getLink(link).m_dofCount;
posIndex += mb->getLink(link).m_posVarCount;
}
}
break;
}
case CONTROL_MODE_TORQUE:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_TORQUE");
}
// mb->clearForcesAndTorques();
int torqueIndex = 6;
if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0)
{
for (int link = 0; link < mb->getNumLinks(); link++)
{
for (int dof = 0; dof < mb->getLink(link).m_dofCount; dof++)
{
double torque = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[torqueIndex] & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0)
{
torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[torqueIndex];
mb->addJointTorqueMultiDof(link, dof, torque);
}
torqueIndex++;
}
}
}
break;
}
case CONTROL_MODE_VELOCITY:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_VELOCITY");
}
int numMotors = 0;
//find the joint motors and apply the desired velocity and maximum force/torque
{
int dofIndex = 6; //skip the 3 linear + 3 angular degree of freedom entries of the base
for (int link = 0; link < mb->getNumLinks(); link++)
{
if (supportsJointMotor(mb, link))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr;
if (motor)
{
btScalar desiredVelocity = 0.f;
bool hasDesiredVelocity = false;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] & SIM_DESIRED_STATE_HAS_QDOT) != 0)
{
desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[dofIndex];
btScalar kd = 0.1f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] & SIM_DESIRED_STATE_HAS_KD) != 0)
{
kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[dofIndex];
}
motor->setVelocityTarget(desiredVelocity, kd);
btScalar kp = 0.f;
motor->setPositionTarget(0, kp);
hasDesiredVelocity = true;
}
if (hasDesiredVelocity)
{
//disable velocity clamp in velocity mode
motor->setRhsClamp(SIMD_INFINITY);
btScalar maxImp = 1000000.f * m_data->m_physicsDeltaTime;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0)
{
maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex] * m_data->m_physicsDeltaTime;
}
motor->setMaxAppliedImpulse(maxImp);
}
numMotors++;
}
}
dofIndex += mb->getLink(link).m_dofCount;
}
}
break;
}
case CONTROL_MODE_POSITION_VELOCITY_PD:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_POSITION_VELOCITY_PD");
}
//compute the force base on PD control
int numMotors = 0;
//find the joint motors and apply the desired velocity and maximum force/torque
{
int velIndex = 6; //skip the 3 linear + 3 angular degree of freedom velocity entries of the base
int posIndex = 7; //skip 3 positional and 4 orientation (quaternion) positional degrees of freedom of the base
for (int link = 0; link < mb->getNumLinks(); link++)
{
if (supportsJointMotor(mb, link))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr;
if (motor)
{
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_RHS_CLAMP) != 0)
{
motor->setRhsClamp(clientCmd.m_sendDesiredStateCommandArgument.m_rhsClamp[velIndex]);
}
bool hasDesiredPosOrVel = false;
btScalar kp = 0.f;
btScalar kd = 0.f;
btScalar desiredVelocity = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT) != 0)
{
hasDesiredPosOrVel = true;
desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex];
kd = 0.1;
}
btScalar desiredPosition = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q) != 0)
{
hasDesiredPosOrVel = true;
desiredPosition = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex];
kp = 0.1;
}
if (hasDesiredPosOrVel)
{
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KP) != 0)
{
kp = clientCmd.m_sendDesiredStateCommandArgument.m_Kp[velIndex];
}
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KD) != 0)
{
kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[velIndex];
}
motor->setVelocityTarget(desiredVelocity, kd);
//todo: instead of clamping, combine the motor and limit
//and combine handling of limit force and motor force.
//clamp position
if (mb->getLink(link).m_jointLowerLimit <= mb->getLink(link).m_jointUpperLimit)
{
btClamp(desiredPosition, mb->getLink(link).m_jointLowerLimit, mb->getLink(link).m_jointUpperLimit);
}
motor->setPositionTarget(desiredPosition, kp);
btScalar maxImp = 1000000.f * m_data->m_physicsDeltaTime;
if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0)
maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex] * m_data->m_physicsDeltaTime;
motor->setMaxAppliedImpulse(maxImp);
}
numMotors++;
}
}
if (mb->getLink(link).m_jointType == btMultibodyLink::eSpherical)
{
btMultiBodySphericalJointMotor* motor = (btMultiBodySphericalJointMotor*)mb->getLink(link).m_userPtr;
if (motor)
{
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_RHS_CLAMP) != 0)
{
motor->setRhsClamp(clientCmd.m_sendDesiredStateCommandArgument.m_rhsClamp[velIndex]);
}
bool hasDesiredPosOrVel = false;
btScalar kp = 0.f;
btScalar kd = 0.f;
btVector3 desiredVelocity(0, 0, 0);
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT) != 0)
{
hasDesiredPosOrVel = true;
desiredVelocity.setValue(
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex + 0],
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex + 1],
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex + 2]);
kd = 0.1;
}
btQuaternion desiredPosition(0, 0, 0, 1);
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q) != 0)
{
hasDesiredPosOrVel = true;
desiredPosition.setValue(
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex + 0],
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex + 1],
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex + 2],
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex + 3]);
kp = 0.1;
}
if (hasDesiredPosOrVel)
{
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KP) != 0)
{
kp = clientCmd.m_sendDesiredStateCommandArgument.m_Kp[velIndex];
}
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KD) != 0)
{
kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[velIndex];
}
motor->setVelocityTarget(desiredVelocity, kd);
//todo: instead of clamping, combine the motor and limit
//and combine handling of limit force and motor force.
//clamp position
//if (mb->getLink(link).m_jointLowerLimit <= mb->getLink(link).m_jointUpperLimit)
//{
// btClamp(desiredPosition, mb->getLink(link).m_jointLowerLimit, mb->getLink(link).m_jointUpperLimit);
//}
motor->setPositionTarget(desiredPosition, kp);
btScalar maxImp = 1000000.f * m_data->m_physicsDeltaTime;
if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0)
maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex] * m_data->m_physicsDeltaTime;
motor->setMaxAppliedImpulse(maxImp);
}
numMotors++;
}
}
velIndex += mb->getLink(link).m_dofCount;
posIndex += mb->getLink(link).m_posVarCount;
}
}
break;
}
#ifdef STATIC_LINK_SPD_PLUGIN
case CONTROL_MODE_STABLE_PD:
{
int posVal = body->m_multiBody->getNumPosVars();
btAlignedObjectArray<double> zeroVel;
int dof = 7 + posVal;
zeroVel.resize(dof);
//clientCmd.m_sendDesiredStateCommandArgument.
//current positions and velocities
btAlignedObjectArray<double> jointPositionsQ;
btAlignedObjectArray<double> jointVelocitiesQdot;
btTransform baseTr = body->m_multiBody->getBaseWorldTransform();
#if 1
jointPositionsQ.push_back(baseTr.getOrigin()[0]);
jointPositionsQ.push_back(baseTr.getOrigin()[1]);
jointPositionsQ.push_back(baseTr.getOrigin()[2]);
jointPositionsQ.push_back(baseTr.getRotation()[0]);
jointPositionsQ.push_back(baseTr.getRotation()[1]);
jointPositionsQ.push_back(baseTr.getRotation()[2]);
jointPositionsQ.push_back(baseTr.getRotation()[3]);
jointVelocitiesQdot.push_back(body->m_multiBody->getBaseVel()[0]);
jointVelocitiesQdot.push_back(body->m_multiBody->getBaseVel()[1]);
jointVelocitiesQdot.push_back(body->m_multiBody->getBaseVel()[2]);
jointVelocitiesQdot.push_back(body->m_multiBody->getBaseOmega()[0]);
jointVelocitiesQdot.push_back(body->m_multiBody->getBaseOmega()[1]);
jointVelocitiesQdot.push_back(body->m_multiBody->getBaseOmega()[2]);
jointVelocitiesQdot.push_back(0);
#else
for (int i = 0; i < 7; i++)
{
jointPositionsQ.push_back(0);
jointVelocitiesQdot.push_back(0);
}
jointPositionsQ[6] = 1;
#endif
for (int i = 0; i < body->m_multiBody->getNumLinks(); i++)
{
switch (body->m_multiBody->getLink(i).m_jointType)
{
case btMultibodyLink::eSpherical:
{
btScalar* jointPos = body->m_multiBody->getJointPosMultiDof(i);
jointPositionsQ.push_back(jointPos[0]);
jointPositionsQ.push_back(jointPos[1]);
jointPositionsQ.push_back(jointPos[2]);
jointPositionsQ.push_back(jointPos[3]);
btScalar* jointVel = body->m_multiBody->getJointVelMultiDof(i);
jointVelocitiesQdot.push_back(jointVel[0]);
jointVelocitiesQdot.push_back(jointVel[1]);
jointVelocitiesQdot.push_back(jointVel[2]);
jointVelocitiesQdot.push_back(0);
break;
}
case btMultibodyLink::ePrismatic:
case btMultibodyLink::eRevolute:
{
btScalar* jointPos = body->m_multiBody->getJointPosMultiDof(i);
jointPositionsQ.push_back(jointPos[0]);
btScalar* jointVel = body->m_multiBody->getJointVelMultiDof(i);
jointVelocitiesQdot.push_back(jointVel[0]);
break;
}
case btMultibodyLink::eFixed:
{
//skip
break;
}
default:
{
b3Error("Unsupported joint type");
btAssert(0);
}
}
}
cRBDModel* rbdModel = 0;
{
BT_PROFILE("findOrCreateRBDModel");
rbdModel = m_data->findOrCreateRBDModel(body->m_multiBody, &jointPositionsQ[0], &jointVelocitiesQdot[0]);
}
if (rbdModel)
{
int num_dof = jointPositionsQ.size();
const Eigen::VectorXd& pose = rbdModel->GetPose();
const Eigen::VectorXd& vel = rbdModel->GetVel();
Eigen::Map<Eigen::VectorXd> mKp((double*)clientCmd.m_sendDesiredStateCommandArgument.m_Kp, num_dof);
Eigen::Map<Eigen::VectorXd> mKd((double*)clientCmd.m_sendDesiredStateCommandArgument.m_Kd, num_dof);
Eigen::Map<Eigen::VectorXd> maxForce((double*)clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque, num_dof);
Eigen::DiagonalMatrix<double, Eigen::Dynamic> Kp_mat = mKp.asDiagonal();
Eigen::DiagonalMatrix<double, Eigen::Dynamic> Kd_mat = mKd.asDiagonal();
Eigen::MatrixXd M = rbdModel->GetMassMat();
//rbdModel->UpdateBiasForce();
const Eigen::VectorXd& C = rbdModel->GetBiasForce();
M.diagonal() += m_data->m_physicsDeltaTime * mKd;
Eigen::VectorXd pose_inc;
const Eigen::MatrixXd& joint_mat = rbdModel->GetJointMat();
{
BT_PROFILE("cKinTree::VelToPoseDiff");
cKinTree::VelToPoseDiff(joint_mat, rbdModel->GetPose(), rbdModel->GetVel(), pose_inc);
}
//tar_pose needs to be reshuffled?
Eigen::VectorXd tar_pose, tar_vel;
{
BT_PROFILE("convertPose");
PhysicsServerCommandProcessorInternalData::convertPose(body->m_multiBody,
(double*)clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ,
(double*)clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot,
tar_pose, tar_vel);
}
pose_inc = pose + m_data->m_physicsDeltaTime * pose_inc;
{
BT_PROFILE("cKinTree::PostProcessPose");
cKinTree::PostProcessPose(joint_mat, pose_inc);
}
Eigen::VectorXd pose_err;
{
BT_PROFILE("cKinTree::CalcVel");
cKinTree::CalcVel(joint_mat, pose_inc, tar_pose, 1, pose_err);
}
for (int i = 0; i < 7; i++)
{
pose_err[i] = 0;
}
Eigen::VectorXd vel_err = tar_vel - vel;
Eigen::VectorXd acc;
{
BT_PROFILE("acc");
acc = Kp_mat * pose_err + Kd_mat * vel_err - C;
}
{
BT_PROFILE("M.ldlt().solve");
acc = M.ldlt().solve(acc);
}
Eigen::VectorXd out_tau = Eigen::VectorXd::Zero(num_dof);
out_tau += Kp_mat * pose_err + Kd_mat * (vel_err - m_data->m_physicsDeltaTime * acc);
//clamp the forces
out_tau = out_tau.cwiseMax(-maxForce);
out_tau = out_tau.cwiseMin(maxForce);
//apply the forces
int torqueIndex = 7;
for (int link = 0; link < mb->getNumLinks(); link++)
{
int dofCount = mb->getLink(link).m_dofCount;
int dofOffset = mb->getLink(link).m_dofOffset;
if (dofCount == 3)
{
for (int dof = 0; dof < 3; dof++)
{
double torque = out_tau[torqueIndex + dof];
mb->addJointTorqueMultiDof(link, dof, torque);
}
torqueIndex += 4;
}
if (dofCount == 1)
{
double torque = out_tau[torqueIndex];
mb->addJointTorqueMultiDof(link, 0, torque);
torqueIndex++;
}
}
}
break;
}
#endif
default:
{
b3Warning("m_controlMode not implemented yet");
break;
}
}
}
else
{
//support for non-btMultiBody, such as btRigidBody
if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
btAssert(rb);
//switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
//case CONTROL_MODE_TORQUE:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_TORQUE");
}
// mb->clearForcesAndTorques();
///see addJointInfoFromConstraint
int velIndex = 6;
int posIndex = 7;
//if ((clientCmd.m_updateFlags&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
for (int link = 0; link < body->m_rigidBodyJoints.size(); link++)
{
btGeneric6DofSpring2Constraint* con = body->m_rigidBodyJoints[link];
btVector3 linearLowerLimit;
btVector3 linearUpperLimit;
btVector3 angularLowerLimit;
btVector3 angularUpperLimit;
//for (int dof=0;dof<mb->getLink(link).m_dofCount;dof++)
{
{
int torqueIndex = velIndex;
double torque = 100;
bool hasDesiredTorque = false;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0)
{
torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex];
hasDesiredTorque = true;
}
bool hasDesiredPosOrVel = false;
btScalar qdotTarget = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT) != 0)
{
hasDesiredPosOrVel = true;
qdotTarget = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex];
}
btScalar qTarget = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q) != 0)
{
hasDesiredPosOrVel = true;
qTarget = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex];
}
con->getLinearLowerLimit(linearLowerLimit);
con->getLinearUpperLimit(linearUpperLimit);
con->getAngularLowerLimit(angularLowerLimit);
con->getAngularUpperLimit(angularUpperLimit);
if (linearLowerLimit.isZero() && linearUpperLimit.isZero() && angularLowerLimit.isZero() && angularUpperLimit.isZero())
{
//fixed, don't do anything
}
else
{
con->calculateTransforms();
if (linearLowerLimit.isZero() && linearUpperLimit.isZero())
{
//eRevoluteType;
btVector3 limitRange = angularLowerLimit.absolute() + angularUpperLimit.absolute();
int limitAxis = limitRange.maxAxis();
const btTransform& transA = con->getCalculatedTransformA();
const btTransform& transB = con->getCalculatedTransformB();
btVector3 axisA = transA.getBasis().getColumn(limitAxis);
btVector3 axisB = transB.getBasis().getColumn(limitAxis);
switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
case CONTROL_MODE_TORQUE:
{
if (hasDesiredTorque)
{
con->getRigidBodyA().applyTorque(torque * axisA);
con->getRigidBodyB().applyTorque(-torque * axisB);
}
break;
}
case CONTROL_MODE_VELOCITY:
{
if (hasDesiredPosOrVel)
{
con->enableMotor(3 + limitAxis, true);
con->setTargetVelocity(3 + limitAxis, qdotTarget);
con->setMaxMotorForce(3 + limitAxis, torque);
}
break;
}
case CONTROL_MODE_POSITION_VELOCITY_PD:
{
if (hasDesiredPosOrVel)
{
con->setServo(3 + limitAxis, true);
con->setServoTarget(3 + limitAxis, -qTarget);
//next one is the maximum velocity to reach target position.
//the maximum velocity is limited by maxMotorForce
con->setTargetVelocity(3 + limitAxis, 100);
con->setMaxMotorForce(3 + limitAxis, torque);
con->enableMotor(3 + limitAxis, true);
}
break;
}
default:
{
}
};
}
else
{
//ePrismaticType; @todo
btVector3 limitRange = linearLowerLimit.absolute() + linearUpperLimit.absolute();
int limitAxis = limitRange.maxAxis();
const btTransform& transA = con->getCalculatedTransformA();
const btTransform& transB = con->getCalculatedTransformB();
btVector3 axisA = transA.getBasis().getColumn(limitAxis);
btVector3 axisB = transB.getBasis().getColumn(limitAxis);
switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
case CONTROL_MODE_TORQUE:
{
con->getRigidBodyA().applyForce(-torque * axisA, btVector3(0, 0, 0));
con->getRigidBodyB().applyForce(torque * axisB, btVector3(0, 0, 0));
break;
}
case CONTROL_MODE_VELOCITY:
{
con->enableMotor(limitAxis, true);
con->setTargetVelocity(limitAxis, -qdotTarget);
con->setMaxMotorForce(limitAxis, torque);
break;
}
case CONTROL_MODE_POSITION_VELOCITY_PD:
{
con->setServo(limitAxis, true);
con->setServoTarget(limitAxis, qTarget);
//next one is the maximum velocity to reach target position.
//the maximum velocity is limited by maxMotorForce
con->setTargetVelocity(limitAxis, 100);
con->setMaxMotorForce(limitAxis, torque);
con->enableMotor(limitAxis, true);
break;
}
default:
{
}
};
}
}
} //fi
///see addJointInfoFromConstraint
velIndex++; //info.m_uIndex
posIndex++; //info.m_qIndex
}
}
} //fi
//break;
}
}
} //if (body && body->m_rigidBody)
}
serverStatusOut.m_type = CMD_DESIRED_STATE_RECEIVED_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestActualStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED;
BT_PROFILE("CMD_REQUEST_ACTUAL_STATE");
if (m_data->m_verboseOutput)
{
b3Printf("Sending the actual state (Q,U)");
}
int bodyUniqueId = clientCmd.m_requestActualStateInformationCommandArgument.m_bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
//we store the state details in the shared memory block, to reduce status size
SendActualStateSharedMemoryStorage* stateDetails = (SendActualStateSharedMemoryStorage*)bufferServerToClient;
//make sure the storage fits, otherwise
btAssert(sizeof(SendActualStateSharedMemoryStorage) < bufferSizeInBytes);
if (sizeof(SendActualStateSharedMemoryStorage) > bufferSizeInBytes)
{
//this forces an error report
body = 0;
}
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId;
serverCmd.m_sendActualStateArgs.m_numLinks = body->m_multiBody->getNumLinks();
serverCmd.m_numDataStreamBytes = sizeof(SendActualStateSharedMemoryStorage);
serverCmd.m_sendActualStateArgs.m_stateDetails = 0;
int totalDegreeOfFreedomQ = 0;
int totalDegreeOfFreedomU = 0;
if (mb->getNumLinks() >= MAX_DEGREE_OF_FREEDOM)
{
serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED;
hasStatus = true;
return hasStatus;
}
//always add the base, even for static (non-moving objects)
//so that we can easily move the 'fixed' base when needed
//do we don't use this conditional "if (!mb->hasFixedBase())"
{
btTransform tr;
tr.setOrigin(mb->getBasePos());
tr.setRotation(mb->getWorldToBaseRot().inverse());
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[0] =
body->m_rootLocalInertialFrame.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[1] =
body->m_rootLocalInertialFrame.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[2] =
body->m_rootLocalInertialFrame.getOrigin()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[3] =
body->m_rootLocalInertialFrame.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[4] =
body->m_rootLocalInertialFrame.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[5] =
body->m_rootLocalInertialFrame.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[6] =
body->m_rootLocalInertialFrame.getRotation()[3];
//base position in world space, cartesian
stateDetails->m_actualStateQ[0] = tr.getOrigin()[0];
stateDetails->m_actualStateQ[1] = tr.getOrigin()[1];
stateDetails->m_actualStateQ[2] = tr.getOrigin()[2];
//base orientation, quaternion x,y,z,w, in world space, cartesian
stateDetails->m_actualStateQ[3] = tr.getRotation()[0];
stateDetails->m_actualStateQ[4] = tr.getRotation()[1];
stateDetails->m_actualStateQ[5] = tr.getRotation()[2];
stateDetails->m_actualStateQ[6] = tr.getRotation()[3];
totalDegreeOfFreedomQ += 7; //pos + quaternion
//base linear velocity (in world space, cartesian)
stateDetails->m_actualStateQdot[0] = mb->getBaseVel()[0];
stateDetails->m_actualStateQdot[1] = mb->getBaseVel()[1];
stateDetails->m_actualStateQdot[2] = mb->getBaseVel()[2];
//base angular velocity (in world space, cartesian)
stateDetails->m_actualStateQdot[3] = mb->getBaseOmega()[0];
stateDetails->m_actualStateQdot[4] = mb->getBaseOmega()[1];
stateDetails->m_actualStateQdot[5] = mb->getBaseOmega()[2];
totalDegreeOfFreedomU += 6; //3 linear and 3 angular DOF
}
btAlignedObjectArray<btVector3> omega;
btAlignedObjectArray<btVector3> linVel;
bool computeForwardKinematics = ((clientCmd.m_updateFlags & ACTUAL_STATE_COMPUTE_FORWARD_KINEMATICS) != 0);
if (computeForwardKinematics)
{
B3_PROFILE("compForwardKinematics");
btAlignedObjectArray<btQuaternion> world_to_local;
btAlignedObjectArray<btVector3> local_origin;
world_to_local.resize(mb->getNumLinks() + 1);
local_origin.resize(mb->getNumLinks() + 1);
mb->forwardKinematics(world_to_local, local_origin);
}
bool computeLinkVelocities = ((clientCmd.m_updateFlags & ACTUAL_STATE_COMPUTE_LINKVELOCITY) != 0);
if (computeLinkVelocities)
{
omega.resize(mb->getNumLinks() + 1);
linVel.resize(mb->getNumLinks() + 1);
{
B3_PROFILE("compTreeLinkVelocities");
mb->compTreeLinkVelocities(&omega[0], &linVel[0]);
}
}
for (int l = 0; l < mb->getNumLinks(); l++)
{
for (int d = 0; d < mb->getLink(l).m_posVarCount; d++)
{
stateDetails->m_actualStateQ[totalDegreeOfFreedomQ++] = mb->getJointPosMultiDof(l)[d];
}
for (int d = 0; d < mb->getLink(l).m_dofCount; d++)
{
stateDetails->m_jointMotorForce[totalDegreeOfFreedomU] = 0;
if (mb->getLink(l).m_jointType == btMultibodyLink::eSpherical)
{
btMultiBodySphericalJointMotor* motor = (btMultiBodySphericalJointMotor*)mb->getLink(l).m_userPtr;
if (motor)
{
btScalar impulse = motor->getAppliedImpulse(d);
btScalar force = impulse / m_data->m_physicsDeltaTime;
stateDetails->m_jointMotorForceMultiDof[totalDegreeOfFreedomU] = force;
}
}
else
{
if (supportsJointMotor(mb, l))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)body->m_multiBody->getLink(l).m_userPtr;
if (motor && m_data->m_physicsDeltaTime > btScalar(0))
{
btScalar force = motor->getAppliedImpulse(0) / m_data->m_physicsDeltaTime;
stateDetails->m_jointMotorForceMultiDof[totalDegreeOfFreedomU] = force;
}
}
}
stateDetails->m_actualStateQdot[totalDegreeOfFreedomU++] = mb->getJointVelMultiDof(l)[d];
}
if (0 == mb->getLink(l).m_jointFeedback)
{
for (int d = 0; d < 6; d++)
{
stateDetails->m_jointReactionForces[l * 6 + d] = 0;
}
}
else
{
btVector3 sensedForce = mb->getLink(l).m_jointFeedback->m_reactionForces.getLinear();
btVector3 sensedTorque = mb->getLink(l).m_jointFeedback->m_reactionForces.getAngular();
stateDetails->m_jointReactionForces[l * 6 + 0] = sensedForce[0];
stateDetails->m_jointReactionForces[l * 6 + 1] = sensedForce[1];
stateDetails->m_jointReactionForces[l * 6 + 2] = sensedForce[2];
stateDetails->m_jointReactionForces[l * 6 + 3] = sensedTorque[0];
stateDetails->m_jointReactionForces[l * 6 + 4] = sensedTorque[1];
stateDetails->m_jointReactionForces[l * 6 + 5] = sensedTorque[2];
}
stateDetails->m_jointMotorForce[l] = 0;
if (supportsJointMotor(mb, l))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)body->m_multiBody->getLink(l).m_userPtr;
if (motor && m_data->m_physicsDeltaTime > btScalar(0))
{
btScalar force = motor->getAppliedImpulse(0) / m_data->m_physicsDeltaTime;
stateDetails->m_jointMotorForce[l] =
force;
//if (force>0)
//{
// b3Printf("force = %f\n", force);
//}
}
}
btVector3 linkLocalInertialOrigin = body->m_linkLocalInertialFrames[l].getOrigin();
btQuaternion linkLocalInertialRotation = body->m_linkLocalInertialFrames[l].getRotation();
btVector3 linkCOMOrigin = mb->getLink(l).m_cachedWorldTransform.getOrigin();
btQuaternion linkCOMRotation = mb->getLink(l).m_cachedWorldTransform.getRotation();
stateDetails->m_linkState[l * 7 + 0] = linkCOMOrigin.getX();
stateDetails->m_linkState[l * 7 + 1] = linkCOMOrigin.getY();
stateDetails->m_linkState[l * 7 + 2] = linkCOMOrigin.getZ();
stateDetails->m_linkState[l * 7 + 3] = linkCOMRotation.x();
stateDetails->m_linkState[l * 7 + 4] = linkCOMRotation.y();
stateDetails->m_linkState[l * 7 + 5] = linkCOMRotation.z();
stateDetails->m_linkState[l * 7 + 6] = linkCOMRotation.w();
btVector3 worldLinVel(0, 0, 0);
btVector3 worldAngVel(0, 0, 0);
if (computeLinkVelocities)
{
const btMatrix3x3& linkRotMat = mb->getLink(l).m_cachedWorldTransform.getBasis();
worldLinVel = linkRotMat * linVel[l + 1];
worldAngVel = linkRotMat * omega[l + 1];
}
stateDetails->m_linkWorldVelocities[l * 6 + 0] = worldLinVel[0];
stateDetails->m_linkWorldVelocities[l * 6 + 1] = worldLinVel[1];
stateDetails->m_linkWorldVelocities[l * 6 + 2] = worldLinVel[2];
stateDetails->m_linkWorldVelocities[l * 6 + 3] = worldAngVel[0];
stateDetails->m_linkWorldVelocities[l * 6 + 4] = worldAngVel[1];
stateDetails->m_linkWorldVelocities[l * 6 + 5] = worldAngVel[2];
stateDetails->m_linkLocalInertialFrames[l * 7 + 0] = linkLocalInertialOrigin.getX();
stateDetails->m_linkLocalInertialFrames[l * 7 + 1] = linkLocalInertialOrigin.getY();
stateDetails->m_linkLocalInertialFrames[l * 7 + 2] = linkLocalInertialOrigin.getZ();
stateDetails->m_linkLocalInertialFrames[l * 7 + 3] = linkLocalInertialRotation.x();
stateDetails->m_linkLocalInertialFrames[l * 7 + 4] = linkLocalInertialRotation.y();
stateDetails->m_linkLocalInertialFrames[l * 7 + 5] = linkLocalInertialRotation.z();
stateDetails->m_linkLocalInertialFrames[l * 7 + 6] = linkLocalInertialRotation.w();
}
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
hasStatus = true;
}
else if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId;
serverCmd.m_sendActualStateArgs.m_numLinks = 0;
serverCmd.m_numDataStreamBytes = sizeof(SendActualStateSharedMemoryStorage);
serverCmd.m_sendActualStateArgs.m_stateDetails = 0;
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[0] =
body->m_rootLocalInertialFrame.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[1] =
body->m_rootLocalInertialFrame.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[2] =
body->m_rootLocalInertialFrame.getOrigin()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[3] =
body->m_rootLocalInertialFrame.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[4] =
body->m_rootLocalInertialFrame.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[5] =
body->m_rootLocalInertialFrame.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[6] =
body->m_rootLocalInertialFrame.getRotation()[3];
btTransform tr = rb->getWorldTransform();
//base position in world space, cartesian
stateDetails->m_actualStateQ[0] = tr.getOrigin()[0];
stateDetails->m_actualStateQ[1] = tr.getOrigin()[1];
stateDetails->m_actualStateQ[2] = tr.getOrigin()[2];
//base orientation, quaternion x,y,z,w, in world space, cartesian
stateDetails->m_actualStateQ[3] = tr.getRotation()[0];
stateDetails->m_actualStateQ[4] = tr.getRotation()[1];
stateDetails->m_actualStateQ[5] = tr.getRotation()[2];
stateDetails->m_actualStateQ[6] = tr.getRotation()[3];
int totalDegreeOfFreedomQ = 7; //pos + quaternion
//base linear velocity (in world space, cartesian)
stateDetails->m_actualStateQdot[0] = rb->getLinearVelocity()[0];
stateDetails->m_actualStateQdot[1] = rb->getLinearVelocity()[1];
stateDetails->m_actualStateQdot[2] = rb->getLinearVelocity()[2];
//base angular velocity (in world space, cartesian)
stateDetails->m_actualStateQdot[3] = rb->getAngularVelocity()[0];
stateDetails->m_actualStateQdot[4] = rb->getAngularVelocity()[1];
stateDetails->m_actualStateQdot[5] = rb->getAngularVelocity()[2];
int totalDegreeOfFreedomU = 6; //3 linear and 3 angular DOF
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
hasStatus = true;
}
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
else if (body && body->m_softBody)
{
btSoftBody* sb = body->m_softBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId;
serverCmd.m_sendActualStateArgs.m_numLinks = 0;
serverCmd.m_numDataStreamBytes = sizeof(SendActualStateSharedMemoryStorage);
serverCmd.m_sendActualStateArgs.m_stateDetails = 0;
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[0] =
body->m_rootLocalInertialFrame.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[1] =
body->m_rootLocalInertialFrame.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[2] =
body->m_rootLocalInertialFrame.getOrigin()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[3] =
body->m_rootLocalInertialFrame.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[4] =
body->m_rootLocalInertialFrame.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[5] =
body->m_rootLocalInertialFrame.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[6] =
body->m_rootLocalInertialFrame.getRotation()[3];
btVector3 center_of_mass(sb->getCenterOfMass());
btTransform tr = sb->getWorldTransform();
//base position in world space, cartesian
stateDetails->m_actualStateQ[0] = center_of_mass[0];
stateDetails->m_actualStateQ[1] = center_of_mass[1];
stateDetails->m_actualStateQ[2] = center_of_mass[2];
//base orientation, quaternion x,y,z,w, in world space, cartesian
stateDetails->m_actualStateQ[3] = tr.getRotation()[0];
stateDetails->m_actualStateQ[4] = tr.getRotation()[1];
stateDetails->m_actualStateQ[5] = tr.getRotation()[2];
stateDetails->m_actualStateQ[6] = tr.getRotation()[3];
int totalDegreeOfFreedomQ = 7; //pos + quaternion
int totalDegreeOfFreedomU = 6; //3 linear and 3 angular DOF
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
hasStatus = true;
}
#endif
else
{
//b3Warning("Request state but no multibody or rigid body available");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED;
hasStatus = true;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestContactpointInformationCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_CONTACT_POINT_INFORMATION");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_sendContactPointArgs.m_numContactPointsCopied = 0;
//make a snapshot of the contact manifolds into individual contact points
if (clientCmd.m_requestContactPointArguments.m_startingContactPointIndex == 0)
{
m_data->m_cachedContactPoints.resize(0);
int mode = CONTACT_QUERY_MODE_REPORT_EXISTING_CONTACT_POINTS;
if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_QUERY_MODE)
{
mode = clientCmd.m_requestContactPointArguments.m_mode;
}
switch (mode)
{
case CONTACT_QUERY_MODE_REPORT_EXISTING_CONTACT_POINTS:
{
int numContactManifolds = m_data->m_dynamicsWorld->getDispatcher()->getNumManifolds();
m_data->m_cachedContactPoints.reserve(numContactManifolds * 4);
for (int i = 0; i < numContactManifolds; i++)
{
const btPersistentManifold* manifold = m_data->m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i];
int linkIndexA = -1;
int linkIndexB = -1;
int objectIndexB = -1;
const btRigidBody* bodyB = btRigidBody::upcast(manifold->getBody1());
if (bodyB)
{
objectIndexB = bodyB->getUserIndex2();
}
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
if (mblB && mblB->m_multiBody)
{
linkIndexB = mblB->m_link;
objectIndexB = mblB->m_multiBody->getUserIndex2();
}
int objectIndexA = -1;
const btRigidBody* bodyA = btRigidBody::upcast(manifold->getBody0());
if (bodyA)
{
objectIndexA = bodyA->getUserIndex2();
}
const btMultiBodyLinkCollider* mblA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
if (mblA && mblA->m_multiBody)
{
linkIndexA = mblA->m_link;
objectIndexA = mblA->m_multiBody->getUserIndex2();
}
btAssert(bodyA || mblA);
//apply the filter, if the user provides it
bool swap = false;
if (clientCmd.m_requestContactPointArguments.m_objectAIndexFilter >= 0)
{
if (clientCmd.m_requestContactPointArguments.m_objectAIndexFilter == objectIndexA)
{
swap = false;
}
else if (clientCmd.m_requestContactPointArguments.m_objectAIndexFilter == objectIndexB)
{
swap = true;
}
else
{
continue;
}
}
if (swap)
{
std::swap(objectIndexA, objectIndexB);
std::swap(linkIndexA, linkIndexB);
std::swap(bodyA, bodyB);
}
//apply the second object filter, if the user provides it
if (clientCmd.m_requestContactPointArguments.m_objectBIndexFilter >= 0)
{
if (clientCmd.m_requestContactPointArguments.m_objectBIndexFilter != objectIndexB)
{
continue;
}
}
if (
(clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_A_FILTER) &&
clientCmd.m_requestContactPointArguments.m_linkIndexAIndexFilter != linkIndexA)
{
continue;
}
if (
(clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_B_FILTER) &&
clientCmd.m_requestContactPointArguments.m_linkIndexBIndexFilter != linkIndexB)
{
continue;
}
for (int p = 0; p < manifold->getNumContacts(); p++)
{
b3ContactPointData pt;
pt.m_bodyUniqueIdA = objectIndexA;
pt.m_bodyUniqueIdB = objectIndexB;
const btManifoldPoint& srcPt = manifold->getContactPoint(p);
pt.m_contactDistance = srcPt.getDistance();
pt.m_contactFlags = 0;
pt.m_linkIndexA = linkIndexA;
pt.m_linkIndexB = linkIndexB;
for (int j = 0; j < 3; j++)
{
pt.m_contactNormalOnBInWS[j] = srcPt.m_normalWorldOnB[j];
pt.m_positionOnAInWS[j] = srcPt.getPositionWorldOnA()[j];
pt.m_positionOnBInWS[j] = srcPt.getPositionWorldOnB()[j];
}
pt.m_normalForce = srcPt.getAppliedImpulse() / m_data->m_physicsDeltaTime;
pt.m_linearFrictionForce1 = srcPt.m_appliedImpulseLateral1 / m_data->m_physicsDeltaTime;
pt.m_linearFrictionForce2 = srcPt.m_appliedImpulseLateral2 / m_data->m_physicsDeltaTime;
for (int j = 0; j < 3; j++)
{
pt.m_linearFrictionDirection1[j] = srcPt.m_lateralFrictionDir1[j];
pt.m_linearFrictionDirection2[j] = srcPt.m_lateralFrictionDir2[j];
}
m_data->m_cachedContactPoints.push_back(pt);
}
}
break;
}
case CONTACT_QUERY_MODE_COMPUTE_CLOSEST_POINTS:
{
//todo(erwincoumans) compute closest points between all, and vs all, pair
btScalar closestDistanceThreshold = 0.f;
if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_CLOSEST_DISTANCE_THRESHOLD)
{
closestDistanceThreshold = clientCmd.m_requestContactPointArguments.m_closestDistanceThreshold;
}
int bodyUniqueIdA = clientCmd.m_requestContactPointArguments.m_objectAIndexFilter;
int bodyUniqueIdB = clientCmd.m_requestContactPointArguments.m_objectBIndexFilter;
bool hasLinkIndexAFilter = (0 != (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_A_FILTER));
bool hasLinkIndexBFilter = (0 != (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_B_FILTER));
int linkIndexA = clientCmd.m_requestContactPointArguments.m_linkIndexAIndexFilter;
int linkIndexB = clientCmd.m_requestContactPointArguments.m_linkIndexBIndexFilter;
btAlignedObjectArray<btCollisionObject*> setA;
btAlignedObjectArray<btCollisionObject*> setB;
btAlignedObjectArray<int> setALinkIndex;
btAlignedObjectArray<int> setBLinkIndex;
btCollisionObject colObA;
btCollisionObject colObB;
int collisionShapeA = (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_A) ? clientCmd.m_requestContactPointArguments.m_collisionShapeA : -1;
int collisionShapeB = (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_B) ? clientCmd.m_requestContactPointArguments.m_collisionShapeB : -1;
if (collisionShapeA >= 0)
{
btVector3 posA(0, 0, 0);
if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_POSITION_A)
{
posA.setValue(clientCmd.m_requestContactPointArguments.m_collisionShapePositionA[0],
clientCmd.m_requestContactPointArguments.m_collisionShapePositionA[1],
clientCmd.m_requestContactPointArguments.m_collisionShapePositionA[2]);
}
btQuaternion ornA(0, 0, 0, 1);
if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_ORIENTATION_A)
{
ornA.setValue(clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationA[0],
clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationA[1],
clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationA[2],
clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationA[3]);
}
InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(collisionShapeA);
if (handle && handle->m_collisionShape)
{
colObA.setCollisionShape(handle->m_collisionShape);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posA);
tr.setRotation(ornA);
colObA.setWorldTransform(tr);
setA.push_back(&colObA);
setALinkIndex.push_back(-2);
}
else
{
b3Warning("collisionShapeA provided is not valid.");
}
}
if (collisionShapeB >= 0)
{
btVector3 posB(0, 0, 0);
if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_POSITION_B)
{
posB.setValue(clientCmd.m_requestContactPointArguments.m_collisionShapePositionB[0],
clientCmd.m_requestContactPointArguments.m_collisionShapePositionB[1],
clientCmd.m_requestContactPointArguments.m_collisionShapePositionB[2]);
}
btQuaternion ornB(0, 0, 0, 1);
if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_ORIENTATION_B)
{
ornB.setValue(clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationB[0],
clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationB[1],
clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationB[2],
clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationB[3]);
}
InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(collisionShapeB);
if (handle && handle->m_collisionShape)
{
colObB.setCollisionShape(handle->m_collisionShape);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posB);
tr.setRotation(ornB);
colObB.setWorldTransform(tr);
setB.push_back(&colObB);
setBLinkIndex.push_back(-2);
}
else
{
b3Warning("collisionShapeB provided is not valid.");
}
}
if (bodyUniqueIdA >= 0)
{
InternalBodyData* bodyA = m_data->m_bodyHandles.getHandle(bodyUniqueIdA);
if (bodyA)
{
if (bodyA->m_multiBody)
{
if (bodyA->m_multiBody->getBaseCollider())
{
if (!hasLinkIndexAFilter || (linkIndexA == -1))
{
setA.push_back(bodyA->m_multiBody->getBaseCollider());
setALinkIndex.push_back(-1);
}
}
for (int i = 0; i < bodyA->m_multiBody->getNumLinks(); i++)
{
if (bodyA->m_multiBody->getLink(i).m_collider)
{
if (!hasLinkIndexAFilter || (linkIndexA == i))
{
setA.push_back(bodyA->m_multiBody->getLink(i).m_collider);
setALinkIndex.push_back(i);
}
}
}
}
if (bodyA->m_rigidBody)
{
setA.push_back(bodyA->m_rigidBody);
setALinkIndex.push_back(-1);
}
}
}
if (bodyUniqueIdB >= 0)
{
InternalBodyData* bodyB = m_data->m_bodyHandles.getHandle(bodyUniqueIdB);
if (bodyB)
{
if (bodyB->m_multiBody)
{
if (bodyB->m_multiBody->getBaseCollider())
{
if (!hasLinkIndexBFilter || (linkIndexB == -1))
{
setB.push_back(bodyB->m_multiBody->getBaseCollider());
setBLinkIndex.push_back(-1);
}
}
for (int i = 0; i < bodyB->m_multiBody->getNumLinks(); i++)
{
if (bodyB->m_multiBody->getLink(i).m_collider)
{
if (!hasLinkIndexBFilter || (linkIndexB == i))
{
setB.push_back(bodyB->m_multiBody->getLink(i).m_collider);
setBLinkIndex.push_back(i);
}
}
}
}
if (bodyB->m_rigidBody)
{
setB.push_back(bodyB->m_rigidBody);
setBLinkIndex.push_back(-1);
}
}
}
{
///ContactResultCallback is used to report contact points
struct MyContactResultCallback : public btCollisionWorld::ContactResultCallback
{
int m_bodyUniqueIdA;
int m_bodyUniqueIdB;
int m_linkIndexA;
int m_linkIndexB;
btScalar m_deltaTime;
btAlignedObjectArray<b3ContactPointData>& m_cachedContactPoints;
MyContactResultCallback(btAlignedObjectArray<b3ContactPointData>& pointCache)
: m_cachedContactPoints(pointCache)
{
}
virtual ~MyContactResultCallback()
{
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
//bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
//collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
//return collides;
return true;
}
virtual btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
{
if (cp.m_distance1 <= m_closestDistanceThreshold)
{
b3ContactPointData pt;
pt.m_bodyUniqueIdA = m_bodyUniqueIdA;
pt.m_bodyUniqueIdB = m_bodyUniqueIdB;
const btManifoldPoint& srcPt = cp;
pt.m_contactDistance = srcPt.getDistance();
pt.m_contactFlags = 0;
pt.m_linkIndexA = m_linkIndexA;
pt.m_linkIndexB = m_linkIndexB;
for (int j = 0; j < 3; j++)
{
pt.m_contactNormalOnBInWS[j] = srcPt.m_normalWorldOnB[j];
pt.m_positionOnAInWS[j] = srcPt.getPositionWorldOnA()[j];
pt.m_positionOnBInWS[j] = srcPt.getPositionWorldOnB()[j];
}
pt.m_normalForce = srcPt.getAppliedImpulse() / m_deltaTime;
pt.m_linearFrictionForce1 = srcPt.m_appliedImpulseLateral1 / m_deltaTime;
pt.m_linearFrictionForce2 = srcPt.m_appliedImpulseLateral2 / m_deltaTime;
for (int j = 0; j < 3; j++)
{
pt.m_linearFrictionDirection1[j] = srcPt.m_lateralFrictionDir1[j];
pt.m_linearFrictionDirection2[j] = srcPt.m_lateralFrictionDir2[j];
}
m_cachedContactPoints.push_back(pt);
}
return 1;
}
};
MyContactResultCallback cb(m_data->m_cachedContactPoints);
cb.m_bodyUniqueIdA = bodyUniqueIdA;
cb.m_bodyUniqueIdB = bodyUniqueIdB;
cb.m_deltaTime = m_data->m_physicsDeltaTime;
for (int i = 0; i < setA.size(); i++)
{
cb.m_linkIndexA = setALinkIndex[i];
for (int j = 0; j < setB.size(); j++)
{
cb.m_linkIndexB = setBLinkIndex[j];
cb.m_closestDistanceThreshold = closestDistanceThreshold;
this->m_data->m_dynamicsWorld->contactPairTest(setA[i], setB[j], cb);
}
}
}
break;
}
default:
{
b3Warning("Unknown contact query mode: %d", mode);
}
}
}
int numContactPoints = m_data->m_cachedContactPoints.size();
//b3ContactPoint
//struct b3ContactPointDynamics
int totalBytesPerContact = sizeof(b3ContactPointData);
int contactPointStorage = bufferSizeInBytes / totalBytesPerContact - 1;
b3ContactPointData* contactData = (b3ContactPointData*)bufferServerToClient;
int startContactPointIndex = clientCmd.m_requestContactPointArguments.m_startingContactPointIndex;
int numContactPointBatch = btMin(numContactPoints, contactPointStorage);
int endContactPointIndex = startContactPointIndex + numContactPointBatch;
for (int i = startContactPointIndex; i < endContactPointIndex; i++)
{
const b3ContactPointData& srcPt = m_data->m_cachedContactPoints[i];
b3ContactPointData& destPt = contactData[serverCmd.m_sendContactPointArgs.m_numContactPointsCopied];
destPt = srcPt;
serverCmd.m_sendContactPointArgs.m_numContactPointsCopied++;
}
serverCmd.m_sendContactPointArgs.m_startingContactPointIndex = clientCmd.m_requestContactPointArguments.m_startingContactPointIndex;
serverCmd.m_sendContactPointArgs.m_numRemainingContactPoints = numContactPoints - clientCmd.m_requestContactPointArguments.m_startingContactPointIndex - serverCmd.m_sendContactPointArgs.m_numContactPointsCopied;
serverCmd.m_numDataStreamBytes = totalBytesPerContact * serverCmd.m_sendContactPointArgs.m_numContactPointsCopied;
serverCmd.m_type = CMD_CONTACT_POINT_INFORMATION_COMPLETED; //CMD_CONTACT_POINT_INFORMATION_FAILED,
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestBodyInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_BODY_INFO");
const SdfRequestInfoArgs& sdfInfoArgs = clientCmd.m_sdfRequestInfoArgs;
//stream info into memory
int streamSizeInBytes = createBodyInfoStream(sdfInfoArgs.m_bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
serverStatusOut.m_type = CMD_BODY_INFO_COMPLETED;
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = sdfInfoArgs.m_bodyUniqueId;
serverStatusOut.m_dataStreamArguments.m_bodyName[0] = 0;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(sdfInfoArgs.m_bodyUniqueId);
if (bodyHandle)
{
strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, bodyHandle->m_bodyName.c_str());
}
serverStatusOut.m_numDataStreamBytes = streamSizeInBytes;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadSDFCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_LOAD_SDF");
const SdfArgs& sdfArgs = clientCmd.m_sdfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_SDF:%s", sdfArgs.m_sdfFileName);
}
bool useMultiBody = (clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (sdfArgs.m_useMultiBody != 0) : true;
int flags = CUF_USE_SDF; //CUF_USE_URDF_INERTIA
btScalar globalScaling = 1.f;
if (clientCmd.m_updateFlags & URDF_ARGS_USE_GLOBAL_SCALING)
{
globalScaling = sdfArgs.m_globalScaling;
}
bool completedOk = loadSdf(sdfArgs.m_sdfFileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, globalScaling);
if (completedOk)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
//serverStatusOut.m_type = CMD_SDF_LOADING_FAILED;
serverStatusOut.m_sdfLoadedArgs.m_numBodies = m_data->m_sdfRecentLoadedBodies.size();
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0;
int maxBodies = btMin(MAX_SDF_BODIES, serverStatusOut.m_sdfLoadedArgs.m_numBodies);
for (int i = 0; i < maxBodies; i++)
{
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = m_data->m_sdfRecentLoadedBodies[i];
}
serverStatusOut.m_type = CMD_SDF_LOADING_COMPLETED;
}
else
{
serverStatusOut.m_type = CMD_SDF_LOADING_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateMultiBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
if (clientCmd.m_createMultiBodyArgs.m_numBatchObjects > 0)
{
//batch of objects, to speed up creation time
bool result = false;
SharedMemoryCommand clientCmd2 = clientCmd;
int baseLinkIndex = clientCmd.m_createMultiBodyArgs.m_baseLinkIndex;
double* basePositionAndOrientations = (double*)bufferServerToClient;
for (int i = 0; i < clientCmd2.m_createMultiBodyArgs.m_numBatchObjects; i++)
{
clientCmd2.m_createMultiBodyArgs.m_linkPositions[baseLinkIndex * 3 + 0] = basePositionAndOrientations[0 + i * 3];
clientCmd2.m_createMultiBodyArgs.m_linkPositions[baseLinkIndex * 3 + 1] = basePositionAndOrientations[1 + i * 3];
clientCmd2.m_createMultiBodyArgs.m_linkPositions[baseLinkIndex * 3 + 2] = basePositionAndOrientations[2 + i * 3];
if (i == (clientCmd2.m_createMultiBodyArgs.m_numBatchObjects - 1))
{
result = processCreateMultiBodyCommandSingle(clientCmd2, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
}
else
{
result = processCreateMultiBodyCommandSingle(clientCmd2, serverStatusOut, 0, 0);
}
}
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
return result;
}
return processCreateMultiBodyCommandSingle(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
}
bool PhysicsServerCommandProcessor::processCreateMultiBodyCommandSingle(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
BT_PROFILE("processCreateMultiBodyCommand2");
bool hasStatus = true;
serverStatusOut.m_type = CMD_CREATE_MULTI_BODY_FAILED;
if (clientCmd.m_createMultiBodyArgs.m_baseLinkIndex >= 0)
{
m_data->m_sdfRecentLoadedBodies.clear();
int flags = 0;
if (clientCmd.m_updateFlags & MULT_BODY_HAS_FLAGS)
{
flags = clientCmd.m_createMultiBodyArgs.m_flags;
}
ProgrammaticUrdfInterface u2b(clientCmd.m_createMultiBodyArgs, m_data, flags);
bool useMultiBody = true;
if (clientCmd.m_updateFlags & MULT_BODY_USE_MAXIMAL_COORDINATES)
{
useMultiBody = false;
}
bool ok = 0;
{
BT_PROFILE("processImportedObjects");
ok = processImportedObjects("memory", bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, u2b);
}
if (ok)
{
BT_PROFILE("post process");
int bodyUniqueId = -1;
if (m_data->m_sdfRecentLoadedBodies.size() == 1)
{
bodyUniqueId = m_data->m_sdfRecentLoadedBodies[0];
}
m_data->m_sdfRecentLoadedBodies.clear();
if (bodyUniqueId >= 0)
{
serverStatusOut.m_type = CMD_CREATE_MULTI_BODY_COMPLETED;
if (bufferSizeInBytes > 0 && serverStatusOut.m_numDataStreamBytes == 0)
{
{
BT_PROFILE("autogenerateGraphicsObjects");
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
}
BT_PROFILE("createBodyInfoStream");
int streamSizeInBytes = createBodyInfoStream(bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
serverStatusOut.m_numDataStreamBytes = streamSizeInBytes;
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, body->m_bodyName.c_str());
}
}
}
//ConvertURDF2Bullet(u2b,creation, rootTrans,m_data->m_dynamicsWorld,useMultiBody,u2b.getPathPrefix(),flags);
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadURDFCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_type = CMD_URDF_LOADING_FAILED;
BT_PROFILE("CMD_LOAD_URDF");
const UrdfArgs& urdfArgs = clientCmd.m_urdfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_URDF:%s", urdfArgs.m_urdfFileName);
}
btAssert((clientCmd.m_updateFlags & URDF_ARGS_FILE_NAME) != 0);
btAssert(urdfArgs.m_urdfFileName);
btVector3 initialPos(0, 0, 0);
btQuaternion initialOrn(0, 0, 0, 1);
if (clientCmd.m_updateFlags & URDF_ARGS_INITIAL_POSITION)
{
initialPos[0] = urdfArgs.m_initialPosition[0];
initialPos[1] = urdfArgs.m_initialPosition[1];
initialPos[2] = urdfArgs.m_initialPosition[2];
}
int urdfFlags = 0;
if (clientCmd.m_updateFlags & URDF_ARGS_HAS_CUSTOM_URDF_FLAGS)
{
urdfFlags = urdfArgs.m_urdfFlags;
}
if (clientCmd.m_updateFlags & URDF_ARGS_INITIAL_ORIENTATION)
{
initialOrn[0] = urdfArgs.m_initialOrientation[0];
initialOrn[1] = urdfArgs.m_initialOrientation[1];
initialOrn[2] = urdfArgs.m_initialOrientation[2];
initialOrn[3] = urdfArgs.m_initialOrientation[3];
}
bool useMultiBody = (clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (urdfArgs.m_useMultiBody != 0) : true;
bool useFixedBase = (clientCmd.m_updateFlags & URDF_ARGS_USE_FIXED_BASE) ? (urdfArgs.m_useFixedBase != 0) : false;
int bodyUniqueId;
btScalar globalScaling = 1.f;
if (clientCmd.m_updateFlags & URDF_ARGS_USE_GLOBAL_SCALING)
{
globalScaling = urdfArgs.m_globalScaling;
}
//load the actual URDF and send a report: completed or failed
bool completedOk = loadUrdf(urdfArgs.m_urdfFileName,
initialPos, initialOrn,
useMultiBody, useFixedBase, &bodyUniqueId, bufferServerToClient, bufferSizeInBytes, urdfFlags, globalScaling);
if (completedOk && bodyUniqueId >= 0)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
serverStatusOut.m_type = CMD_URDF_LOADING_COMPLETED;
int streamSizeInBytes = createBodyInfoStream(bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
serverStatusOut.m_numDataStreamBytes = streamSizeInBytes;
#ifdef ENABLE_LINK_MAPPER
if (m_data->m_urdfLinkNameMapper.size())
{
serverStatusOut.m_numDataStreamBytes = m_data->m_urdfLinkNameMapper.at(m_data->m_urdfLinkNameMapper.size() - 1)->m_memSerializer->getCurrentBufferSize();
}
#endif
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, body->m_bodyName.c_str());
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadSoftBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
serverStatusOut.m_type = CMD_LOAD_SOFT_BODY_FAILED;
bool hasStatus = true;
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
double scale = 1;
double mass = 1;
double collisionMargin = 0.02;
const LoadSoftBodyArgs& loadSoftBodyArgs = clientCmd.m_loadSoftBodyArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_SOFT_BODY:%s", loadSoftBodyArgs.m_fileName);
}
btAssert((clientCmd.m_updateFlags & LOAD_SOFT_BODY_FILE_NAME) != 0);
btAssert(loadSoftBodyArgs.m_fileName);
btVector3 initialPos(0, 0, 0);
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_INITIAL_POSITION)
{
initialPos[0] = loadSoftBodyArgs.m_initialPosition[0];
initialPos[1] = loadSoftBodyArgs.m_initialPosition[1];
initialPos[2] = loadSoftBodyArgs.m_initialPosition[2];
}
btQuaternion initialOrn(0, 0, 0, 1);
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_INITIAL_ORIENTATION)
{
initialOrn[0] = loadSoftBodyArgs.m_initialOrientation[0];
initialOrn[1] = loadSoftBodyArgs.m_initialOrientation[1];
initialOrn[2] = loadSoftBodyArgs.m_initialOrientation[2];
initialOrn[3] = loadSoftBodyArgs.m_initialOrientation[3];
}
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_UPDATE_SCALE)
{
scale = clientCmd.m_loadSoftBodyArguments.m_scale;
}
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_UPDATE_MASS)
{
mass = clientCmd.m_loadSoftBodyArguments.m_mass;
}
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_UPDATE_COLLISION_MARGIN)
{
collisionMargin = clientCmd.m_loadSoftBodyArguments.m_collisionMargin;
}
btScalar spring_bending_stiffness = 0;
{
btSoftBody* psb = NULL;
CommonFileIOInterface* fileIO(m_data->m_pluginManager.getFileIOInterface());
char relativeFileName[1024];
char pathPrefix[1024];
pathPrefix[0] = 0;
if (fileIO->findResourcePath(loadSoftBodyArgs.m_fileName, relativeFileName, 1024))
{
b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024);
}
const std::string& error_message_prefix = "";
std::string out_found_filename, out_found_sim_filename;
int out_type(0), out_sim_type(0);
bool foundFile = UrdfFindMeshFile(fileIO, pathPrefix, relativeFileName, error_message_prefix, &out_found_filename, &out_type);
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_SIM_MESH)
{
bool foundSimMesh = UrdfFindMeshFile(fileIO, pathPrefix, loadSoftBodyArgs.m_simFileName, error_message_prefix, &out_found_sim_filename, &out_sim_type);
}
else
{
out_sim_type = out_type;
out_found_sim_filename = out_found_filename;
}
if (out_sim_type == UrdfGeometry::FILE_OBJ)
{
std::vector<tinyobj::shape_t> shapes;
tinyobj::attrib_t attribute;
std::string err = tinyobj::LoadObj(attribute, shapes, out_found_sim_filename.c_str(), "", fileIO);
if (!shapes.empty())
{
const tinyobj::shape_t& shape = shapes[0];
btAlignedObjectArray<btScalar> vertices;
btAlignedObjectArray<int> indices;
for (int i = 0; i < attribute.vertices.size(); i++)
{
vertices.push_back(attribute.vertices[i]);
}
for (int i = 0; i < shape.mesh.indices.size(); i++)
{
indices.push_back(shape.mesh.indices[i].vertex_index);
}
int numTris = shape.mesh.indices.size() / 3;
if (numTris > 0)
{
{
btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld();
if (softWorld)
{
psb = btSoftBodyHelpers::CreateFromTriMesh(softWorld->getWorldInfo(), &vertices[0], &indices[0], numTris);
}
}
{
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
psb = btSoftBodyHelpers::CreateFromTriMesh(deformWorld->getWorldInfo(), &vertices[0], &indices[0], numTris);
}
}
}
}
#ifndef SKIP_DEFORMABLE_BODY
btScalar spring_elastic_stiffness, spring_damping_stiffness;
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_ADD_MASS_SPRING_FORCE)
{
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
spring_elastic_stiffness = clientCmd.m_loadSoftBodyArguments.m_springElasticStiffness;
spring_damping_stiffness = clientCmd.m_loadSoftBodyArguments.m_springDampingStiffness;
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_ADD_BENDING_SPRINGS)
{
spring_bending_stiffness = clientCmd.m_loadSoftBodyArguments.m_springBendingStiffness;
}
btDeformableLagrangianForce* springForce = new btDeformableMassSpringForce(spring_elastic_stiffness, spring_damping_stiffness, true, spring_bending_stiffness);
deformWorld->addForce(psb, springForce);
m_data->m_lf.push_back(springForce);
}
}
#endif
}
else if (out_sim_type == UrdfGeometry::FILE_VTK)
{
#ifndef SKIP_DEFORMABLE_BODY
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
psb = btSoftBodyHelpers::CreateFromVtkFile(deformWorld->getWorldInfo(), out_found_sim_filename.c_str());
btScalar corotated_mu, corotated_lambda;
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_ADD_COROTATED_FORCE)
{
corotated_mu = clientCmd.m_loadSoftBodyArguments.m_corotatedMu;
corotated_lambda = clientCmd.m_loadSoftBodyArguments.m_corotatedLambda;
btDeformableLagrangianForce* corotatedForce = new btDeformableCorotatedForce(corotated_mu, corotated_lambda);
deformWorld->addForce(psb, corotatedForce);
m_data->m_lf.push_back(corotatedForce);
}
btScalar neohookean_mu, neohookean_lambda, neohookean_damping;
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_ADD_NEOHOOKEAN_FORCE)
{
neohookean_mu = clientCmd.m_loadSoftBodyArguments.m_NeoHookeanMu;
neohookean_lambda = clientCmd.m_loadSoftBodyArguments.m_NeoHookeanLambda;
neohookean_damping = clientCmd.m_loadSoftBodyArguments.m_NeoHookeanDamping;
btDeformableLagrangianForce* neohookeanForce = new btDeformableNeoHookeanForce(neohookean_mu, neohookean_lambda, neohookean_damping);
deformWorld->addForce(psb, neohookeanForce);
m_data->m_lf.push_back(neohookeanForce);
}
btScalar spring_elastic_stiffness, spring_damping_stiffness;
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_ADD_MASS_SPRING_FORCE)
{
spring_elastic_stiffness = clientCmd.m_loadSoftBodyArguments.m_springElasticStiffness;
spring_damping_stiffness = clientCmd.m_loadSoftBodyArguments.m_springDampingStiffness;
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_ADD_BENDING_SPRINGS)
{
spring_bending_stiffness = clientCmd.m_loadSoftBodyArguments.m_springBendingStiffness;
}
btDeformableLagrangianForce* springForce = new btDeformableMassSpringForce(spring_elastic_stiffness, spring_damping_stiffness, true, spring_bending_stiffness);
deformWorld->addForce(psb, springForce);
m_data->m_lf.push_back(springForce);
}
}
#endif
}
if (psb != NULL)
{
#ifndef SKIP_DEFORMABLE_BODY
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
// load render mesh
if (out_found_sim_filename != out_found_filename)
{
// load render mesh
{
tinyobj::attrib_t attribute;
std::vector<tinyobj::shape_t> shapes;
std::string err = tinyobj::LoadObj(attribute, shapes, out_found_filename.c_str(), pathPrefix, m_data->m_pluginManager.getFileIOInterface());
for (int s = 0; s < (int)shapes.size(); s++)
{
tinyobj::shape_t& shape = shapes[s];
int faceCount = shape.mesh.indices.size();
int vertexCount = attribute.vertices.size()/3;
for (int v=0;v<vertexCount;v++)
{
btSoftBody::Node n;
n.m_x = btVector3(attribute.vertices[3*v],attribute.vertices[3*v+1],attribute.vertices[3*v+2]);
psb->m_renderNodes.push_back(n);
}
for (int f = 0; f < faceCount; f += 3)
{
if (f < 0 && f >= int(shape.mesh.indices.size()))
{
continue;
}
tinyobj::index_t v_0 = shape.mesh.indices[f];
tinyobj::index_t v_1 = shape.mesh.indices[f + 1];
tinyobj::index_t v_2 = shape.mesh.indices[f + 2];
btSoftBody::Face ff;
ff.m_n[0] = &psb->m_renderNodes[v_0.vertex_index];
ff.m_n[1] = &psb->m_renderNodes[v_1.vertex_index];
ff.m_n[2] = &psb->m_renderNodes[v_2.vertex_index];
psb->m_renderFaces.push_back(ff);
}
}
}
btSoftBodyHelpers::interpolateBarycentricWeights(psb);
}
else
{
psb->m_renderNodes.resize(0);
}
btVector3 gravity = m_data->m_dynamicsWorld->getGravity();
btDeformableLagrangianForce* gravityForce = new btDeformableGravityForce(gravity);
deformWorld->addForce(psb, gravityForce);
m_data->m_lf.push_back(gravityForce);
btScalar collision_hardness = 1;
psb->m_cfg.kKHR = collision_hardness;
psb->m_cfg.kCHR = collision_hardness;
btScalar friction_coeff = 0;
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_SET_FRICTION_COEFFICIENT)
{
friction_coeff = loadSoftBodyArgs.m_frictionCoeff;
}
psb->m_cfg.kDF = friction_coeff;
bool use_bending_spring = false;
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_ADD_BENDING_SPRINGS)
{
use_bending_spring = loadSoftBodyArgs.m_useBendingSprings;
if (use_bending_spring)
{
psb->generateBendingConstraints(2);
}
}
btSoftBody::Material* pm = psb->appendMaterial();
pm->m_flags -= btSoftBody::fMaterial::DebugDraw;
// turn on the collision flag for deformable
// collision between deformable and rigid
psb->m_cfg.collisions = btSoftBody::fCollision::SDF_RD;
// collion between deformable and deformable and self-collision
psb->m_cfg.collisions |= btSoftBody::fCollision::VF_DD;
psb->setCollisionFlags(0);
psb->setTotalMass(mass);
bool use_self_collision = false;
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_USE_SELF_COLLISION)
{
use_self_collision = loadSoftBodyArgs.m_useSelfCollision;
}
psb->setSelfCollision(use_self_collision);
}
#endif//SKIP_DEFORMABLE_BODY
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld();
if (softWorld)
{
btSoftBody::Material* pm = psb->appendMaterial();
pm->m_kLST = 0.5;
pm->m_flags -= btSoftBody::fMaterial::DebugDraw;
psb->generateBendingConstraints(2, pm);
psb->m_cfg.piterations = 20;
psb->m_cfg.kDF = 0.5;
//turn on softbody vs softbody collision
psb->m_cfg.collisions |= btSoftBody::fCollision::VF_SS;
psb->randomizeConstraints();
psb->setTotalMass(mass, true);
}
#endif //SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
psb->scale(btVector3(scale, scale, scale));
psb->rotate(initialOrn);
psb->translate(initialPos);
psb->getCollisionShape()->setMargin(collisionMargin);
psb->getCollisionShape()->setUserPointer(psb);
#ifndef SKIP_DEFORMABLE_BODY
if (deformWorld)
{
deformWorld->addSoftBody(psb);
} else
#endif//SKIP_DEFORMABLE_BODY
{
btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld();
if (softWorld)
{
softWorld->addSoftBody(psb);
}
}
m_data->m_guiHelper->createCollisionShapeGraphicsObject(psb->getCollisionShape());
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
int bodyUniqueId = m_data->m_bodyHandles.allocHandle();
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
bodyHandle->m_softBody = psb;
b3VisualShapeData visualShape;
visualShape.m_objectUniqueId = bodyUniqueId;
visualShape.m_linkIndex = -1;
visualShape.m_visualGeometryType = URDF_GEOM_MESH;
//dimensions just contains the scale
visualShape.m_dimensions[0] = scale;
visualShape.m_dimensions[1] = scale;
visualShape.m_dimensions[2] = scale;
//filename
strncpy(visualShape.m_meshAssetFileName, relativeFileName, VISUAL_SHAPE_MAX_PATH_LEN);
visualShape.m_meshAssetFileName[VISUAL_SHAPE_MAX_PATH_LEN - 1] = 0;
//position and orientation
visualShape.m_localVisualFrame[0] = initialPos[0];
visualShape.m_localVisualFrame[1] = initialPos[1];
visualShape.m_localVisualFrame[2] = initialPos[2];
visualShape.m_localVisualFrame[3] = initialOrn[0];
visualShape.m_localVisualFrame[4] = initialOrn[1];
visualShape.m_localVisualFrame[5] = initialOrn[2];
visualShape.m_localVisualFrame[6] = initialOrn[3];
//color and ids to be set by the renderer
visualShape.m_rgbaColor[0] = 0;
visualShape.m_rgbaColor[1] = 0;
visualShape.m_rgbaColor[2] = 0;
visualShape.m_rgbaColor[3] = 1;
visualShape.m_tinyRendererTextureId = -1;
visualShape.m_textureUniqueId =-1;
visualShape.m_openglTextureId = -1;
m_data->m_pluginManager.getRenderInterface()->addVisualShape(&visualShape, fileIO);
serverStatusOut.m_loadSoftBodyResultArguments.m_objectUniqueId = bodyUniqueId;
serverStatusOut.m_type = CMD_LOAD_SOFT_BODY_COMPLETED;
int pos = strlen(relativeFileName)-1;
while(pos>=0 && relativeFileName[pos]!='/') { pos--;}
btAssert(strlen(relativeFileName)-pos-5>0);
std::string object_name (std::string(relativeFileName).substr(pos+1, strlen(relativeFileName)- 5 - pos));
bodyHandle->m_bodyName = object_name;
int streamSizeInBytes = createBodyInfoStream(bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
serverStatusOut.m_numDataStreamBytes = streamSizeInBytes;
#ifdef ENABLE_LINK_MAPPER
if (m_data->m_urdfLinkNameMapper.size())
{
serverStatusOut.m_numDataStreamBytes = m_data->m_urdfLinkNameMapper.at(m_data->m_urdfLinkNameMapper.size() - 1)->m_memSerializer->getCurrentBufferSize();
}
#endif
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, body->m_bodyName.c_str());
b3Notification notification;
notification.m_notificationType = BODY_ADDED;
notification.m_bodyArgs.m_bodyUniqueId = bodyUniqueId;
m_data->m_pluginManager.addNotification(notification);
}
}
#endif
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateSensorCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CREATE_SENSOR");
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_CREATE_SENSOR");
}
int bodyUniqueId = clientCmd.m_createSensorArguments.m_bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btAssert(mb);
for (int i = 0; i < clientCmd.m_createSensorArguments.m_numJointSensorChanges; i++)
{
int jointIndex = clientCmd.m_createSensorArguments.m_jointIndex[i];
if (clientCmd.m_createSensorArguments.m_enableJointForceSensor[i])
{
if (mb->getLink(jointIndex).m_jointFeedback)
{
b3Warning("CMD_CREATE_SENSOR: sensor for joint [%d] already enabled", jointIndex);
}
else
{
btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
fb->m_reactionForces.setZero();
mb->getLink(jointIndex).m_jointFeedback = fb;
m_data->m_multiBodyJointFeedbacks.push_back(fb);
};
}
else
{
if (mb->getLink(jointIndex).m_jointFeedback)
{
m_data->m_multiBodyJointFeedbacks.remove(mb->getLink(jointIndex).m_jointFeedback);
delete mb->getLink(jointIndex).m_jointFeedback;
mb->getLink(jointIndex).m_jointFeedback = 0;
}
else
{
b3Warning("CMD_CREATE_SENSOR: cannot perform sensor removal request, no sensor on joint [%d]", jointIndex);
};
}
}
}
else
{
b3Warning("No btMultiBody in the world. btRigidBody/btTypedConstraint sensor not hooked up yet");
}
#if 0
//todo(erwincoumans) here is some sample code to hook up a force/torque sensor for btTypedConstraint/btRigidBody
/*
for (int i=0;i<m_data->m_dynamicsWorld->getNumConstraints();i++)
{
btTypedConstraint* c = m_data->m_dynamicsWorld->getConstraint(i);
btJointFeedback* fb = new btJointFeedback();
m_data->m_jointFeedbacks.push_back(fb);
c->setJointFeedback(fb);
}
*/
#endif
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processProfileTimingCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
{
if (clientCmd.m_profile.m_type == 0)
{
char** eventNamePtr = m_data->m_profileEvents[clientCmd.m_profile.m_name];
char* eventName = 0;
if (eventNamePtr)
{
eventName = *eventNamePtr;
}
else
{
int len = strlen(clientCmd.m_profile.m_name);
eventName = new char[len + 1];
strcpy(eventName, clientCmd.m_profile.m_name);
eventName[len] = 0;
m_data->m_profileEvents.insert(eventName, eventName);
}
b3EnterProfileZone(eventName);
}
if (clientCmd.m_profile.m_type == 1)
{
b3LeaveProfileZone();
}
}
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
return hasStatus;
}
void setDefaultRootWorldAABB(SharedMemoryStatus& serverCmd)
{
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = 0;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = 0;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = 0;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = -1;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = -1;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = -1;
}
bool PhysicsServerCommandProcessor::processRequestCollisionInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_FAILED;
hasStatus = true;
int bodyUniqueId = clientCmd.m_requestCollisionInfoArgs.m_bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_COMPLETED;
serverCmd.m_sendCollisionInfoArgs.m_numLinks = body->m_multiBody->getNumLinks();
setDefaultRootWorldAABB(serverCmd);
if (body->m_multiBody->getBaseCollider())
{
btTransform tr;
tr.setOrigin(mb->getBasePos());
tr.setRotation(mb->getWorldToBaseRot().inverse());
btVector3 aabbMin, aabbMax;
body->m_multiBody->getBaseCollider()->getCollisionShape()->getAabb(tr, aabbMin, aabbMax);
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = aabbMin[0];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = aabbMin[1];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = aabbMin[2];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = aabbMax[0];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = aabbMax[1];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = aabbMax[2];
}
for (int l = 0; l < mb->getNumLinks(); l++)
{
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 0] = 0;
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 1] = 0;
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 2] = 0;
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 0] = -1;
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 1] = -1;
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 2] = -1;
if (body->m_multiBody->getLink(l).m_collider)
{
btVector3 aabbMin, aabbMax;
body->m_multiBody->getLinkCollider(l)->getCollisionShape()->getAabb(mb->getLink(l).m_cachedWorldTransform, aabbMin, aabbMax);
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 0] = aabbMin[0];
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 1] = aabbMin[1];
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 2] = aabbMin[2];
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 0] = aabbMax[0];
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 1] = aabbMax[1];
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 2] = aabbMax[2];
}
}
}
else if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_COMPLETED;
serverCmd.m_sendCollisionInfoArgs.m_numLinks = 0;
setDefaultRootWorldAABB(serverCmd);
if (rb->getCollisionShape())
{
btTransform tr = rb->getWorldTransform();
btVector3 aabbMin, aabbMax;
rb->getCollisionShape()->getAabb(tr, aabbMin, aabbMax);
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = aabbMin[0];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = aabbMin[1];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = aabbMin[2];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = aabbMax[0];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = aabbMax[1];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = aabbMax[2];
}
}
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
else if (body && body->m_softBody)
{
btSoftBody* sb = body->m_softBody;
serverCmd.m_sendCollisionInfoArgs.m_numLinks = 0;
btVector3 aabbMin, aabbMax;
sb->getAabb(aabbMin, aabbMax);
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = aabbMin[0];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = aabbMin[1];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = aabbMin[2];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = aabbMax[0];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = aabbMax[1];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = aabbMax[2];
SharedMemoryStatus& serverCmd = serverStatusOut;
serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_COMPLETED;
}
#endif
return hasStatus;
}
bool PhysicsServerCommandProcessor::processForwardDynamicsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_STEP_FORWARD_SIMULATION");
if (m_data->m_verboseOutput)
{
b3Printf("Step simulation request");
b3Printf("CMD_STEP_FORWARD_SIMULATION clientCmd = %d\n", clientCmd.m_sequenceNumber);
}
///todo(erwincoumans) move this damping inside Bullet
for (int i = 0; i < m_data->m_dynamicsWorld->getNumMultibodies(); i++)
{
btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(i);
for (int l = 0; l < mb->getNumLinks(); l++)
{
for (int d = 0; d < mb->getLink(l).m_dofCount; d++)
{
double damping_coefficient = mb->getLink(l).m_jointDamping;
double damping = -damping_coefficient * mb->getJointVelMultiDof(l)[d];
mb->addJointTorqueMultiDof(l, d, damping);
}
}
}
btScalar deltaTimeScaled = m_data->m_physicsDeltaTime * simTimeScalingFactor;
int numSteps = 0;
if (m_data->m_numSimulationSubSteps > 0)
{
numSteps = m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, m_data->m_numSimulationSubSteps, m_data->m_physicsDeltaTime / m_data->m_numSimulationSubSteps);
m_data->m_simulationTimestamp += deltaTimeScaled;
}
else
{
numSteps = m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, 0);
m_data->m_simulationTimestamp += deltaTimeScaled;
}
if (numSteps > 0)
{
addBodyChangedNotifications();
}
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_numSteps = numSteps;
btAlignedObjectArray<btSolverAnalyticsData> islandAnalyticsData;
m_data->m_dynamicsWorld->getAnalyticsData(islandAnalyticsData);
serverCmd.m_forwardDynamicsAnalyticsArgs.m_numIslands = islandAnalyticsData.size();
int numIslands = btMin(islandAnalyticsData.size(), MAX_ISLANDS_ANALYTICS);
for (int i = 0; i < numIslands; i++)
{
serverCmd.m_forwardDynamicsAnalyticsArgs.m_numSolverCalls = islandAnalyticsData[i].m_numSolverCalls;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_islandId = islandAnalyticsData[i].m_islandId;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_numBodies = islandAnalyticsData[i].m_numBodies;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_numIterationsUsed = islandAnalyticsData[i].m_numIterationsUsed;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_remainingLeastSquaresResidual = islandAnalyticsData[i].m_remainingLeastSquaresResidual;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_numContactManifolds = islandAnalyticsData[i].m_numContactManifolds;
}
serverCmd.m_type = CMD_STEP_FORWARD_SIMULATION_COMPLETED;
m_data->m_remoteSyncTransformTime += deltaTimeScaled;
if (m_data->m_remoteSyncTransformTime >= m_data->m_remoteSyncTransformInterval)
{
m_data->m_remoteSyncTransformTime = 0;
syncPhysicsToGraphics2();
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestInternalDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_INTERNAL_DATA");
//todo: also check version etc?
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_REQUEST_INTERNAL_DATA_FAILED;
int sz = btDefaultSerializer::getMemoryDnaSizeInBytes();
const char* memDna = btDefaultSerializer::getMemoryDna();
if (sz < bufferSizeInBytes)
{
for (int i = 0; i < sz; i++)
{
bufferServerToClient[i] = memDna[i];
}
serverCmd.m_type = CMD_REQUEST_INTERNAL_DATA_COMPLETED;
serverCmd.m_numDataStreamBytes = sz;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processChangeDynamicsInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CHANGE_DYNAMICS_INFO");
int bodyUniqueId = clientCmd.m_changeDynamicsInfoArgs.m_bodyUniqueId;
int linkIndex = clientCmd.m_changeDynamicsInfoArgs.m_linkIndex;
double mass = clientCmd.m_changeDynamicsInfoArgs.m_mass;
double lateralFriction = clientCmd.m_changeDynamicsInfoArgs.m_lateralFriction;
double spinningFriction = clientCmd.m_changeDynamicsInfoArgs.m_spinningFriction;
double rollingFriction = clientCmd.m_changeDynamicsInfoArgs.m_rollingFriction;
double restitution = clientCmd.m_changeDynamicsInfoArgs.m_restitution;
btVector3 newLocalInertiaDiagonal(clientCmd.m_changeDynamicsInfoArgs.m_localInertiaDiagonal[0],
clientCmd.m_changeDynamicsInfoArgs.m_localInertiaDiagonal[1],
clientCmd.m_changeDynamicsInfoArgs.m_localInertiaDiagonal[2]);
btVector3 anisotropicFriction(clientCmd.m_changeDynamicsInfoArgs.m_anisotropicFriction[0],
clientCmd.m_changeDynamicsInfoArgs.m_anisotropicFriction[1],
clientCmd.m_changeDynamicsInfoArgs.m_anisotropicFriction[2]);
btAssert(bodyUniqueId >= 0);
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ACTIVATION_STATE)
{
if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateWakeUp)
{
mb->wakeUp();
}
if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateSleep)
{
mb->goToSleep();
}
if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateEnableSleeping)
{
mb->setCanSleep(true);
}
if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateDisableSleeping)
{
mb->setCanSleep(false);
}
if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateEnableWakeup)
{
mb->setCanWakeup(true);
}
if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateDisableWakeup)
{
mb->setCanWakeup(false);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LINEAR_DAMPING)
{
mb->setLinearDamping(clientCmd.m_changeDynamicsInfoArgs.m_linearDamping);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANGULAR_DAMPING)
{
mb->setAngularDamping(clientCmd.m_changeDynamicsInfoArgs.m_angularDamping);
}
if (linkIndex == -1)
{
if (mb->getBaseCollider())
{
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_RESTITUTION)
{
mb->getBaseCollider()->setRestitution(restitution);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING)
{
mb->getBaseCollider()->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION)
{
mb->getBaseCollider()->setFriction(lateralFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION)
{
mb->getBaseCollider()->setSpinningFriction(spinningFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION)
{
mb->getBaseCollider()->setRollingFriction(rollingFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR)
{
if (clientCmd.m_changeDynamicsInfoArgs.m_frictionAnchor)
{
mb->getBaseCollider()->setCollisionFlags(mb->getBaseCollider()->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR);
}
else
{
mb->getBaseCollider()->setCollisionFlags(mb->getBaseCollider()->getCollisionFlags() & ~btCollisionObject::CF_HAS_FRICTION_ANCHOR);
}
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS)
{
mb->setBaseMass(mass);
if (mb->getBaseCollider() && mb->getBaseCollider()->getCollisionShape())
{
btVector3 localInertia;
mb->getBaseCollider()->getCollisionShape()->calculateLocalInertia(mass, localInertia);
mb->setBaseInertia(localInertia);
}
//handle switch from static/fixedBase to dynamic and vise-versa
if (mass > 0)
{
bool isDynamic = true;
if (mb->hasFixedBase())
{
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
m_data->m_dynamicsWorld->removeCollisionObject(mb->getBaseCollider());
int oldFlags = mb->getBaseCollider()->getCollisionFlags();
mb->getBaseCollider()->setCollisionFlags(oldFlags & ~btCollisionObject::CF_STATIC_OBJECT);
mb->setFixedBase(false);
m_data->m_dynamicsWorld->addCollisionObject(mb->getBaseCollider(), collisionFilterGroup, collisionFilterMask);
}
}
else
{
if (!mb->hasFixedBase())
{
bool isDynamic = false;
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
int oldFlags = mb->getBaseCollider()->getCollisionFlags();
mb->getBaseCollider()->setCollisionFlags(oldFlags | btCollisionObject::CF_STATIC_OBJECT);
m_data->m_dynamicsWorld->removeCollisionObject(mb->getBaseCollider());
mb->setFixedBase(true);
m_data->m_dynamicsWorld->addCollisionObject(mb->getBaseCollider(), collisionFilterGroup, collisionFilterMask);
}
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LOCAL_INERTIA_DIAGONAL)
{
mb->setBaseInertia(newLocalInertiaDiagonal);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANISOTROPIC_FRICTION)
{
mb->getBaseCollider()->setAnisotropicFriction(anisotropicFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MAX_JOINT_VELOCITY)
{
mb->setMaxCoordinateVelocity(clientCmd.m_changeDynamicsInfoArgs.m_maxJointVelocity);
}
}
else
{
if (linkIndex >= 0 && linkIndex < mb->getNumLinks())
{
if (mb->getLinkCollider(linkIndex))
{
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_RESTITUTION)
{
mb->getLinkCollider(linkIndex)->setRestitution(restitution);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION)
{
mb->getLinkCollider(linkIndex)->setSpinningFriction(spinningFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION)
{
mb->getLinkCollider(linkIndex)->setRollingFriction(rollingFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR)
{
if (clientCmd.m_changeDynamicsInfoArgs.m_frictionAnchor)
{
mb->getLinkCollider(linkIndex)->setCollisionFlags(mb->getLinkCollider(linkIndex)->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR);
}
else
{
mb->getLinkCollider(linkIndex)->setCollisionFlags(mb->getLinkCollider(linkIndex)->getCollisionFlags() & ~btCollisionObject::CF_HAS_FRICTION_ANCHOR);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION)
{
mb->getLinkCollider(linkIndex)->setFriction(lateralFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING)
{
mb->getLinkCollider(linkIndex)->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_JOINT_DAMPING)
{
mb->getLink(linkIndex).m_jointDamping = clientCmd.m_changeDynamicsInfoArgs.m_jointDamping;
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS)
{
mb->getLink(linkIndex).m_mass = mass;
if (mb->getLinkCollider(linkIndex) && mb->getLinkCollider(linkIndex)->getCollisionShape())
{
btVector3 localInertia;
mb->getLinkCollider(linkIndex)->getCollisionShape()->calculateLocalInertia(mass, localInertia);
mb->getLink(linkIndex).m_inertiaLocal = localInertia;
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LOCAL_INERTIA_DIAGONAL)
{
mb->getLink(linkIndex).m_inertiaLocal = newLocalInertiaDiagonal;
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANISOTROPIC_FRICTION)
{
mb->getLinkCollider(linkIndex)->setAnisotropicFriction(anisotropicFriction);
}
}
}
}
else
{
btRigidBody* rb = 0;
if (body && body->m_rigidBody)
{
if (linkIndex == -1)
{
rb = body->m_rigidBody;
}
else
{
if (linkIndex >= 0 && linkIndex < body->m_rigidBodyJoints.size())
{
btRigidBody* parentRb = &body->m_rigidBodyJoints[linkIndex]->getRigidBodyA();
btRigidBody* childRb = &body->m_rigidBodyJoints[linkIndex]->getRigidBodyB();
rb = childRb;
}
}
}
if (rb)
{
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ACTIVATION_STATE)
{
if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateEnableSleeping)
{
rb->forceActivationState(ACTIVE_TAG);
}
if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateDisableSleeping)
{
rb->forceActivationState(DISABLE_DEACTIVATION);
}
if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateWakeUp)
{
rb->forceActivationState(ACTIVE_TAG);
}
if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateSleep)
{
rb->forceActivationState(ISLAND_SLEEPING);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LINEAR_DAMPING)
{
btScalar angDamping = rb->getAngularDamping();
rb->setDamping(clientCmd.m_changeDynamicsInfoArgs.m_linearDamping, angDamping);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANGULAR_DAMPING)
{
btScalar linDamping = rb->getLinearDamping();
rb->setDamping(linDamping, clientCmd.m_changeDynamicsInfoArgs.m_angularDamping);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING)
{
rb->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_RESTITUTION)
{
rb->setRestitution(restitution);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION)
{
rb->setFriction(lateralFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION)
{
rb->setSpinningFriction(spinningFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION)
{
rb->setRollingFriction(rollingFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR)
{
if (clientCmd.m_changeDynamicsInfoArgs.m_frictionAnchor)
{
rb->setCollisionFlags(rb->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR);
}
else
{
rb->setCollisionFlags(rb->getCollisionFlags() & ~btCollisionObject::CF_HAS_FRICTION_ANCHOR);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS)
{
btVector3 localInertia;
if (rb->getCollisionShape())
{
rb->getCollisionShape()->calculateLocalInertia(mass, localInertia);
}
rb->setMassProps(mass, localInertia);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LOCAL_INERTIA_DIAGONAL)
{
btScalar orgMass = rb->getInvMass();
if (orgMass > 0)
{
rb->setMassProps(mass, newLocalInertiaDiagonal);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANISOTROPIC_FRICTION)
{
rb->setAnisotropicFriction(anisotropicFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_PROCESSING_THRESHOLD)
{
rb->setContactProcessingThreshold(clientCmd.m_changeDynamicsInfoArgs.m_contactProcessingThreshold);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CCD_SWEPT_SPHERE_RADIUS)
{
rb->setCcdSweptSphereRadius(clientCmd.m_changeDynamicsInfoArgs.m_ccdSweptSphereRadius);
//for a given sphere radius, use a motion threshold of half the radius, before the ccd algorithm is enabled
rb->setCcdMotionThreshold(clientCmd.m_changeDynamicsInfoArgs.m_ccdSweptSphereRadius / 2.);
}
}
}
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
b3Notification notification;
notification.m_notificationType = LINK_DYNAMICS_CHANGED;
notification.m_linkArgs.m_bodyUniqueId = bodyUniqueId;
notification.m_linkArgs.m_linkIndex = linkIndex;
m_data->m_pluginManager.addNotification(notification);
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSetAdditionalSearchPathCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SET_ADDITIONAL_SEARCH_PATH");
b3ResourcePath::setAdditionalSearchPath(clientCmd.m_searchPathArgs.m_path);
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processGetDynamicsInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_GET_DYNAMICS_INFO_FAILED;
int bodyUniqueId = clientCmd.m_getDynamicsInfoArgs.m_bodyUniqueId;
int linkIndex = clientCmd.m_getDynamicsInfoArgs.m_linkIndex;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_GET_DYNAMICS_INFO_COMPLETED;
serverCmd.m_dynamicsInfo.m_bodyType = BT_MULTI_BODY;
btMultiBody* mb = body->m_multiBody;
if (linkIndex == -1)
{
serverCmd.m_dynamicsInfo.m_mass = mb->getBaseMass();
if (mb->getBaseCollider())
{
serverCmd.m_dynamicsInfo.m_activationState = mb->getBaseCollider()->getActivationState();
serverCmd.m_dynamicsInfo.m_contactProcessingThreshold = mb->getBaseCollider()->getContactProcessingThreshold();
serverCmd.m_dynamicsInfo.m_ccdSweptSphereRadius = mb->getBaseCollider()->getCcdSweptSphereRadius();
serverCmd.m_dynamicsInfo.m_frictionAnchor = mb->getBaseCollider()->getCollisionFlags() & btCollisionObject::CF_HAS_FRICTION_ANCHOR;
}
else
{
serverCmd.m_dynamicsInfo.m_activationState = 0;
serverCmd.m_dynamicsInfo.m_contactProcessingThreshold = 0;
serverCmd.m_dynamicsInfo.m_ccdSweptSphereRadius = 0;
serverCmd.m_dynamicsInfo.m_frictionAnchor = 0;
}
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[0] = mb->getBaseInertia()[0];
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[1] = mb->getBaseInertia()[1];
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[2] = mb->getBaseInertia()[2];
serverCmd.m_dynamicsInfo.m_lateralFrictionCoeff = mb->getBaseCollider()->getFriction();
serverCmd.m_dynamicsInfo.m_localInertialFrame[0] = body->m_rootLocalInertialFrame.getOrigin()[0];
serverCmd.m_dynamicsInfo.m_localInertialFrame[1] = body->m_rootLocalInertialFrame.getOrigin()[1];
serverCmd.m_dynamicsInfo.m_localInertialFrame[2] = body->m_rootLocalInertialFrame.getOrigin()[2];
serverCmd.m_dynamicsInfo.m_localInertialFrame[3] = body->m_rootLocalInertialFrame.getRotation()[0];
serverCmd.m_dynamicsInfo.m_localInertialFrame[4] = body->m_rootLocalInertialFrame.getRotation()[1];
serverCmd.m_dynamicsInfo.m_localInertialFrame[5] = body->m_rootLocalInertialFrame.getRotation()[2];
serverCmd.m_dynamicsInfo.m_localInertialFrame[6] = body->m_rootLocalInertialFrame.getRotation()[3];
serverCmd.m_dynamicsInfo.m_angularDamping = body->m_multiBody->getAngularDamping();
serverCmd.m_dynamicsInfo.m_linearDamping = body->m_multiBody->getLinearDamping();
serverCmd.m_dynamicsInfo.m_restitution = mb->getBaseCollider()->getRestitution();
serverCmd.m_dynamicsInfo.m_rollingFrictionCoeff = mb->getBaseCollider()->getRollingFriction();
serverCmd.m_dynamicsInfo.m_spinningFrictionCoeff = mb->getBaseCollider()->getSpinningFriction();
if (mb->getBaseCollider()->getCollisionFlags() & btCollisionObject::CF_HAS_CONTACT_STIFFNESS_DAMPING)
{
serverCmd.m_dynamicsInfo.m_contactStiffness = mb->getBaseCollider()->getContactStiffness();
serverCmd.m_dynamicsInfo.m_contactDamping = mb->getBaseCollider()->getContactDamping();
}
else
{
serverCmd.m_dynamicsInfo.m_contactStiffness = -1;
serverCmd.m_dynamicsInfo.m_contactDamping = -1;
}
}
else
{
serverCmd.m_dynamicsInfo.m_mass = mb->getLinkMass(linkIndex);
if (mb->getLinkCollider(linkIndex))
{
serverCmd.m_dynamicsInfo.m_activationState = mb->getLinkCollider(linkIndex)->getActivationState();
serverCmd.m_dynamicsInfo.m_contactProcessingThreshold = mb->getLinkCollider(linkIndex)->getContactProcessingThreshold();
serverCmd.m_dynamicsInfo.m_ccdSweptSphereRadius = mb->getLinkCollider(linkIndex)->getCcdSweptSphereRadius();
serverCmd.m_dynamicsInfo.m_frictionAnchor = mb->getLinkCollider(linkIndex)->getCollisionFlags() & btCollisionObject::CF_HAS_FRICTION_ANCHOR;
}
else
{
serverCmd.m_dynamicsInfo.m_activationState = 0;
serverCmd.m_dynamicsInfo.m_contactProcessingThreshold = 0;
serverCmd.m_dynamicsInfo.m_ccdSweptSphereRadius = 0;
serverCmd.m_dynamicsInfo.m_frictionAnchor = 0;
}
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[0] = mb->getLinkInertia(linkIndex)[0];
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[1] = mb->getLinkInertia(linkIndex)[1];
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[2] = mb->getLinkInertia(linkIndex)[2];
serverCmd.m_dynamicsInfo.m_localInertialFrame[0] = body->m_linkLocalInertialFrames[linkIndex].getOrigin()[0];
serverCmd.m_dynamicsInfo.m_localInertialFrame[1] = body->m_linkLocalInertialFrames[linkIndex].getOrigin()[1];
serverCmd.m_dynamicsInfo.m_localInertialFrame[2] = body->m_linkLocalInertialFrames[linkIndex].getOrigin()[2];
serverCmd.m_dynamicsInfo.m_localInertialFrame[3] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[0];
serverCmd.m_dynamicsInfo.m_localInertialFrame[4] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[1];
serverCmd.m_dynamicsInfo.m_localInertialFrame[5] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[2];
serverCmd.m_dynamicsInfo.m_localInertialFrame[6] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[3];
serverCmd.m_dynamicsInfo.m_angularDamping = body->m_multiBody->getAngularDamping();
serverCmd.m_dynamicsInfo.m_linearDamping = body->m_multiBody->getLinearDamping();
if (mb->getLinkCollider(linkIndex))
{
serverCmd.m_dynamicsInfo.m_lateralFrictionCoeff = mb->getLinkCollider(linkIndex)->getFriction();
serverCmd.m_dynamicsInfo.m_restitution = mb->getLinkCollider(linkIndex)->getRestitution();
serverCmd.m_dynamicsInfo.m_rollingFrictionCoeff = mb->getLinkCollider(linkIndex)->getRollingFriction();
serverCmd.m_dynamicsInfo.m_spinningFrictionCoeff = mb->getLinkCollider(linkIndex)->getSpinningFriction();
if (mb->getLinkCollider(linkIndex)->getCollisionFlags() & btCollisionObject::CF_HAS_CONTACT_STIFFNESS_DAMPING)
{
serverCmd.m_dynamicsInfo.m_contactStiffness = mb->getLinkCollider(linkIndex)->getContactStiffness();
serverCmd.m_dynamicsInfo.m_contactDamping = mb->getLinkCollider(linkIndex)->getContactDamping();
}
else
{
serverCmd.m_dynamicsInfo.m_contactStiffness = -1;
serverCmd.m_dynamicsInfo.m_contactDamping = -1;
}
}
else
{
b3Warning("The dynamic info requested is not available");
serverCmd.m_type = CMD_GET_DYNAMICS_INFO_FAILED;
}
}
hasStatus = true;
}
else if (body && body->m_rigidBody)
{
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_GET_DYNAMICS_INFO_COMPLETED;
serverCmd.m_dynamicsInfo.m_bodyType = BT_RIGID_BODY;
btRigidBody* rb = body->m_rigidBody;
serverCmd.m_dynamicsInfo.m_lateralFrictionCoeff = rb->getFriction();
serverCmd.m_dynamicsInfo.m_rollingFrictionCoeff = rb->getRollingFriction();
serverCmd.m_dynamicsInfo.m_spinningFrictionCoeff = rb->getSpinningFriction();
serverCmd.m_dynamicsInfo.m_angularDamping = rb->getAngularDamping();
serverCmd.m_dynamicsInfo.m_linearDamping = rb->getLinearDamping();
serverCmd.m_dynamicsInfo.m_mass = rb->getMass();
}
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
else if (body && body->m_softBody){
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_GET_DYNAMICS_INFO_COMPLETED;
serverCmd.m_dynamicsInfo.m_bodyType = BT_SOFT_BODY;
}
#endif
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestPhysicsSimulationParametersCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS_COMPLETED;
serverCmd.m_simulationParameterResultArgs.m_allowedCcdPenetration = m_data->m_dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration;
serverCmd.m_simulationParameterResultArgs.m_collisionFilterMode = m_data->m_broadphaseCollisionFilterCallback->m_filterMode;
serverCmd.m_simulationParameterResultArgs.m_deltaTime = m_data->m_physicsDeltaTime;
serverCmd.m_simulationParameterResultArgs.m_simulationTimestamp = m_data->m_simulationTimestamp;
serverCmd.m_simulationParameterResultArgs.m_contactBreakingThreshold = gContactBreakingThreshold;
serverCmd.m_simulationParameterResultArgs.m_contactSlop = m_data->m_dynamicsWorld->getSolverInfo().m_linearSlop;
serverCmd.m_simulationParameterResultArgs.m_enableSAT = m_data->m_dynamicsWorld->getDispatchInfo().m_enableSatConvex;
serverCmd.m_simulationParameterResultArgs.m_defaultGlobalCFM = m_data->m_dynamicsWorld->getSolverInfo().m_globalCfm;
serverCmd.m_simulationParameterResultArgs.m_defaultContactERP = m_data->m_dynamicsWorld->getSolverInfo().m_erp2;
serverCmd.m_simulationParameterResultArgs.m_defaultNonContactERP = m_data->m_dynamicsWorld->getSolverInfo().m_erp;
serverCmd.m_simulationParameterResultArgs.m_deltaTime = m_data->m_physicsDeltaTime;
serverCmd.m_simulationParameterResultArgs.m_deterministicOverlappingPairs = m_data->m_dynamicsWorld->getDispatchInfo().m_deterministicOverlappingPairs;
serverCmd.m_simulationParameterResultArgs.m_enableConeFriction = (m_data->m_dynamicsWorld->getSolverInfo().m_solverMode & SOLVER_DISABLE_IMPLICIT_CONE_FRICTION) ? 0 : 1;
serverCmd.m_simulationParameterResultArgs.m_enableFileCaching = b3IsFileCachingEnabled();
serverCmd.m_simulationParameterResultArgs.m_frictionCFM = m_data->m_dynamicsWorld->getSolverInfo().m_frictionCFM;
serverCmd.m_simulationParameterResultArgs.m_frictionERP = m_data->m_dynamicsWorld->getSolverInfo().m_frictionERP;
btVector3 grav = m_data->m_dynamicsWorld->getGravity();
serverCmd.m_simulationParameterResultArgs.m_gravityAcceleration[0] = grav[0];
serverCmd.m_simulationParameterResultArgs.m_gravityAcceleration[1] = grav[1];
serverCmd.m_simulationParameterResultArgs.m_gravityAcceleration[2] = grav[2];
serverCmd.m_simulationParameterResultArgs.m_internalSimFlags = gInternalSimFlags;
serverCmd.m_simulationParameterResultArgs.m_jointFeedbackMode = 0;
if (m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace)
{
serverCmd.m_simulationParameterResultArgs.m_jointFeedbackMode |= JOINT_FEEDBACK_IN_WORLD_SPACE;
}
if (m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame)
{
serverCmd.m_simulationParameterResultArgs.m_jointFeedbackMode |= JOINT_FEEDBACK_IN_JOINT_FRAME;
}
serverCmd.m_simulationParameterResultArgs.m_numSimulationSubSteps = m_data->m_numSimulationSubSteps;
serverCmd.m_simulationParameterResultArgs.m_numSolverIterations = m_data->m_dynamicsWorld->getSolverInfo().m_numIterations;
serverCmd.m_simulationParameterResultArgs.m_restitutionVelocityThreshold = m_data->m_dynamicsWorld->getSolverInfo().m_restitutionVelocityThreshold;
serverCmd.m_simulationParameterResultArgs.m_solverResidualThreshold = m_data->m_dynamicsWorld->getSolverInfo().m_leastSquaresResidualThreshold;
serverCmd.m_simulationParameterResultArgs.m_splitImpulsePenetrationThreshold = m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulsePenetrationThreshold;
serverCmd.m_simulationParameterResultArgs.m_useRealTimeSimulation = m_data->m_useRealTimeSimulation;
serverCmd.m_simulationParameterResultArgs.m_useSplitImpulse = m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulse;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSendPhysicsParametersCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SEND_PHYSICS_SIMULATION_PARAMETERS");
if (clientCmd.m_updateFlags & SIM_PARAM_ENABLE_CONE_FRICTION)
{
if (clientCmd.m_physSimParamArgs.m_enableConeFriction)
{
m_data->m_dynamicsWorld->getSolverInfo().m_solverMode &= ~SOLVER_DISABLE_IMPLICIT_CONE_FRICTION;
}
else
{
m_data->m_dynamicsWorld->getSolverInfo().m_solverMode |= SOLVER_DISABLE_IMPLICIT_CONE_FRICTION;
}
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DETERMINISTIC_OVERLAPPING_PAIRS)
{
m_data->m_dynamicsWorld->getDispatchInfo().m_deterministicOverlappingPairs = (clientCmd.m_physSimParamArgs.m_deterministicOverlappingPairs != 0);
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_CCD_ALLOWED_PENETRATION)
{
m_data->m_dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration = clientCmd.m_physSimParamArgs.m_allowedCcdPenetration;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_JOINT_FEEDBACK_MODE)
{
m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace = (clientCmd.m_physSimParamArgs.m_jointFeedbackMode & JOINT_FEEDBACK_IN_WORLD_SPACE) != 0;
m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame = (clientCmd.m_physSimParamArgs.m_jointFeedbackMode & JOINT_FEEDBACK_IN_JOINT_FRAME) != 0;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DELTA_TIME)
{
m_data->m_physicsDeltaTime = clientCmd.m_physSimParamArgs.m_deltaTime;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_REAL_TIME_SIMULATION)
{
m_data->m_useRealTimeSimulation = (clientCmd.m_physSimParamArgs.m_useRealTimeSimulation != 0);
}
//see
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_INTERNAL_SIMULATION_FLAGS)
{
//these flags are for internal/temporary/easter-egg/experimental demo purposes, use at own risk
gInternalSimFlags = clientCmd.m_physSimParamArgs.m_internalSimFlags;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_GRAVITY)
{
btVector3 grav(clientCmd.m_physSimParamArgs.m_gravityAcceleration[0],
clientCmd.m_physSimParamArgs.m_gravityAcceleration[1],
clientCmd.m_physSimParamArgs.m_gravityAcceleration[2]);
this->m_data->m_dynamicsWorld->setGravity(grav);
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld();
if (softWorld)
{
softWorld->getWorldInfo().m_gravity = grav;
}
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
deformWorld->getWorldInfo().m_gravity = grav;
for (int i = 0; i < m_data->m_lf.size(); ++i)
{
btDeformableLagrangianForce* force = m_data->m_lf[i];
if (force->getForceType() == BT_GRAVITY_FORCE)
{
btDeformableGravityForce* gforce = (btDeformableGravityForce*)force;
gforce->m_gravity = grav;
}
}
}
#endif
if (m_data->m_verboseOutput)
{
b3Printf("Updated Gravity: %f,%f,%f", grav[0], grav[1], grav[2]);
}
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_NUM_SOLVER_ITERATIONS)
{
m_data->m_dynamicsWorld->getSolverInfo().m_numIterations = clientCmd.m_physSimParamArgs.m_numSolverIterations;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_SOLVER_RESIDULAL_THRESHOLD)
{
m_data->m_dynamicsWorld->getSolverInfo().m_leastSquaresResidualThreshold = clientCmd.m_physSimParamArgs.m_solverResidualThreshold;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_CONTACT_BREAKING_THRESHOLD)
{
gContactBreakingThreshold = clientCmd.m_physSimParamArgs.m_contactBreakingThreshold;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_CONTACT_SLOP)
{
m_data->m_dynamicsWorld->getSolverInfo().m_linearSlop = clientCmd.m_physSimParamArgs.m_contactSlop;
}
if (clientCmd.m_updateFlags & SIM_PARAM_ENABLE_SAT)
{
m_data->m_dynamicsWorld->getDispatchInfo().m_enableSatConvex = clientCmd.m_physSimParamArgs.m_enableSAT != 0;
}
if (clientCmd.m_updateFlags & SIM_PARAM_CONSTRAINT_SOLVER_TYPE)
{
//check if the current type is different from requested one
if (m_data->m_constraintSolverType != clientCmd.m_physSimParamArgs.m_constraintSolverType)
{
m_data->m_constraintSolverType = clientCmd.m_physSimParamArgs.m_constraintSolverType;
btConstraintSolver* oldSolver = m_data->m_dynamicsWorld->getConstraintSolver();
btMultiBodyConstraintSolver* newSolver = 0;
switch (clientCmd.m_physSimParamArgs.m_constraintSolverType)
{
case eConstraintSolverLCP_SI:
{
newSolver = new btMultiBodyConstraintSolver;
b3Printf("PyBullet: Constraint Solver: btMultiBodyConstraintSolver\n");
break;
}
case eConstraintSolverLCP_PGS:
{
btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel();
newSolver = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("PyBullet: Constraint Solver: MLCP + PGS\n");
break;
}
case eConstraintSolverLCP_DANTZIG:
{
btDantzigSolver* mlcp = new btDantzigSolver();
newSolver = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("PyBullet: Constraint Solver: MLCP + Dantzig\n");
break;
}
case eConstraintSolverLCP_BLOCK_PGS:
{
break;
}
default:
{
}
};
if (newSolver)
{
delete oldSolver;
m_data->m_dynamicsWorld->setMultiBodyConstraintSolver(newSolver);
m_data->m_solver = newSolver;
printf("switched solver\n");
}
}
}
if (clientCmd.m_updateFlags & SIM_PARAM_CONSTRAINT_MIN_SOLVER_ISLAND_SIZE)
{
m_data->m_dynamicsWorld->getSolverInfo().m_minimumSolverBatchSize = clientCmd.m_physSimParamArgs.m_minimumSolverIslandSize;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_COLLISION_FILTER_MODE)
{
m_data->m_broadphaseCollisionFilterCallback->m_filterMode = clientCmd.m_physSimParamArgs.m_collisionFilterMode;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_USE_SPLIT_IMPULSE)
{
m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulse = clientCmd.m_physSimParamArgs.m_useSplitImpulse;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_SPLIT_IMPULSE_PENETRATION_THRESHOLD)
{
m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulsePenetrationThreshold = clientCmd.m_physSimParamArgs.m_splitImpulsePenetrationThreshold;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_NUM_SIMULATION_SUB_STEPS)
{
m_data->m_numSimulationSubSteps = clientCmd.m_physSimParamArgs.m_numSimulationSubSteps;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DEFAULT_CONTACT_ERP)
{
m_data->m_dynamicsWorld->getSolverInfo().m_erp2 = clientCmd.m_physSimParamArgs.m_defaultContactERP;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DEFAULT_NON_CONTACT_ERP)
{
m_data->m_dynamicsWorld->getSolverInfo().m_erp = clientCmd.m_physSimParamArgs.m_defaultNonContactERP;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DEFAULT_FRICTION_ERP)
{
m_data->m_dynamicsWorld->getSolverInfo().m_frictionERP = clientCmd.m_physSimParamArgs.m_frictionERP;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DEFAULT_GLOBAL_CFM)
{
m_data->m_dynamicsWorld->getSolverInfo().m_globalCfm = clientCmd.m_physSimParamArgs.m_defaultGlobalCFM;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DEFAULT_FRICTION_CFM)
{
m_data->m_dynamicsWorld->getSolverInfo().m_frictionCFM = clientCmd.m_physSimParamArgs.m_frictionCFM;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_SPARSE_SDF)
{
#ifndef SKIP_DEFORMABLE_BODY
{
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
deformWorld ->getWorldInfo().m_sparsesdf.setDefaultVoxelsz(clientCmd.m_physSimParamArgs.m_sparseSdfVoxelSize);
deformWorld ->getWorldInfo().m_sparsesdf.Reset();
}
}
#endif
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
{
btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld();
if (softWorld)
{
softWorld->getWorldInfo().m_sparsesdf.setDefaultVoxelsz(clientCmd.m_physSimParamArgs.m_sparseSdfVoxelSize);
softWorld->getWorldInfo().m_sparsesdf.Reset();
}
}
#endif
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_RESTITUTION_VELOCITY_THRESHOLD)
{
m_data->m_dynamicsWorld->getSolverInfo().m_restitutionVelocityThreshold = clientCmd.m_physSimParamArgs.m_restitutionVelocityThreshold;
}
if (clientCmd.m_updateFlags & SIM_PARAM_ENABLE_FILE_CACHING)
{
b3EnableFileCaching(clientCmd.m_physSimParamArgs.m_enableFileCaching);
m_data->m_pluginManager.getFileIOInterface()->enableFileCaching(clientCmd.m_physSimParamArgs.m_enableFileCaching != 0);
}
if (clientCmd.m_updateFlags & SIM_PARAM_REPORT_CONSTRAINT_SOLVER_ANALYTICS)
{
m_data->m_dynamicsWorld->getSolverInfo().m_reportSolverAnalytics = clientCmd.m_physSimParamArgs.m_reportSolverAnalytics;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_WARM_STARTING_FACTOR)
{
m_data->m_dynamicsWorld->getSolverInfo().m_warmstartingFactor = clientCmd.m_physSimParamArgs.m_warmStartingFactor;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_ARTICULATED_WARM_STARTING_FACTOR)
{
m_data->m_dynamicsWorld->getSolverInfo().m_solverMode |= SOLVER_USE_ARTICULATED_WARMSTARTING;
m_data->m_dynamicsWorld->getSolverInfo().m_articulatedWarmstartingFactor = clientCmd.m_physSimParamArgs.m_articulatedWarmStartingFactor;
}
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processInitPoseCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_INIT_POSE");
if (m_data->m_verboseOutput)
{
b3Printf("Server Init Pose not implemented yet");
}
int bodyUniqueId = clientCmd.m_initPoseArgs.m_bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
btVector3 baseLinVel(0, 0, 0);
btVector3 baseAngVel(0, 0, 0);
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY)
{
baseLinVel.setValue(clientCmd.m_initPoseArgs.m_initialStateQdot[0],
clientCmd.m_initPoseArgs.m_initialStateQdot[1],
clientCmd.m_initPoseArgs.m_initialStateQdot[2]);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY)
{
baseAngVel.setValue(clientCmd.m_initPoseArgs.m_initialStateQdot[3],
clientCmd.m_initPoseArgs.m_initialStateQdot[4],
clientCmd.m_initPoseArgs.m_initialStateQdot[5]);
}
btVector3 basePos(0, 0, 0);
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION)
{
basePos = btVector3(
clientCmd.m_initPoseArgs.m_initialStateQ[0],
clientCmd.m_initPoseArgs.m_initialStateQ[1],
clientCmd.m_initPoseArgs.m_initialStateQ[2]);
}
btQuaternion baseOrn(0, 0, 0, 1);
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION)
{
baseOrn.setValue(clientCmd.m_initPoseArgs.m_initialStateQ[3],
clientCmd.m_initPoseArgs.m_initialStateQ[4],
clientCmd.m_initPoseArgs.m_initialStateQ[5],
clientCmd.m_initPoseArgs.m_initialStateQ[6]);
}
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY)
{
mb->setBaseVel(baseLinVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY)
{
mb->setBaseOmega(baseAngVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION)
{
btVector3 zero(0, 0, 0);
btAssert(clientCmd.m_initPoseArgs.m_hasInitialStateQ[0] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[1] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[2]);
mb->setBaseVel(baseLinVel);
mb->setBasePos(basePos);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION)
{
btAssert(clientCmd.m_initPoseArgs.m_hasInitialStateQ[3] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[4] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[5] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[6]);
mb->setBaseOmega(baseAngVel);
btQuaternion invOrn(baseOrn);
mb->setWorldToBaseRot(invOrn.inverse());
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_JOINT_STATE)
{
int uDofIndex = 6;
int posVarCountIndex = 7;
for (int i = 0; i < mb->getNumLinks(); i++)
{
int posVarCount = mb->getLink(i).m_posVarCount;
bool hasPosVar = posVarCount > 0;
for (int j = 0; j < posVarCount; j++)
{
if (clientCmd.m_initPoseArgs.m_hasInitialStateQ[posVarCountIndex + j] == 0)
{
hasPosVar = false;
break;
}
}
if (hasPosVar)
{
if (mb->getLink(i).m_dofCount == 1)
{
mb->setJointPos(i, clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex]);
mb->setJointVel(i, 0); //backwards compatibility
}
if (mb->getLink(i).m_dofCount == 3)
{
btQuaternion q(
clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex],
clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex + 1],
clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex + 2],
clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex + 3]);
q.normalize();
mb->setJointPosMultiDof(i, &q[0]);
double vel[6] = {0, 0, 0, 0, 0, 0};
mb->setJointVelMultiDof(i, vel);
}
}
bool hasVel = true;
for (int j = 0; j < mb->getLink(i).m_dofCount; j++)
{
if (clientCmd.m_initPoseArgs.m_hasInitialStateQdot[uDofIndex + j] == 0)
{
hasVel = false;
break;
}
}
if (hasVel)
{
if (mb->getLink(i).m_dofCount == 1)
{
btScalar vel = clientCmd.m_initPoseArgs.m_initialStateQdot[uDofIndex];
mb->setJointVel(i, vel);
}
if (mb->getLink(i).m_dofCount == 3)
{
mb->setJointVelMultiDof(i, &clientCmd.m_initPoseArgs.m_initialStateQdot[uDofIndex]);
}
}
posVarCountIndex += mb->getLink(i).m_posVarCount;
uDofIndex += mb->getLink(i).m_dofCount;
}
}
btAlignedObjectArray<btQuaternion> scratch_q;
btAlignedObjectArray<btVector3> scratch_m;
mb->forwardKinematics(scratch_q, scratch_m);
int nLinks = mb->getNumLinks();
scratch_q.resize(nLinks + 1);
scratch_m.resize(nLinks + 1);
mb->updateCollisionObjectWorldTransforms(scratch_q, scratch_m);
}
if (body && body->m_rigidBody)
{
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY)
{
body->m_rigidBody->setLinearVelocity(baseLinVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY)
{
body->m_rigidBody->setAngularVelocity(baseAngVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION)
{
body->m_rigidBody->getWorldTransform().setOrigin(basePos);
body->m_rigidBody->setLinearVelocity(baseLinVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION)
{
body->m_rigidBody->getWorldTransform().setRotation(baseOrn);
body->m_rigidBody->setAngularVelocity(baseAngVel);
}
}
syncPhysicsToGraphics2();
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processResetSimulationCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_RESET_SIMULATION");
m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL, 0);
resetSimulation(clientCmd.m_updateFlags);
m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL, 1);
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_RESET_SIMULATION_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateRigidBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_RIGID_BODY_CREATION_COMPLETED;
BT_PROFILE("CMD_CREATE_RIGID_BODY");
btVector3 halfExtents(1, 1, 1);
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_HALF_EXTENTS)
{
halfExtents = btVector3(
clientCmd.m_createBoxShapeArguments.m_halfExtentsX,
clientCmd.m_createBoxShapeArguments.m_halfExtentsY,
clientCmd.m_createBoxShapeArguments.m_halfExtentsZ);
}
btTransform startTrans;
startTrans.setIdentity();
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_INITIAL_POSITION)
{
startTrans.setOrigin(btVector3(
clientCmd.m_createBoxShapeArguments.m_initialPosition[0],
clientCmd.m_createBoxShapeArguments.m_initialPosition[1],
clientCmd.m_createBoxShapeArguments.m_initialPosition[2]));
}
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_INITIAL_ORIENTATION)
{
startTrans.setRotation(btQuaternion(
clientCmd.m_createBoxShapeArguments.m_initialOrientation[0],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[1],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[2],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[3]));
}
btScalar mass = 0.f;
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_MASS)
{
mass = clientCmd.m_createBoxShapeArguments.m_mass;
}
int shapeType = COLLISION_SHAPE_TYPE_BOX;
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_COLLISION_SHAPE_TYPE)
{
shapeType = clientCmd.m_createBoxShapeArguments.m_collisionShapeType;
}
btMultiBodyWorldImporter* worldImporter = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld);
m_data->m_worldImporters.push_back(worldImporter);
btCollisionShape* shape = 0;
switch (shapeType)
{
case COLLISION_SHAPE_TYPE_CYLINDER_X:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[0];
shape = worldImporter->createCylinderShapeX(radius, height);
break;
}
case COLLISION_SHAPE_TYPE_CYLINDER_Y:
{
btScalar radius = halfExtents[0];
btScalar height = halfExtents[1];
shape = worldImporter->createCylinderShapeY(radius, height);
break;
}
case COLLISION_SHAPE_TYPE_CYLINDER_Z:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[2];
shape = worldImporter->createCylinderShapeZ(radius, height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_X:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[0];
shape = worldImporter->createCapsuleShapeX(radius, height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_Y:
{
btScalar radius = halfExtents[0];
btScalar height = halfExtents[1];
shape = worldImporter->createCapsuleShapeY(radius, height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_Z:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[2];
shape = worldImporter->createCapsuleShapeZ(radius, height);
break;
}
case COLLISION_SHAPE_TYPE_SPHERE:
{
btScalar radius = halfExtents[0];
shape = worldImporter->createSphereShape(radius);
break;
}
case COLLISION_SHAPE_TYPE_BOX:
default:
{
shape = worldImporter->createBoxShape(halfExtents);
}
}
bool isDynamic = (mass > 0);
btRigidBody* rb = worldImporter->createRigidBody(isDynamic, mass, startTrans, shape, 0);
//m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
btVector4 colorRGBA(1, 0, 0, 1);
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_COLOR)
{
colorRGBA[0] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[0];
colorRGBA[1] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[1];
colorRGBA[2] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[2];
colorRGBA[3] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[3];
}
m_data->m_guiHelper->createCollisionShapeGraphicsObject(rb->getCollisionShape());
m_data->m_guiHelper->createCollisionObjectGraphicsObject(rb, colorRGBA);
int bodyUniqueId = m_data->m_bodyHandles.allocHandle();
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
serverCmd.m_rigidBodyCreateArgs.m_bodyUniqueId = bodyUniqueId;
rb->setUserIndex2(bodyUniqueId);
bodyHandle->m_rootLocalInertialFrame.setIdentity();
bodyHandle->m_rigidBody = rb;
b3Notification notification;
notification.m_notificationType = BODY_ADDED;
notification.m_bodyArgs.m_bodyUniqueId = bodyUniqueId;
m_data->m_pluginManager.addNotification(notification);
return hasStatus;
}
bool PhysicsServerCommandProcessor::processPickBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_PICK_BODY");
pickBody(btVector3(clientCmd.m_pickBodyArguments.m_rayFromWorld[0],
clientCmd.m_pickBodyArguments.m_rayFromWorld[1],
clientCmd.m_pickBodyArguments.m_rayFromWorld[2]),
btVector3(clientCmd.m_pickBodyArguments.m_rayToWorld[0],
clientCmd.m_pickBodyArguments.m_rayToWorld[1],
clientCmd.m_pickBodyArguments.m_rayToWorld[2]));
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processMovePickedBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_MOVE_PICKED_BODY");
movePickedBody(btVector3(clientCmd.m_pickBodyArguments.m_rayFromWorld[0],
clientCmd.m_pickBodyArguments.m_rayFromWorld[1],
clientCmd.m_pickBodyArguments.m_rayFromWorld[2]),
btVector3(clientCmd.m_pickBodyArguments.m_rayToWorld[0],
clientCmd.m_pickBodyArguments.m_rayToWorld[1],
clientCmd.m_pickBodyArguments.m_rayToWorld[2]));
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRemovePickingConstraintCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REMOVE_PICKING_CONSTRAINT_BODY");
removePickingConstraint();
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestAabbOverlapCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_AABB_OVERLAP");
SharedMemoryStatus& serverCmd = serverStatusOut;
int curObjectIndex = clientCmd.m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex;
if (0 == curObjectIndex)
{
//clientCmd.m_requestContactPointArguments.m_aabbQueryMin
btVector3 aabbMin, aabbMax;
aabbMin.setValue(clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[0],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[1],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[2]);
aabbMax.setValue(clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[0],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[1],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[2]);
m_data->m_cachedOverlappingObjects.clear();
m_data->m_dynamicsWorld->getBroadphase()->aabbTest(aabbMin, aabbMax, m_data->m_cachedOverlappingObjects);
}
int totalBytesPerObject = sizeof(b3OverlappingObject);
int overlapCapacity = bufferSizeInBytes / totalBytesPerObject - 1;
int numOverlap = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size();
int remainingObjects = numOverlap - curObjectIndex;
int curNumObjects = btMin(overlapCapacity, remainingObjects);
if (numOverlap < overlapCapacity)
{
b3OverlappingObject* overlapStorage = (b3OverlappingObject*)bufferServerToClient;
for (int i = 0; i < m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size(); i++)
{
overlapStorage[i].m_objectUniqueId = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds[i];
overlapStorage[i].m_linkIndex = m_data->m_cachedOverlappingObjects.m_links[i];
}
serverCmd.m_type = CMD_REQUEST_AABB_OVERLAP_COMPLETED;
//int m_startingOverlappingObjectIndex;
//int m_numOverlappingObjectsCopied;
//int m_numRemainingOverlappingObjects;
serverCmd.m_sendOverlappingObjectsArgs.m_startingOverlappingObjectIndex = clientCmd.m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex;
serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size();
serverCmd.m_sendOverlappingObjectsArgs.m_numRemainingOverlappingObjects = remainingObjects - curNumObjects;
}
else
{
serverCmd.m_type = CMD_REQUEST_AABB_OVERLAP_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestOpenGLVisualizeCameraCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_OPENGL_VISUALIZER_CAMERA");
SharedMemoryStatus& serverCmd = serverStatusOut;
bool result = this->m_data->m_guiHelper->getCameraInfo(
&serverCmd.m_visualizerCameraResultArgs.m_width,
&serverCmd.m_visualizerCameraResultArgs.m_height,
serverCmd.m_visualizerCameraResultArgs.m_viewMatrix,
serverCmd.m_visualizerCameraResultArgs.m_projectionMatrix,
serverCmd.m_visualizerCameraResultArgs.m_camUp,
serverCmd.m_visualizerCameraResultArgs.m_camForward,
serverCmd.m_visualizerCameraResultArgs.m_horizontal,
serverCmd.m_visualizerCameraResultArgs.m_vertical,
&serverCmd.m_visualizerCameraResultArgs.m_yaw,
&serverCmd.m_visualizerCameraResultArgs.m_pitch,
&serverCmd.m_visualizerCameraResultArgs.m_dist,
serverCmd.m_visualizerCameraResultArgs.m_target);
serverCmd.m_type = result ? CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_COMPLETED : CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_FAILED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processConfigureOpenGLVisualizerCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CONFIGURE_OPENGL_VISUALIZER");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
if (clientCmd.m_updateFlags & COV_SET_FLAGS)
{
if (clientCmd.m_configureOpenGLVisualizerArguments.m_setFlag == COV_ENABLE_TINY_RENDERER)
{
m_data->m_enableTinyRenderer = clientCmd.m_configureOpenGLVisualizerArguments.m_setEnabled != 0;
}
m_data->m_guiHelper->setVisualizerFlag(clientCmd.m_configureOpenGLVisualizerArguments.m_setFlag,
clientCmd.m_configureOpenGLVisualizerArguments.m_setEnabled);
}
if (clientCmd.m_updateFlags & COV_SET_CAMERA_VIEW_MATRIX)
{
m_data->m_guiHelper->resetCamera(clientCmd.m_configureOpenGLVisualizerArguments.m_cameraDistance,
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraYaw,
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraPitch,
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[0],
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[1],
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[2]);
}
if (m_data->m_guiHelper->getRenderInterface())
{
if (clientCmd.m_updateFlags & COV_SET_LIGHT_POSITION)
{
m_data->m_guiHelper->getRenderInterface()->setLightPosition(clientCmd.m_configureOpenGLVisualizerArguments.m_lightPosition);
}
if (clientCmd.m_updateFlags & COV_SET_SHADOWMAP_RESOLUTION)
{
m_data->m_guiHelper->getRenderInterface()->setShadowMapResolution(clientCmd.m_configureOpenGLVisualizerArguments.m_shadowMapResolution);
}
if (clientCmd.m_updateFlags & COV_SET_SHADOWMAP_WORLD_SIZE)
{
float worldSize = clientCmd.m_configureOpenGLVisualizerArguments.m_shadowMapWorldSize;
m_data->m_guiHelper->getRenderInterface()->setShadowMapWorldSize(worldSize);
}
}
if (clientCmd.m_updateFlags & COV_SET_REMOTE_SYNC_TRANSFORM_INTERVAL)
{
m_data->m_remoteSyncTransformInterval = clientCmd.m_configureOpenGLVisualizerArguments.m_remoteSyncTransformInterval;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processInverseDynamicsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CALCULATE_INVERSE_DYNAMICS");
SharedMemoryStatus& serverCmd = serverStatusOut;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId);
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
if (bodyHandle && bodyHandle->m_multiBody)
{
if (clientCmd.m_calculateInverseDynamicsArguments.m_flags & 1)
{
#ifdef STATIC_LINK_SPD_PLUGIN
{
cRBDModel* rbdModel = m_data->findOrCreateRBDModel(bodyHandle->m_multiBody,
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ,
clientCmd.m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot);
if (rbdModel)
{
int posVal = bodyHandle->m_multiBody->getNumPosVars();
Eigen::VectorXd acc2 = Eigen::VectorXd::Zero(7 + posVal);
Eigen::VectorXd out_tau = Eigen::VectorXd::Zero(7 + posVal);
cRBDUtil::SolveInvDyna(*rbdModel, acc2, out_tau);
int dof = 7 + bodyHandle->m_multiBody->getNumPosVars();
for (int i = 0; i < dof; i++)
{
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[i] = out_tau[i];
}
serverCmd.m_inverseDynamicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
serverCmd.m_inverseDynamicsResultArgs.m_dofCount = dof;
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED;
}
}
#endif
}
else
{
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
int baseDofQ = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 7;
int baseDofQdot = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
const int num_dofs = bodyHandle->m_multiBody->getNumDofs();
if (tree && clientCmd.m_calculateInverseDynamicsArguments.m_dofCountQ == (baseDofQ + num_dofs) &&
clientCmd.m_calculateInverseDynamicsArguments.m_dofCountQdot == (baseDofQdot + num_dofs))
{
btInverseDynamics::vecx nu(num_dofs + baseDofQdot), qdot(num_dofs + baseDofQdot), q(num_dofs + baseDofQdot), joint_force(num_dofs + baseDofQdot);
//for floating base, inverse dynamics expects euler angle x,y,z and position x,y,z in that order
//PyBullet expects quaternion, so convert and swap to have a more consistent PyBullet API
if (baseDofQ)
{
btVector3 pos(clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[0],
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[1],
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[2]);
btQuaternion orn(clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[0],
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[1],
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[2],
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[3]);
btScalar yawZ, pitchY, rollX;
orn.getEulerZYX(yawZ, pitchY, rollX);
q[0] = rollX;
q[1] = pitchY;
q[2] = yawZ;
q[3] = pos[0];
q[4] = pos[1];
q[5] = pos[2];
}
else
{
for (int i = 0; i < num_dofs; i++)
{
q[i] = clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[i];
}
}
for (int i = 0; i < num_dofs + baseDofQdot; i++)
{
qdot[i] = clientCmd.m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot[i];
nu[i] = clientCmd.m_calculateInverseDynamicsArguments.m_jointAccelerations[i];
}
// Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
serverCmd.m_inverseDynamicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
serverCmd.m_inverseDynamicsResultArgs.m_dofCount = num_dofs + baseDofQdot;
//inverse dynamics stores angular before linear, swap it to have a consistent PyBullet API.
if (baseDofQdot)
{
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[0] = joint_force[3];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[1] = joint_force[4];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[2] = joint_force[5];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[3] = joint_force[0];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[4] = joint_force[1];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[5] = joint_force[2];
}
for (int i = baseDofQdot; i < num_dofs + baseDofQdot; i++)
{
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[i] = joint_force[i];
}
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED;
}
else
{
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
}
}
}
}
else
{
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCalculateJacobianCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CALCULATE_JACOBIAN");
SharedMemoryStatus& serverCmd = serverStatusOut;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateJacobianArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
if (tree)
{
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
const int numDofs = bodyHandle->m_multiBody->getNumDofs();
btInverseDynamics::vecx q(numDofs + baseDofs);
btInverseDynamics::vecx qdot(numDofs + baseDofs);
btInverseDynamics::vecx nu(numDofs + baseDofs);
btInverseDynamics::vecx joint_force(numDofs + baseDofs);
for (int i = 0; i < numDofs; i++)
{
q[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointPositionsQ[i];
qdot[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointVelocitiesQdot[i];
nu[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointAccelerations[i];
}
// Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
serverCmd.m_jacobianResultArgs.m_dofCount = numDofs + baseDofs;
// Set jacobian value
tree->calculateJacobians(q);
btInverseDynamics::mat3x jac_t(3, numDofs + baseDofs);
btInverseDynamics::mat3x jac_r(3, numDofs + baseDofs);
// Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link.
tree->getBodyJacobianTrans(clientCmd.m_calculateJacobianArguments.m_linkIndex + 1, &jac_t);
tree->getBodyJacobianRot(clientCmd.m_calculateJacobianArguments.m_linkIndex + 1, &jac_r);
// Update the translational jacobian based on the desired local point.
// v_pt = v_frame + w x pt
// v_pt = J_t * qd + (J_r * qd) x pt
// v_pt = J_t * qd - pt x (J_r * qd)
// v_pt = J_t * qd - pt_x * J_r * qd)
// v_pt = (J_t - pt_x * J_r) * qd
// J_t_new = J_t - pt_x * J_r
btInverseDynamics::vec3 localPosition;
for (int i = 0; i < 3; ++i)
{
localPosition(i) = clientCmd.m_calculateJacobianArguments.m_localPosition[i];
}
// Only calculate if the localPosition is non-zero.
if (btInverseDynamics::maxAbs(localPosition) > 0.0)
{
// Write the localPosition into world coordinates.
btInverseDynamics::mat33 world_rotation_body;
tree->getBodyTransform(clientCmd.m_calculateJacobianArguments.m_linkIndex + 1, &world_rotation_body);
localPosition = world_rotation_body * localPosition;
// Correct the translational jacobian.
btInverseDynamics::mat33 skewCrossProduct;
btInverseDynamics::skew(localPosition, &skewCrossProduct);
btInverseDynamics::mat3x jac_l(3, numDofs + baseDofs);
btInverseDynamics::mul(skewCrossProduct, jac_r, &jac_l);
btInverseDynamics::mat3x jac_t_new(3, numDofs + baseDofs);
btInverseDynamics::sub(jac_t, jac_l, &jac_t_new);
jac_t = jac_t_new;
}
// Fill in the result into the shared memory.
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < (numDofs + baseDofs); ++j)
{
int element = (numDofs + baseDofs) * i + j;
serverCmd.m_jacobianResultArgs.m_linearJacobian[element] = jac_t(i, j);
serverCmd.m_jacobianResultArgs.m_angularJacobian[element] = jac_r(i, j);
}
}
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_COMPLETED;
}
else
{
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED;
}
}
}
else
{
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCalculateMassMatrixCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CALCULATE_MASS_MATRIX");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_FAILED;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateMassMatrixArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
if (clientCmd.m_calculateMassMatrixArguments.m_flags & 1)
{
#ifdef STATIC_LINK_SPD_PLUGIN
{
int posVal = bodyHandle->m_multiBody->getNumPosVars();
btAlignedObjectArray<double> zeroVel;
int dof = 7 + posVal;
zeroVel.resize(dof);
cRBDModel* rbdModel = m_data->findOrCreateRBDModel(bodyHandle->m_multiBody, clientCmd.m_calculateMassMatrixArguments.m_jointPositionsQ,
&zeroVel[0]);
if (rbdModel)
{
//Eigen::MatrixXd out_mass;
//cRBDUtil::BuildMassMat(*rbdModel, out_mass);
const Eigen::MatrixXd& out_mass = rbdModel->GetMassMat();
int skipDofs = 0; // 7 - baseDofQ;
int totDofs = dof;
serverCmd.m_massMatrixResultArgs.m_dofCount = totDofs - skipDofs;
// Fill in the result into the shared memory.
double* sharedBuf = (double*)bufferServerToClient;
int sizeInBytes = totDofs * totDofs * sizeof(double);
if (sizeInBytes < bufferSizeInBytes)
{
for (int i = skipDofs; i < (totDofs); ++i)
{
for (int j = skipDofs; j < (totDofs); ++j)
{
int element = (totDofs - skipDofs) * (i - skipDofs) + (j - skipDofs);
double v = out_mass(i, j);
if (i == j && v == 0)
{
v = 1;
}
sharedBuf[element] = v;
}
}
serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_COMPLETED;
}
}
}
#endif
}
else
{
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
if (tree)
{
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
const int numDofs = bodyHandle->m_multiBody->getNumDofs();
const int totDofs = numDofs + baseDofs;
btInverseDynamics::vecx q(totDofs);
btInverseDynamics::matxx massMatrix(totDofs, totDofs);
for (int i = 0; i < numDofs; i++)
{
q[i + baseDofs] = clientCmd.m_calculateMassMatrixArguments.m_jointPositionsQ[i];
}
if (-1 != tree->calculateMassMatrix(q, &massMatrix))
{
serverCmd.m_massMatrixResultArgs.m_dofCount = totDofs;
// Fill in the result into the shared memory.
double* sharedBuf = (double*)bufferServerToClient;
int sizeInBytes = totDofs * totDofs * sizeof(double);
if (sizeInBytes < bufferSizeInBytes)
{
for (int i = 0; i < (totDofs); ++i)
{
for (int j = 0; j < (totDofs); ++j)
{
int element = (totDofs)*i + j;
sharedBuf[element] = massMatrix(i, j);
}
}
serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_COMPLETED;
}
}
}
}
}
else
{
serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processApplyExternalForceCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_APPLY_EXTERNAL_FORCE");
if (m_data->m_verboseOutput)
{
b3Printf("CMD_APPLY_EXTERNAL_FORCE clientCmd = %d\n", clientCmd.m_sequenceNumber);
}
for (int i = 0; i < clientCmd.m_externalForceArguments.m_numForcesAndTorques; ++i)
{
InternalBodyData* body = m_data->m_bodyHandles.getHandle(clientCmd.m_externalForceArguments.m_bodyUniqueIds[i]);
bool isLinkFrame = ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_LINK_FRAME) != 0);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_FORCE) != 0)
{
btVector3 tmpForce(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]);
btVector3 tmpPosition(
clientCmd.m_externalForceArguments.m_positions[i * 3 + 0],
clientCmd.m_externalForceArguments.m_positions[i * 3 + 1],
clientCmd.m_externalForceArguments.m_positions[i * 3 + 2]);
if (clientCmd.m_externalForceArguments.m_linkIds[i] == -1)
{
btVector3 forceWorld = isLinkFrame ? mb->getBaseWorldTransform().getBasis() * tmpForce : tmpForce;
btVector3 relPosWorld = isLinkFrame ? mb->getBaseWorldTransform().getBasis() * tmpPosition : tmpPosition - mb->getBaseWorldTransform().getOrigin();
mb->addBaseForce(forceWorld);
mb->addBaseTorque(relPosWorld.cross(forceWorld));
//b3Printf("apply base force of %f,%f,%f at %f,%f,%f\n", forceWorld[0],forceWorld[1],forceWorld[2],positionLocal[0],positionLocal[1],positionLocal[2]);
}
else
{
int link = clientCmd.m_externalForceArguments.m_linkIds[i];
btVector3 forceWorld = isLinkFrame ? mb->getLink(link).m_cachedWorldTransform.getBasis() * tmpForce : tmpForce;
btVector3 relPosWorld = isLinkFrame ? mb->getLink(link).m_cachedWorldTransform.getBasis() * tmpPosition : tmpPosition - mb->getBaseWorldTransform().getOrigin();
mb->addLinkForce(link, forceWorld);
mb->addLinkTorque(link, relPosWorld.cross(forceWorld));
//b3Printf("apply link force of %f,%f,%f at %f,%f,%f\n", forceWorld[0],forceWorld[1],forceWorld[2], positionLocal[0],positionLocal[1],positionLocal[2]);
}
}
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_TORQUE) != 0)
{
btVector3 torqueLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]);
if (clientCmd.m_externalForceArguments.m_linkIds[i] == -1)
{
btVector3 torqueWorld = isLinkFrame ? torqueLocal : mb->getBaseWorldTransform().getBasis() * torqueLocal;
mb->addBaseTorque(torqueWorld);
//b3Printf("apply base torque of %f,%f,%f\n", torqueWorld[0],torqueWorld[1],torqueWorld[2]);
}
else
{
int link = clientCmd.m_externalForceArguments.m_linkIds[i];
btVector3 torqueWorld = mb->getLink(link).m_cachedWorldTransform.getBasis() * torqueLocal;
mb->addLinkTorque(link, torqueWorld);
//b3Printf("apply link torque of %f,%f,%f\n", torqueWorld[0],torqueWorld[1],torqueWorld[2]);
}
}
}
if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_FORCE) != 0)
{
btVector3 forceLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]);
btVector3 positionLocal(
clientCmd.m_externalForceArguments.m_positions[i * 3 + 0],
clientCmd.m_externalForceArguments.m_positions[i * 3 + 1],
clientCmd.m_externalForceArguments.m_positions[i * 3 + 2]);
btVector3 forceWorld = isLinkFrame ? forceLocal : rb->getWorldTransform().getBasis() * forceLocal;
btVector3 relPosWorld = isLinkFrame ? positionLocal : rb->getWorldTransform().getBasis() * positionLocal;
rb->applyForce(forceWorld, relPosWorld);
}
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_TORQUE) != 0)
{
btVector3 torqueLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]);
btVector3 torqueWorld = isLinkFrame ? torqueLocal : rb->getWorldTransform().getBasis() * torqueLocal;
rb->applyTorque(torqueWorld);
}
}
}
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRemoveBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_REMOVE_BODY_FAILED;
serverCmd.m_removeObjectArgs.m_numBodies = 0;
serverCmd.m_removeObjectArgs.m_numUserConstraints = 0;
m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL, 0);
for (int i = 0; i < clientCmd.m_removeObjectArgs.m_numBodies; i++)
{
int bodyUniqueId = clientCmd.m_removeObjectArgs.m_bodyUniqueIds[i];
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (bodyHandle)
{
if (bodyHandle->m_multiBody)
{
serverCmd.m_removeObjectArgs.m_bodyUniqueIds[serverCmd.m_removeObjectArgs.m_numBodies++] = bodyUniqueId;
if (m_data->m_pickingMultiBodyPoint2Point && m_data->m_pickingMultiBodyPoint2Point->getMultiBodyA() == bodyHandle->m_multiBody)
{
//memory will be deleted in the code that follows
m_data->m_pickingMultiBodyPoint2Point = 0;
}
//also remove user constraints...
for (int i = m_data->m_dynamicsWorld->getNumMultiBodyConstraints() - 1; i >= 0; i--)
{
btMultiBodyConstraint* mbc = m_data->m_dynamicsWorld->getMultiBodyConstraint(i);
if ((mbc->getMultiBodyA() == bodyHandle->m_multiBody) || (mbc->getMultiBodyB() == bodyHandle->m_multiBody))
{
m_data->m_dynamicsWorld->removeMultiBodyConstraint(mbc);
//also remove user constraint and submit it as removed
for (int c = m_data->m_userConstraints.size() - 1; c >= 0; c--)
{
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.getAtIndex(c);
int userConstraintKey = m_data->m_userConstraints.getKeyAtIndex(c).getUid1();
if (userConstraintPtr->m_mbConstraint == mbc)
{
m_data->m_userConstraints.remove(userConstraintKey);
serverCmd.m_removeObjectArgs.m_userConstraintUniqueIds[serverCmd.m_removeObjectArgs.m_numUserConstraints++] = userConstraintKey;
}
}
delete mbc;
}
}
if (bodyHandle->m_multiBody->getBaseCollider())
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->removeVisualShape(bodyHandle->m_multiBody->getBaseCollider()->getUserIndex3());
}
m_data->m_dynamicsWorld->removeCollisionObject(bodyHandle->m_multiBody->getBaseCollider());
int graphicsIndex = bodyHandle->m_multiBody->getBaseCollider()->getUserIndex();
m_data->m_guiHelper->removeGraphicsInstance(graphicsIndex);
delete bodyHandle->m_multiBody->getBaseCollider();
}
for (int link = 0; link < bodyHandle->m_multiBody->getNumLinks(); link++)
{
btCollisionObject* colObj = bodyHandle->m_multiBody->getLink(link).m_collider;
if (colObj)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->removeVisualShape(bodyHandle->m_multiBody->getLink(link).m_collider->getUserIndex3());
}
m_data->m_dynamicsWorld->removeCollisionObject(bodyHandle->m_multiBody->getLink(link).m_collider);
int graphicsIndex = bodyHandle->m_multiBody->getLink(link).m_collider->getUserIndex();
m_data->m_guiHelper->removeGraphicsInstance(graphicsIndex);
delete colObj;
}
}
int numCollisionObjects = m_data->m_dynamicsWorld->getNumCollisionObjects();
m_data->m_dynamicsWorld->removeMultiBody(bodyHandle->m_multiBody);
numCollisionObjects = m_data->m_dynamicsWorld->getNumCollisionObjects();
delete bodyHandle->m_multiBody;
bodyHandle->m_multiBody = 0;
serverCmd.m_type = CMD_REMOVE_BODY_COMPLETED;
}
if (bodyHandle->m_rigidBody)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->removeVisualShape(bodyHandle->m_rigidBody->getUserIndex3());
}
serverCmd.m_removeObjectArgs.m_bodyUniqueIds[serverCmd.m_removeObjectArgs.m_numBodies++] = bodyUniqueId;
if (m_data->m_pickedConstraint && m_data->m_pickedBody == bodyHandle->m_rigidBody)
{
m_data->m_pickedConstraint = 0;
m_data->m_pickedBody = 0;
}
//todo: clear all other remaining data...
m_data->m_dynamicsWorld->removeRigidBody(bodyHandle->m_rigidBody);
int graphicsInstance = bodyHandle->m_rigidBody->getUserIndex2();
m_data->m_guiHelper->removeGraphicsInstance(graphicsInstance);
delete bodyHandle->m_rigidBody;
bodyHandle->m_rigidBody = 0;
serverCmd.m_type = CMD_REMOVE_BODY_COMPLETED;
}
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
if (bodyHandle->m_softBody)
{
btSoftBody* psb = bodyHandle->m_softBody;
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->removeVisualShape(psb->getUserIndex3());
}
serverCmd.m_removeObjectArgs.m_bodyUniqueIds[serverCmd.m_removeObjectArgs.m_numBodies++] = bodyUniqueId;
btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld();
if (softWorld)
{
softWorld->removeSoftBody(psb);
}
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
deformWorld->removeSoftBody(psb);
}
int graphicsInstance = psb->getUserIndex2();
m_data->m_guiHelper->removeGraphicsInstance(graphicsInstance);
delete psb;
psb = 0;
serverCmd.m_type = CMD_REMOVE_BODY_COMPLETED;
}
#endif
for (int i = 0; i < bodyHandle->m_userDataHandles.size(); i++)
{
int userDataHandle = bodyHandle->m_userDataHandles[i];
SharedMemoryUserData* userData = m_data->m_userDataHandles.getHandle(userDataHandle);
m_data->m_userDataHandleLookup.remove(SharedMemoryUserDataHashKey(userData));
m_data->m_userDataHandles.freeHandle(userDataHandle);
}
m_data->m_bodyHandles.freeHandle(bodyUniqueId);
}
}
for (int i = 0; i < clientCmd.m_removeObjectArgs.m_numUserCollisionShapes; i++)
{
int removeCollisionShapeId = clientCmd.m_removeObjectArgs.m_userCollisionShapes[i];
InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(removeCollisionShapeId);
if (handle && handle->m_collisionShape)
{
if (handle->m_used)
{
b3Warning("Don't remove collision shape: it is used.");
}
else
{
b3Warning("TODO: dealloc");
int foundIndex = -1;
for (int i = 0; i < m_data->m_worldImporters.size(); i++)
{
btMultiBodyWorldImporter* importer = m_data->m_worldImporters[i];
for (int c = 0; c < importer->getNumCollisionShapes(); c++)
{
if (importer->getCollisionShapeByIndex(c) == handle->m_collisionShape)
{
if ((importer->getNumRigidBodies() == 0) &&
(importer->getNumConstraints() == 0))
{
foundIndex = i;
break;
}
}
}
}
if (foundIndex >= 0)
{
btMultiBodyWorldImporter* importer = m_data->m_worldImporters[foundIndex];
m_data->m_worldImporters.removeAtIndex(foundIndex);
importer->deleteAllData();
delete importer;
m_data->m_userCollisionShapeHandles.freeHandle(removeCollisionShapeId);
serverCmd.m_type = CMD_REMOVE_BODY_COMPLETED;
}
}
}
}
m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL, 1);
for (int i = 0; i < serverCmd.m_removeObjectArgs.m_numBodies; i++)
{
b3Notification notification;
notification.m_notificationType = BODY_REMOVED;
notification.m_bodyArgs.m_bodyUniqueId = serverCmd.m_removeObjectArgs.m_bodyUniqueIds[i];
m_data->m_pluginManager.addNotification(notification);
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateUserConstraintCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_USER_CONSTRAINT");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_USER_CONSTRAINT_FAILED;
hasStatus = true;
if (clientCmd.m_updateFlags & USER_CONSTRAINT_ADD_SOFT_BODY_ANCHOR)
{
#ifndef SKIP_DEFORMABLE_BODY
InternalBodyHandle* sbodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_parentBodyIndex);
if (sbodyHandle)
{
if (sbodyHandle->m_softBody)
{
int nodeIndex = clientCmd.m_userConstraintArguments.m_parentJointIndex;
if (nodeIndex>=0 && nodeIndex < sbodyHandle->m_softBody->m_nodes.size())
{
int bodyUniqueId = clientCmd.m_userConstraintArguments.m_childBodyIndex;
if (bodyUniqueId<=0)
{
//fixed anchor (mass = 0)
sbodyHandle->m_softBody->setMass(nodeIndex,0.0);
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
} else
{
InternalBodyHandle* mbodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (mbodyHandle && mbodyHandle->m_multiBody)
{
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
int linkIndex = clientCmd.m_userConstraintArguments.m_childJointIndex;
if (linkIndex<0)
{
sbodyHandle->m_softBody->appendDeformableAnchor(nodeIndex, mbodyHandle->m_multiBody->getBaseCollider());
} else
{
if (linkIndex < mbodyHandle->m_multiBody->getNumLinks())
{
sbodyHandle->m_softBody->appendDeformableAnchor(nodeIndex, mbodyHandle->m_multiBody->getLinkCollider(linkIndex));
}
}
}
}
if (mbodyHandle && mbodyHandle->m_rigidBody)
{
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
//todo: expose those values
bool disableCollisionBetweenLinkedBodies = true;
//btVector3 localPivot(0,0,0);
sbodyHandle->m_softBody->appendDeformableAnchor(nodeIndex, mbodyHandle->m_rigidBody);
}
#if 1
btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld();
if (softWorld)
{
bool disableCollisionBetweenLinkedBodies = true;
btVector3 localPivot(clientCmd.m_userConstraintArguments.m_childFrame[0],
clientCmd.m_userConstraintArguments.m_childFrame[1],
clientCmd.m_userConstraintArguments.m_childFrame[2]);
sbodyHandle->m_softBody->appendAnchor(nodeIndex, mbodyHandle->m_rigidBody, localPivot, disableCollisionBetweenLinkedBodies);
}
#endif
}
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
}
}
#endif
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_REQUEST_STATE)
{
int constraintUid = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(constraintUid);
if (userConstraintPtr)
{
serverCmd.m_userConstraintStateResultArgs.m_numDofs = 0;
for (int i = 0; i < 6; i++)
{
serverCmd.m_userConstraintStateResultArgs.m_appliedConstraintForces[i] = 0;
}
if (userConstraintPtr->m_mbConstraint)
{
serverCmd.m_userConstraintStateResultArgs.m_numDofs = userConstraintPtr->m_mbConstraint->getNumRows();
for (int i = 0; i < userConstraintPtr->m_mbConstraint->getNumRows(); i++)
{
serverCmd.m_userConstraintStateResultArgs.m_appliedConstraintForces[i] = userConstraintPtr->m_mbConstraint->getAppliedImpulse(i) / m_data->m_dynamicsWorld->getSolverInfo().m_timeStep;
}
serverCmd.m_type = CMD_USER_CONSTRAINT_REQUEST_STATE_COMPLETED;
}
}
};
if (clientCmd.m_updateFlags & USER_CONSTRAINT_REQUEST_INFO)
{
int userConstraintUidChange = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidChange);
if (userConstraintPtr)
{
serverCmd.m_userConstraintResultArgs = userConstraintPtr->m_userConstraintData;
serverCmd.m_type = CMD_USER_CONSTRAINT_INFO_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_ADD_CONSTRAINT)
{
btScalar defaultMaxForce = 500.0;
InternalBodyData* parentBody = m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_parentBodyIndex);
if (parentBody && parentBody->m_multiBody)
{
if ((clientCmd.m_userConstraintArguments.m_parentJointIndex >= -1) && clientCmd.m_userConstraintArguments.m_parentJointIndex < parentBody->m_multiBody->getNumLinks())
{
InternalBodyData* childBody = clientCmd.m_userConstraintArguments.m_childBodyIndex >= 0 ? m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_childBodyIndex) : 0;
//also create a constraint with just a single multibody/rigid body without child
//if (childBody)
{
btVector3 pivotInParent(clientCmd.m_userConstraintArguments.m_parentFrame[0], clientCmd.m_userConstraintArguments.m_parentFrame[1], clientCmd.m_userConstraintArguments.m_parentFrame[2]);
btVector3 pivotInChild(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]);
btMatrix3x3 frameInParent(btQuaternion(clientCmd.m_userConstraintArguments.m_parentFrame[3], clientCmd.m_userConstraintArguments.m_parentFrame[4], clientCmd.m_userConstraintArguments.m_parentFrame[5], clientCmd.m_userConstraintArguments.m_parentFrame[6]));
btMatrix3x3 frameInChild(btQuaternion(clientCmd.m_userConstraintArguments.m_childFrame[3], clientCmd.m_userConstraintArguments.m_childFrame[4], clientCmd.m_userConstraintArguments.m_childFrame[5], clientCmd.m_userConstraintArguments.m_childFrame[6]));
btVector3 jointAxis(clientCmd.m_userConstraintArguments.m_jointAxis[0], clientCmd.m_userConstraintArguments.m_jointAxis[1], clientCmd.m_userConstraintArguments.m_jointAxis[2]);
if (clientCmd.m_userConstraintArguments.m_jointType == eGearType)
{
if (childBody && childBody->m_multiBody)
{
if ((clientCmd.m_userConstraintArguments.m_childJointIndex >= -1) && (clientCmd.m_userConstraintArguments.m_childJointIndex < childBody->m_multiBody->getNumLinks()))
{
btMultiBodyGearConstraint* multibodyGear = new btMultiBodyGearConstraint(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, childBody->m_multiBody, clientCmd.m_userConstraintArguments.m_childJointIndex, pivotInParent, pivotInChild, frameInParent, frameInChild);
multibodyGear->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodyGear);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = multibodyGear;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid, userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
}
else if (clientCmd.m_userConstraintArguments.m_jointType == eFixedType)
{
if (childBody && childBody->m_multiBody)
{
if ((clientCmd.m_userConstraintArguments.m_childJointIndex >= -1) && (clientCmd.m_userConstraintArguments.m_childJointIndex < childBody->m_multiBody->getNumLinks()))
{
btMultiBodyFixedConstraint* multibodyFixed = new btMultiBodyFixedConstraint(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, childBody->m_multiBody, clientCmd.m_userConstraintArguments.m_childJointIndex, pivotInParent, pivotInChild, frameInParent, frameInChild);
multibodyFixed->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodyFixed);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = multibodyFixed;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid, userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
else
{
btRigidBody* rb = childBody ? childBody->m_rigidBody : 0;
btMultiBodyFixedConstraint* rigidbodyFixed = new btMultiBodyFixedConstraint(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, rb, pivotInParent, pivotInChild, frameInParent, frameInChild);
rigidbodyFixed->setMaxAppliedImpulse(defaultMaxForce);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(rigidbodyFixed);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = rigidbodyFixed;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid, userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
else if (clientCmd.m_userConstraintArguments.m_jointType == ePrismaticType)
{
if (childBody && childBody->m_multiBody)
{
btMultiBodySliderConstraint* multibodySlider = new btMultiBodySliderConstraint(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, childBody->m_multiBody, clientCmd.m_userConstraintArguments.m_childJointIndex, pivotInParent, pivotInChild, frameInParent, frameInChild, jointAxis);
multibodySlider->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodySlider);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = multibodySlider;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid, userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
else
{
btRigidBody* rb = childBody ? childBody->m_rigidBody : 0;
btMultiBodySliderConstraint* rigidbodySlider = new btMultiBodySliderConstraint(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, rb, pivotInParent, pivotInChild, frameInParent, frameInChild, jointAxis);
rigidbodySlider->setMaxAppliedImpulse(defaultMaxForce);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(rigidbodySlider);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = rigidbodySlider;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid, userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
else if (clientCmd.m_userConstraintArguments.m_jointType == ePoint2PointType)
{
if (childBody && childBody->m_multiBody)
{
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, childBody->m_multiBody, clientCmd.m_userConstraintArguments.m_childJointIndex, pivotInParent, pivotInChild);
p2p->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(p2p);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = p2p;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid, userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
else
{
btRigidBody* rb = childBody ? childBody->m_rigidBody : 0;
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, rb, pivotInParent, pivotInChild);
p2p->setMaxAppliedImpulse(defaultMaxForce);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(p2p);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = p2p;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid, userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
else
{
b3Warning("unknown constraint type");
}
}
}
}
else
{
InternalBodyData* childBody = clientCmd.m_userConstraintArguments.m_childBodyIndex >= 0 ? m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_childBodyIndex) : 0;
if (parentBody && childBody)
{
if (parentBody->m_rigidBody)
{
btRigidBody* parentRb = 0;
if (clientCmd.m_userConstraintArguments.m_parentJointIndex == -1)
{
parentRb = parentBody->m_rigidBody;
}
else
{
if ((clientCmd.m_userConstraintArguments.m_parentJointIndex >= 0) &&
(clientCmd.m_userConstraintArguments.m_parentJointIndex < parentBody->m_rigidBodyJoints.size()))
{
parentRb = &parentBody->m_rigidBodyJoints[clientCmd.m_userConstraintArguments.m_parentJointIndex]->getRigidBodyB();
}
}
btRigidBody* childRb = 0;
if (childBody->m_rigidBody)
{
if (clientCmd.m_userConstraintArguments.m_childJointIndex == -1)
{
childRb = childBody->m_rigidBody;
}
else
{
if ((clientCmd.m_userConstraintArguments.m_childJointIndex >= 0) && (clientCmd.m_userConstraintArguments.m_childJointIndex < childBody->m_rigidBodyJoints.size()))
{
childRb = &childBody->m_rigidBodyJoints[clientCmd.m_userConstraintArguments.m_childJointIndex]->getRigidBodyB();
}
}
}
switch (clientCmd.m_userConstraintArguments.m_jointType)
{
case eRevoluteType:
{
break;
}
case ePrismaticType:
{
break;
}
case eFixedType:
{
if (childRb && parentRb && (childRb != parentRb))
{
btVector3 pivotInParent(clientCmd.m_userConstraintArguments.m_parentFrame[0], clientCmd.m_userConstraintArguments.m_parentFrame[1], clientCmd.m_userConstraintArguments.m_parentFrame[2]);
btVector3 pivotInChild(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]);
btTransform offsetTrA, offsetTrB;
offsetTrA.setIdentity();
offsetTrA.setOrigin(pivotInParent);
offsetTrB.setIdentity();
offsetTrB.setOrigin(pivotInChild);
btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*parentRb, *childRb, offsetTrA, offsetTrB);
dof6->setLinearLowerLimit(btVector3(0, 0, 0));
dof6->setLinearUpperLimit(btVector3(0, 0, 0));
dof6->setAngularLowerLimit(btVector3(0, 0, 0));
dof6->setAngularUpperLimit(btVector3(0, 0, 0));
m_data->m_dynamicsWorld->addConstraint(dof6);
InteralUserConstraintData userConstraintData;
userConstraintData.m_rbConstraint = dof6;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid, userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
break;
}
case ePoint2PointType:
{
if (childRb && parentRb && (childRb != parentRb))
{
btVector3 pivotInParent(clientCmd.m_userConstraintArguments.m_parentFrame[0], clientCmd.m_userConstraintArguments.m_parentFrame[1], clientCmd.m_userConstraintArguments.m_parentFrame[2]);
btVector3 pivotInChild(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]);
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*parentRb, *childRb, pivotInParent, pivotInChild);
p2p->m_setting.m_impulseClamp = defaultMaxForce;
m_data->m_dynamicsWorld->addConstraint(p2p);
InteralUserConstraintData userConstraintData;
userConstraintData.m_rbConstraint = p2p;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid, userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
break;
}
case eGearType:
{
if (childRb && parentRb && (childRb != parentRb))
{
btVector3 axisA(clientCmd.m_userConstraintArguments.m_jointAxis[0],
clientCmd.m_userConstraintArguments.m_jointAxis[1],
clientCmd.m_userConstraintArguments.m_jointAxis[2]);
//for now we use the same local axis for both objects
btVector3 axisB(clientCmd.m_userConstraintArguments.m_jointAxis[0],
clientCmd.m_userConstraintArguments.m_jointAxis[1],
clientCmd.m_userConstraintArguments.m_jointAxis[2]);
btScalar ratio = 1;
btGearConstraint* gear = new btGearConstraint(*parentRb, *childRb, axisA, axisB, ratio);
m_data->m_dynamicsWorld->addConstraint(gear, true);
InteralUserConstraintData userConstraintData;
userConstraintData.m_rbConstraint = gear;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid, userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
break;
}
case eSphericalType:
{
b3Warning("constraint type not handled yet");
break;
}
case ePlanarType:
{
b3Warning("constraint type not handled yet");
break;
}
default:
{
b3Warning("unknown constraint type");
}
};
}
}
}
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT)
{
serverCmd.m_type = CMD_CHANGE_USER_CONSTRAINT_FAILED;
int userConstraintUidChange = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidChange);
if (userConstraintPtr)
{
if (userConstraintPtr->m_mbConstraint)
{
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_PIVOT_IN_B)
{
btVector3 pivotInB(clientCmd.m_userConstraintArguments.m_childFrame[0],
clientCmd.m_userConstraintArguments.m_childFrame[1],
clientCmd.m_userConstraintArguments.m_childFrame[2]);
userConstraintPtr->m_userConstraintData.m_childFrame[0] = clientCmd.m_userConstraintArguments.m_childFrame[0];
userConstraintPtr->m_userConstraintData.m_childFrame[1] = clientCmd.m_userConstraintArguments.m_childFrame[1];
userConstraintPtr->m_userConstraintData.m_childFrame[2] = clientCmd.m_userConstraintArguments.m_childFrame[2];
userConstraintPtr->m_mbConstraint->setPivotInB(pivotInB);
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B)
{
btQuaternion childFrameOrn(clientCmd.m_userConstraintArguments.m_childFrame[3],
clientCmd.m_userConstraintArguments.m_childFrame[4],
clientCmd.m_userConstraintArguments.m_childFrame[5],
clientCmd.m_userConstraintArguments.m_childFrame[6]);
userConstraintPtr->m_userConstraintData.m_childFrame[3] = clientCmd.m_userConstraintArguments.m_childFrame[3];
userConstraintPtr->m_userConstraintData.m_childFrame[4] = clientCmd.m_userConstraintArguments.m_childFrame[4];
userConstraintPtr->m_userConstraintData.m_childFrame[5] = clientCmd.m_userConstraintArguments.m_childFrame[5];
userConstraintPtr->m_userConstraintData.m_childFrame[6] = clientCmd.m_userConstraintArguments.m_childFrame[6];
btMatrix3x3 childFrameBasis(childFrameOrn);
userConstraintPtr->m_mbConstraint->setFrameInB(childFrameBasis);
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_MAX_FORCE)
{
btScalar maxImp = clientCmd.m_userConstraintArguments.m_maxAppliedForce * m_data->m_physicsDeltaTime;
userConstraintPtr->m_userConstraintData.m_maxAppliedForce = clientCmd.m_userConstraintArguments.m_maxAppliedForce;
userConstraintPtr->m_mbConstraint->setMaxAppliedImpulse(maxImp);
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_RATIO)
{
userConstraintPtr->m_mbConstraint->setGearRatio(clientCmd.m_userConstraintArguments.m_gearRatio);
userConstraintPtr->m_userConstraintData.m_gearRatio = clientCmd.m_userConstraintArguments.m_gearRatio;
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_RELATIVE_POSITION_TARGET)
{
userConstraintPtr->m_mbConstraint->setRelativePositionTarget(clientCmd.m_userConstraintArguments.m_relativePositionTarget);
userConstraintPtr->m_userConstraintData.m_relativePositionTarget = clientCmd.m_userConstraintArguments.m_relativePositionTarget;
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_ERP)
{
userConstraintPtr->m_mbConstraint->setErp(clientCmd.m_userConstraintArguments.m_erp);
userConstraintPtr->m_userConstraintData.m_erp = clientCmd.m_userConstraintArguments.m_erp;
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK)
{
userConstraintPtr->m_mbConstraint->setGearAuxLink(clientCmd.m_userConstraintArguments.m_gearAuxLink);
userConstraintPtr->m_userConstraintData.m_gearAuxLink = clientCmd.m_userConstraintArguments.m_gearAuxLink;
}
}
if (userConstraintPtr->m_rbConstraint)
{
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_MAX_FORCE)
{
btScalar maxImp = clientCmd.m_userConstraintArguments.m_maxAppliedForce * m_data->m_physicsDeltaTime;
userConstraintPtr->m_userConstraintData.m_maxAppliedForce = clientCmd.m_userConstraintArguments.m_maxAppliedForce;
//userConstraintPtr->m_rbConstraint->setMaxAppliedImpulse(maxImp);
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_RATIO)
{
if (userConstraintPtr->m_rbConstraint->getObjectType() == GEAR_CONSTRAINT_TYPE)
{
btGearConstraint* gear = (btGearConstraint*)userConstraintPtr->m_rbConstraint;
gear->setRatio(clientCmd.m_userConstraintArguments.m_gearRatio);
}
}
}
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = userConstraintUidChange;
serverCmd.m_updateFlags = clientCmd.m_updateFlags;
serverCmd.m_type = CMD_CHANGE_USER_CONSTRAINT_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_REMOVE_CONSTRAINT)
{
serverCmd.m_type = CMD_REMOVE_USER_CONSTRAINT_FAILED;
int userConstraintUidRemove = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidRemove);
if (userConstraintPtr)
{
if (userConstraintPtr->m_mbConstraint)
{
m_data->m_dynamicsWorld->removeMultiBodyConstraint(userConstraintPtr->m_mbConstraint);
delete userConstraintPtr->m_mbConstraint;
m_data->m_userConstraints.remove(userConstraintUidRemove);
}
if (userConstraintPtr->m_rbConstraint)
{
m_data->m_dynamicsWorld->removeConstraint(userConstraintPtr->m_rbConstraint);
delete userConstraintPtr->m_rbConstraint;
m_data->m_userConstraints.remove(userConstraintUidRemove);
}
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = userConstraintUidRemove;
serverCmd.m_type = CMD_REMOVE_USER_CONSTRAINT_COMPLETED;
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CALCULATE_INVERSE_KINEMATICS");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_FAILED;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateInverseKinematicsArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
IKTrajectoryHelper** ikHelperPtrPtr = m_data->m_inverseKinematicsHelpers.find(bodyHandle->m_multiBody);
IKTrajectoryHelper* ikHelperPtr = 0;
if (ikHelperPtrPtr)
{
ikHelperPtr = *ikHelperPtrPtr;
}
else
{
IKTrajectoryHelper* tmpHelper = new IKTrajectoryHelper;
m_data->m_inverseKinematicsHelpers.insert(bodyHandle->m_multiBody, tmpHelper);
ikHelperPtr = tmpHelper;
}
int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0];
btAlignedObjectArray<double> startingPositions;
startingPositions.reserve(bodyHandle->m_multiBody->getNumLinks());
btVector3 targetPosWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[0],
clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[1],
clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[2]);
btQuaternion targetOrnWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[0],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[1],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[2],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[3]);
btTransform targetBaseCoord;
if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS)
{
targetBaseCoord.setOrigin(targetPosWorld);
targetBaseCoord.setRotation(targetOrnWorld);
}
else
{
btTransform targetWorld;
targetWorld.setOrigin(targetPosWorld);
targetWorld.setRotation(targetOrnWorld);
btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform();
targetBaseCoord = tr.inverse() * targetWorld;
}
{
int DofIndex = 0;
for (int i = 0; i < bodyHandle->m_multiBody->getNumLinks(); ++i)
{
if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2)
{
// 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints.
double curPos = 0;
if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS)
{
curPos = clientCmd.m_calculateInverseKinematicsArguments.m_currentPositions[DofIndex];
}
else
{
curPos = bodyHandle->m_multiBody->getJointPos(i);
}
startingPositions.push_back(curPos);
DofIndex++;
}
}
}
int numIterations = 20;
if (clientCmd.m_updateFlags & IK_HAS_MAX_ITERATIONS)
{
numIterations = clientCmd.m_calculateInverseKinematicsArguments.m_maxNumIterations;
}
double residualThreshold = 1e-4;
if (clientCmd.m_updateFlags & IK_HAS_RESIDUAL_THRESHOLD)
{
residualThreshold = clientCmd.m_calculateInverseKinematicsArguments.m_residualThreshold;
}
btScalar currentDiff = 1e30f;
b3AlignedObjectArray<double> jacobian_linear;
b3AlignedObjectArray<double> jacobian_angular;
btAlignedObjectArray<double> q_current;
btAlignedObjectArray<double> q_new;
btAlignedObjectArray<double> lower_limit;
btAlignedObjectArray<double> upper_limit;
btAlignedObjectArray<double> joint_range;
btAlignedObjectArray<double> rest_pose;
const int numDofs = bodyHandle->m_multiBody->getNumDofs();
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
btInverseDynamics::vecx nu(numDofs + baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs);
for (int i = 0; i < numIterations && currentDiff > residualThreshold; i++)
{
BT_PROFILE("InverseKinematics1Step");
if (ikHelperPtr && (endEffectorLinkIndex < bodyHandle->m_multiBody->getNumLinks()))
{
jacobian_linear.resize(3 * numDofs);
jacobian_angular.resize(3 * numDofs);
int jacSize = 0;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
q_current.resize(numDofs);
if (tree && ((numDofs + baseDofs) == tree->numDoFs()))
{
btInverseDynamics::vec3 world_origin;
btInverseDynamics::mat33 world_rot;
jacSize = jacobian_linear.size();
// Set jacobian value
int DofIndex = 0;
for (int i = 0; i < bodyHandle->m_multiBody->getNumLinks(); ++i)
{
if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2)
{
// 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints.
double curPos = startingPositions[DofIndex];
q_current[DofIndex] = curPos;
q[DofIndex + baseDofs] = curPos;
qdot[DofIndex + baseDofs] = 0;
nu[DofIndex + baseDofs] = 0;
DofIndex++;
}
} // Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
{
BT_PROFILE("calculateInverseDynamics");
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
tree->calculateJacobians(q);
btInverseDynamics::mat3x jac_t(3, numDofs + baseDofs);
btInverseDynamics::mat3x jac_r(3, numDofs + baseDofs);
// Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link.
tree->getBodyJacobianTrans(endEffectorLinkIndex + 1, &jac_t);
tree->getBodyJacobianRot(endEffectorLinkIndex + 1, &jac_r);
//calculatePositionKinematics is already done inside calculateInverseDynamics
tree->getBodyOrigin(endEffectorLinkIndex + 1, &world_origin);
tree->getBodyTransform(endEffectorLinkIndex + 1, &world_rot);
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < numDofs; ++j)
{
jacobian_linear[i * numDofs + j] = jac_t(i, (baseDofs + j));
jacobian_angular[i * numDofs + j] = jac_r(i, (baseDofs + j));
}
}
}
}
q_new.resize(numDofs);
int ikMethod = 0;
if ((clientCmd.m_updateFlags & IK_HAS_TARGET_ORIENTATION) && (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY))
{
//Nullspace task only works with DLS now. TODO: add nullspace task to SDLS.
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE;
}
else if (clientCmd.m_updateFlags & IK_HAS_TARGET_ORIENTATION)
{
if (clientCmd.m_updateFlags & IK_SDLS)
{
ikMethod = IK2_VEL_SDLS_WITH_ORIENTATION;
}
else
{
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION;
}
}
else if (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY)
{
//Nullspace task only works with DLS now. TODO: add nullspace task to SDLS.
ikMethod = IK2_VEL_DLS_WITH_NULLSPACE;
}
else
{
if (clientCmd.m_updateFlags & IK_SDLS)
{
ikMethod = IK2_VEL_SDLS;
}
else
{
ikMethod = IK2_VEL_DLS;
;
}
}
if (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY)
{
lower_limit.resize(numDofs);
upper_limit.resize(numDofs);
joint_range.resize(numDofs);
rest_pose.resize(numDofs);
for (int i = 0; i < numDofs; ++i)
{
lower_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_lowerLimit[i];
upper_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_upperLimit[i];
joint_range[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointRange[i];
rest_pose[i] = clientCmd.m_calculateInverseKinematicsArguments.m_restPose[i];
}
{
BT_PROFILE("computeNullspaceVel");
ikHelperPtr->computeNullspaceVel(numDofs, &q_current[0], &lower_limit[0], &upper_limit[0], &joint_range[0], &rest_pose[0]);
}
}
//btTransform endEffectorTransformWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform * bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse();
btVector3DoubleData endEffectorWorldPosition;
btQuaternionDoubleData endEffectorWorldOrientation;
//get the position from the inverse dynamics (based on q) instead of endEffectorTransformWorld
btVector3 endEffectorPosWorldOrg = world_origin;
btQuaternion endEffectorOriWorldOrg;
world_rot.getRotation(endEffectorOriWorldOrg);
btTransform endEffectorBaseCoord;
endEffectorBaseCoord.setOrigin(endEffectorPosWorldOrg);
endEffectorBaseCoord.setRotation(endEffectorOriWorldOrg);
//don't need the next two lines
//btTransform linkInertiaInv = bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse();
//endEffectorBaseCoord = endEffectorBaseCoord * linkInertiaInv;
//btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform();
//endEffectorBaseCoord = tr.inverse()*endEffectorTransformWorld;
//endEffectorBaseCoord = tr.inverse()*endEffectorTransformWorld;
btQuaternion endEffectorOriBaseCoord = endEffectorBaseCoord.getRotation();
//btVector4 endEffectorOri(endEffectorOriBaseCoord.x(), endEffectorOriBaseCoord.y(), endEffectorOriBaseCoord.z(), endEffectorOriBaseCoord.w());
endEffectorBaseCoord.getOrigin().serializeDouble(endEffectorWorldPosition);
endEffectorBaseCoord.getRotation().serializeDouble(endEffectorWorldOrientation);
//diff
currentDiff = (endEffectorBaseCoord.getOrigin() - targetBaseCoord.getOrigin()).length();
btVector3DoubleData targetPosBaseCoord;
btQuaternionDoubleData targetOrnBaseCoord;
targetBaseCoord.getOrigin().serializeDouble(targetPosBaseCoord);
targetBaseCoord.getRotation().serializeDouble(targetOrnBaseCoord);
// Set joint damping coefficents. A small default
// damping constant is added to prevent singularity
// with pseudo inverse. The user can set joint damping
// coefficients differently for each joint. The larger
// the damping coefficient is, the less we rely on
// this joint to achieve the IK target.
btAlignedObjectArray<double> joint_damping;
joint_damping.resize(numDofs, 0.5);
if (clientCmd.m_updateFlags & IK_HAS_JOINT_DAMPING)
{
for (int i = 0; i < numDofs; ++i)
{
joint_damping[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointDamping[i];
}
}
ikHelperPtr->setDampingCoeff(numDofs, &joint_damping[0]);
double targetDampCoeff[6] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
{
BT_PROFILE("computeIK");
ikHelperPtr->computeIK(targetPosBaseCoord.m_floats, targetOrnBaseCoord.m_floats,
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
&q_current[0],
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0],
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize * 2, targetDampCoeff);
}
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
for (int i = 0; i < numDofs; i++)
{
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
}
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
for (int i = 0; i < numDofs; i++)
{
startingPositions[i] = q_new[i];
}
}
}
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand2(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CALCULATE_INVERSE_KINEMATICS");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_FAILED;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateInverseKinematicsArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
IKTrajectoryHelper** ikHelperPtrPtr = m_data->m_inverseKinematicsHelpers.find(bodyHandle->m_multiBody);
IKTrajectoryHelper* ikHelperPtr = 0;
if (ikHelperPtrPtr)
{
ikHelperPtr = *ikHelperPtrPtr;
}
else
{
IKTrajectoryHelper* tmpHelper = new IKTrajectoryHelper;
m_data->m_inverseKinematicsHelpers.insert(bodyHandle->m_multiBody, tmpHelper);
ikHelperPtr = tmpHelper;
}
btAlignedObjectArray<double> startingPositions;
startingPositions.reserve(bodyHandle->m_multiBody->getNumLinks());
{
int DofIndex = 0;
for (int i = 0; i < bodyHandle->m_multiBody->getNumLinks(); ++i)
{
if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2)
{
// 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints.
double curPos = 0;
if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS)
{
curPos = clientCmd.m_calculateInverseKinematicsArguments.m_currentPositions[DofIndex];
}
else
{
curPos = bodyHandle->m_multiBody->getJointPos(i);
}
startingPositions.push_back(curPos);
DofIndex++;
}
}
}
int numIterations = 20;
if (clientCmd.m_updateFlags & IK_HAS_MAX_ITERATIONS)
{
numIterations = clientCmd.m_calculateInverseKinematicsArguments.m_maxNumIterations;
}
double residualThreshold = 1e-4;
if (clientCmd.m_updateFlags & IK_HAS_RESIDUAL_THRESHOLD)
{
residualThreshold = clientCmd.m_calculateInverseKinematicsArguments.m_residualThreshold;
}
btScalar currentDiff = 1e30f;
b3AlignedObjectArray<double> endEffectorTargetWorldPositions;
b3AlignedObjectArray<double> endEffectorTargetWorldOrientations;
b3AlignedObjectArray<double> endEffectorCurrentWorldPositions;
b3AlignedObjectArray<double> jacobian_linear;
b3AlignedObjectArray<double> jacobian_angular;
btAlignedObjectArray<double> q_current;
btAlignedObjectArray<double> q_new;
btAlignedObjectArray<double> lower_limit;
btAlignedObjectArray<double> upper_limit;
btAlignedObjectArray<double> joint_range;
btAlignedObjectArray<double> rest_pose;
const int numDofs = bodyHandle->m_multiBody->getNumDofs();
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
btInverseDynamics::vecx nu(numDofs + baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs);
endEffectorTargetWorldPositions.resize(0);
endEffectorTargetWorldPositions.reserve(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3);
endEffectorTargetWorldOrientations.resize(0);
endEffectorTargetWorldOrientations.reserve(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 4);
bool validEndEffectorLinkIndices = true;
for (int ne = 0; ne < clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices; ne++)
{
int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[ne];
validEndEffectorLinkIndices = validEndEffectorLinkIndices && (endEffectorLinkIndex < bodyHandle->m_multiBody->getNumLinks());
btVector3 targetPosWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne * 3 + 0],
clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne * 3 + 1],
clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne * 3 + 2]);
btQuaternion targetOrnWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 0],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 1],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 2],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 3]);
btTransform targetBaseCoord;
if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS)
{
targetBaseCoord.setOrigin(targetPosWorld);
targetBaseCoord.setRotation(targetOrnWorld);
}
else
{
btTransform targetWorld;
targetWorld.setOrigin(targetPosWorld);
targetWorld.setRotation(targetOrnWorld);
btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform();
targetBaseCoord = tr.inverse() * targetWorld;
}
btVector3DoubleData targetPosBaseCoord;
btQuaternionDoubleData targetOrnBaseCoord;
targetBaseCoord.getOrigin().serializeDouble(targetPosBaseCoord);
targetBaseCoord.getRotation().serializeDouble(targetOrnBaseCoord);
endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[0]);
endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[1]);
endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[2]);
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[0]);
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[1]);
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[2]);
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[3]);
}
for (int i = 0; i < numIterations && currentDiff > residualThreshold; i++)
{
BT_PROFILE("InverseKinematics1Step");
if (ikHelperPtr && validEndEffectorLinkIndices)
{
jacobian_linear.resize(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3 * numDofs);
jacobian_angular.resize(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3 * numDofs);
int jacSize = 0;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
q_current.resize(numDofs);
if (tree && ((numDofs + baseDofs) == tree->numDoFs()))
{
btInverseDynamics::vec3 world_origin;
btInverseDynamics::mat33 world_rot;
jacSize = jacobian_linear.size();
// Set jacobian value
int DofIndex = 0;
for (int i = 0; i < bodyHandle->m_multiBody->getNumLinks(); ++i)
{
if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2)
{
// 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints.
double curPos = startingPositions[DofIndex];
q_current[DofIndex] = curPos;
q[DofIndex + baseDofs] = curPos;
qdot[DofIndex + baseDofs] = 0;
nu[DofIndex + baseDofs] = 0;
DofIndex++;
}
} // Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
{
BT_PROFILE("calculateInverseDynamics");
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
tree->calculateJacobians(q);
btInverseDynamics::mat3x jac_t(3, numDofs + baseDofs);
btInverseDynamics::mat3x jac_r(3, numDofs + baseDofs);
currentDiff = 0;
endEffectorCurrentWorldPositions.resize(0);
endEffectorCurrentWorldPositions.reserve(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3);
for (int ne = 0; ne < clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices; ne++)
{
int endEffectorLinkIndex2 = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[ne];
// Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link.
tree->getBodyJacobianTrans(endEffectorLinkIndex2 + 1, &jac_t);
tree->getBodyJacobianRot(endEffectorLinkIndex2 + 1, &jac_r);
//calculatePositionKinematics is already done inside calculateInverseDynamics
tree->getBodyOrigin(endEffectorLinkIndex2 + 1, &world_origin);
tree->getBodyTransform(endEffectorLinkIndex2 + 1, &world_rot);
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < numDofs; ++j)
{
jacobian_linear[(ne * 3 + i) * numDofs + j] = jac_t(i, (baseDofs + j));
jacobian_angular[(ne * 3 + i) * numDofs + j] = jac_r(i, (baseDofs + j));
}
}
endEffectorCurrentWorldPositions.push_back(world_origin[0]);
endEffectorCurrentWorldPositions.push_back(world_origin[1]);
endEffectorCurrentWorldPositions.push_back(world_origin[2]);
btInverseDynamics::vec3 targetPos(btVector3(endEffectorTargetWorldPositions[ne * 3 + 0],
endEffectorTargetWorldPositions[ne * 3 + 1],
endEffectorTargetWorldPositions[ne * 3 + 2]));
//diff
currentDiff = btMax(currentDiff, (world_origin - targetPos).length());
}
}
}
q_new.resize(numDofs);
int ikMethod = 0;
if ((clientCmd.m_updateFlags & IK_HAS_TARGET_ORIENTATION) && (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY))
{
//Nullspace task only works with DLS now. TODO: add nullspace task to SDLS.
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE;
}
else if (clientCmd.m_updateFlags & IK_HAS_TARGET_ORIENTATION)
{
if (clientCmd.m_updateFlags & IK_SDLS)
{
ikMethod = IK2_VEL_SDLS_WITH_ORIENTATION;
}
else
{
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION;
}
}
else if (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY)
{
//Nullspace task only works with DLS now. TODO: add nullspace task to SDLS.
ikMethod = IK2_VEL_DLS_WITH_NULLSPACE;
}
else
{
if (clientCmd.m_updateFlags & IK_SDLS)
{
ikMethod = IK2_VEL_SDLS;
}
else
{
ikMethod = IK2_VEL_DLS;
;
}
}
if (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY)
{
lower_limit.resize(numDofs);
upper_limit.resize(numDofs);
joint_range.resize(numDofs);
rest_pose.resize(numDofs);
for (int i = 0; i < numDofs; ++i)
{
lower_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_lowerLimit[i];
upper_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_upperLimit[i];
joint_range[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointRange[i];
rest_pose[i] = clientCmd.m_calculateInverseKinematicsArguments.m_restPose[i];
}
{
BT_PROFILE("computeNullspaceVel");
ikHelperPtr->computeNullspaceVel(numDofs, &q_current[0], &lower_limit[0], &upper_limit[0], &joint_range[0], &rest_pose[0]);
}
}
//btTransform endEffectorTransformWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform * bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse();
btVector3DoubleData endEffectorWorldPosition;
btQuaternionDoubleData endEffectorWorldOrientation;
//get the position from the inverse dynamics (based on q) instead of endEffectorTransformWorld
btVector3 endEffectorPosWorldOrg = world_origin;
btQuaternion endEffectorOriWorldOrg;
world_rot.getRotation(endEffectorOriWorldOrg);
btTransform endEffectorBaseCoord;
endEffectorBaseCoord.setOrigin(endEffectorPosWorldOrg);
endEffectorBaseCoord.setRotation(endEffectorOriWorldOrg);
//don't need the next two lines
//btTransform linkInertiaInv = bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse();
//endEffectorBaseCoord = endEffectorBaseCoord * linkInertiaInv;
//btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform();
//endEffectorBaseCoord = tr.inverse()*endEffectorTransformWorld;
//endEffectorBaseCoord = tr.inverse()*endEffectorTransformWorld;
btQuaternion endEffectorOriBaseCoord = endEffectorBaseCoord.getRotation();
//btVector4 endEffectorOri(endEffectorOriBaseCoord.x(), endEffectorOriBaseCoord.y(), endEffectorOriBaseCoord.z(), endEffectorOriBaseCoord.w());
endEffectorBaseCoord.getOrigin().serializeDouble(endEffectorWorldPosition);
endEffectorBaseCoord.getRotation().serializeDouble(endEffectorWorldOrientation);
// Set joint damping coefficents. A small default
// damping constant is added to prevent singularity
// with pseudo inverse. The user can set joint damping
// coefficients differently for each joint. The larger
// the damping coefficient is, the less we rely on
// this joint to achieve the IK target.
btAlignedObjectArray<double> joint_damping;
joint_damping.resize(numDofs, 0.5);
if (clientCmd.m_updateFlags & IK_HAS_JOINT_DAMPING)
{
for (int i = 0; i < numDofs; ++i)
{
joint_damping[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointDamping[i];
}
}
ikHelperPtr->setDampingCoeff(numDofs, &joint_damping[0]);
double targetDampCoeff[6] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
bool performedIK = false;
if (clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices == 1)
{
BT_PROFILE("computeIK");
ikHelperPtr->computeIK(&endEffectorTargetWorldPositions[0],
&endEffectorTargetWorldOrientations[0],
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
&q_current[0],
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0],
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize * 2, targetDampCoeff);
performedIK = true;
}
else
{
if (clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices > 1)
{
ikHelperPtr->computeIK2(&endEffectorTargetWorldPositions[0],
&endEffectorCurrentWorldPositions[0],
clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices,
//endEffectorWorldOrientation.m_floats,
&q_current[0],
numDofs,
&q_new[0], ikMethod, &jacobian_linear[0], targetDampCoeff);
performedIK = true;
}
}
if (performedIK)
{
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
for (int i = 0; i < numDofs; i++)
{
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
}
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
for (int i = 0; i < numDofs; i++)
{
startingPositions[i] = q_new[i];
}
}
}
}
}
}
return hasStatus;
}
// PyModule_AddIntConstant(m, "GEOM_SPHERE", GEOM_SPHERE);
// PyModule_AddIntConstant(m, "GEOM_BOX", GEOM_BOX);
// PyModule_AddIntConstant(m, "GEOM_CYLINDER", GEOM_CYLINDER);
// PyModule_AddIntConstant(m, "GEOM_MESH", GEOM_MESH);
// PyModule_AddIntConstant(m, "GEOM_PLANE", GEOM_PLANE);
// PyModule_AddIntConstant(m, "GEOM_CAPSULE", GEOM_CAPSULE);
int PhysicsServerCommandProcessor::extractCollisionShapes(const btCollisionShape* colShape, const btTransform& transform, b3CollisionShapeData* collisionShapeBuffer, int maxCollisionShapes)
{
if (maxCollisionShapes <= 0)
{
b3Warning("No space in buffer");
return 0;
}
int numConverted = 0;
collisionShapeBuffer[0].m_localCollisionFrame[0] = transform.getOrigin()[0];
collisionShapeBuffer[0].m_localCollisionFrame[1] = transform.getOrigin()[1];
collisionShapeBuffer[0].m_localCollisionFrame[2] = transform.getOrigin()[2];
collisionShapeBuffer[0].m_localCollisionFrame[3] = transform.getRotation()[0];
collisionShapeBuffer[0].m_localCollisionFrame[4] = transform.getRotation()[1];
collisionShapeBuffer[0].m_localCollisionFrame[5] = transform.getRotation()[2];
collisionShapeBuffer[0].m_localCollisionFrame[6] = transform.getRotation()[3];
collisionShapeBuffer[0].m_meshAssetFileName[0] = 0;
switch (colShape->getShapeType())
{
case STATIC_PLANE_PROXYTYPE:
{
btStaticPlaneShape* plane = (btStaticPlaneShape*)colShape;
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_PLANE;
collisionShapeBuffer[0].m_dimensions[0] = plane->getPlaneNormal()[0];
collisionShapeBuffer[0].m_dimensions[1] = plane->getPlaneNormal()[1];
collisionShapeBuffer[0].m_dimensions[2] = plane->getPlaneNormal()[2];
numConverted += 1;
break;
}
case TRIANGLE_MESH_SHAPE_PROXYTYPE:
case SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE:
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
UrdfCollision* urdfCol = m_data->m_bulletCollisionShape2UrdfCollision.find(colShape);
if (urdfCol && (urdfCol->m_geometry.m_type == URDF_GEOM_MESH))
{
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_MESH;
collisionShapeBuffer[0].m_dimensions[0] = urdfCol->m_geometry.m_meshScale[0];
collisionShapeBuffer[0].m_dimensions[1] = urdfCol->m_geometry.m_meshScale[1];
collisionShapeBuffer[0].m_dimensions[2] = urdfCol->m_geometry.m_meshScale[2];
strcpy(collisionShapeBuffer[0].m_meshAssetFileName, urdfCol->m_geometry.m_meshFileName.c_str());
numConverted += 1;
}
else
{
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_MESH;
sprintf(collisionShapeBuffer[0].m_meshAssetFileName, "unknown_file");
collisionShapeBuffer[0].m_dimensions[0] = 1;
collisionShapeBuffer[0].m_dimensions[1] = 1;
collisionShapeBuffer[0].m_dimensions[2] = 1;
numConverted++;
}
break;
}
case CAPSULE_SHAPE_PROXYTYPE:
{
btCapsuleShapeZ* capsule = (btCapsuleShapeZ*)colShape;
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_CAPSULE;
collisionShapeBuffer[0].m_dimensions[0] = 2. * capsule->getHalfHeight();
collisionShapeBuffer[0].m_dimensions[1] = capsule->getRadius();
collisionShapeBuffer[0].m_dimensions[2] = 0;
numConverted++;
break;
}
case CYLINDER_SHAPE_PROXYTYPE:
{
btCylinderShapeZ* cyl = (btCylinderShapeZ*)colShape;
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_CYLINDER;
collisionShapeBuffer[0].m_dimensions[0] = 2. * cyl->getHalfExtentsWithMargin().getZ();
collisionShapeBuffer[0].m_dimensions[1] = cyl->getHalfExtentsWithMargin().getX();
collisionShapeBuffer[0].m_dimensions[2] = 0;
numConverted++;
break;
}
case BOX_SHAPE_PROXYTYPE:
{
btBoxShape* box = (btBoxShape*)colShape;
btVector3 halfExtents = box->getHalfExtentsWithMargin();
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_BOX;
collisionShapeBuffer[0].m_dimensions[0] = 2. * halfExtents[0];
collisionShapeBuffer[0].m_dimensions[1] = 2. * halfExtents[1];
collisionShapeBuffer[0].m_dimensions[2] = 2. * halfExtents[2];
numConverted++;
break;
}
case SPHERE_SHAPE_PROXYTYPE:
{
btSphereShape* sphere = (btSphereShape*)colShape;
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_SPHERE;
collisionShapeBuffer[0].m_dimensions[0] = sphere->getRadius();
collisionShapeBuffer[0].m_dimensions[1] = sphere->getRadius();
collisionShapeBuffer[0].m_dimensions[2] = sphere->getRadius();
numConverted++;
break;
}
case COMPOUND_SHAPE_PROXYTYPE:
{
//it could be a compound mesh from a wavefront OBJ, check it
UrdfCollision* urdfCol = m_data->m_bulletCollisionShape2UrdfCollision.find(colShape);
if (urdfCol && (urdfCol->m_geometry.m_type == URDF_GEOM_MESH))
{
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_MESH;
collisionShapeBuffer[0].m_dimensions[0] = urdfCol->m_geometry.m_meshScale[0];
collisionShapeBuffer[0].m_dimensions[1] = urdfCol->m_geometry.m_meshScale[1];
collisionShapeBuffer[0].m_dimensions[2] = urdfCol->m_geometry.m_meshScale[2];
strcpy(collisionShapeBuffer[0].m_meshAssetFileName, urdfCol->m_geometry.m_meshFileName.c_str());
numConverted += 1;
}
else
{
//recurse, accumulate childTransform
btCompoundShape* compound = (btCompoundShape*)colShape;
for (int i = 0; i < compound->getNumChildShapes(); i++)
{
btTransform childTrans = transform * compound->getChildTransform(i);
int remain = maxCollisionShapes - numConverted;
int converted = extractCollisionShapes(compound->getChildShape(i), childTrans, &collisionShapeBuffer[numConverted], remain);
numConverted += converted;
}
}
break;
}
default:
{
b3Warning("Unexpected collision shape type in PhysicsServerCommandProcessor::extractCollisionShapes");
}
};
return numConverted;
}
bool PhysicsServerCommandProcessor::processRequestCollisionShapeInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_COLLISION_SHAPE_INFO");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_COLLISION_SHAPE_INFO_FAILED;
int bodyUniqueId = clientCmd.m_requestCollisionShapeDataArguments.m_bodyUniqueId;
int linkIndex = clientCmd.m_requestCollisionShapeDataArguments.m_linkIndex;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (bodyHandle)
{
if (bodyHandle->m_multiBody)
{
b3CollisionShapeData* collisionShapeStoragePtr = (b3CollisionShapeData*)bufferServerToClient;
int totalBytesPerObject = sizeof(b3CollisionShapeData);
int maxNumColObjects = bufferSizeInBytes / totalBytesPerObject - 1;
btTransform childTrans;
childTrans.setIdentity();
serverCmd.m_sendCollisionShapeArgs.m_bodyUniqueId = bodyUniqueId;
serverCmd.m_sendCollisionShapeArgs.m_linkIndex = linkIndex;
if (linkIndex == -1)
{
if (bodyHandle->m_multiBody->getBaseCollider())
{
//extract shape info from base collider
int numConvertedCollisionShapes = extractCollisionShapes(bodyHandle->m_multiBody->getBaseCollider()->getCollisionShape(), childTrans, collisionShapeStoragePtr, maxNumColObjects);
serverCmd.m_sendCollisionShapeArgs.m_numCollisionShapes = numConvertedCollisionShapes;
serverCmd.m_type = CMD_COLLISION_SHAPE_INFO_COMPLETED;
}
}
else
{
if (linkIndex >= 0 && linkIndex < bodyHandle->m_multiBody->getNumLinks() && bodyHandle->m_multiBody->getLinkCollider(linkIndex))
{
int numConvertedCollisionShapes = extractCollisionShapes(bodyHandle->m_multiBody->getLinkCollider(linkIndex)->getCollisionShape(), childTrans, collisionShapeStoragePtr, maxNumColObjects);
serverCmd.m_sendCollisionShapeArgs.m_numCollisionShapes = numConvertedCollisionShapes;
serverCmd.m_type = CMD_COLLISION_SHAPE_INFO_COMPLETED;
}
}
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestVisualShapeInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_VISUAL_SHAPE_INFO");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_VISUAL_SHAPE_INFO_FAILED;
//retrieve the visual shape information for a specific body
if (m_data->m_pluginManager.getRenderInterface())
{
int totalNumVisualShapes = m_data->m_pluginManager.getRenderInterface()->getNumVisualShapes(clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId);
//int totalBytesPerVisualShape = sizeof (b3VisualShapeData);
//int visualShapeStorage = bufferSizeInBytes / totalBytesPerVisualShape - 1;
//set serverCmd.m_sendVisualShapeArgs when totalNumVisualShapes is zero
if (totalNumVisualShapes == 0)
{
serverCmd.m_sendVisualShapeArgs.m_numRemainingVisualShapes = 0;
serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied = 0;
serverCmd.m_sendVisualShapeArgs.m_startingVisualShapeIndex = clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex;
serverCmd.m_sendVisualShapeArgs.m_bodyUniqueId = clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId;
serverCmd.m_numDataStreamBytes = sizeof(b3VisualShapeData) * serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied;
serverCmd.m_type = CMD_VISUAL_SHAPE_INFO_COMPLETED;
}
else
{
b3VisualShapeData* visualShapeStoragePtr = (b3VisualShapeData*)bufferServerToClient;
int remain = totalNumVisualShapes - clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex;
int shapeIndex = clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex;
int success = m_data->m_pluginManager.getRenderInterface()->getVisualShapesData(clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId,
shapeIndex,
visualShapeStoragePtr);
if (success)
{
//find the matching texture unique ids.
if (visualShapeStoragePtr->m_tinyRendererTextureId >= 0)
{
b3AlignedObjectArray<int> usedHandles;
m_data->m_textureHandles.getUsedHandles(usedHandles);
for (int i = 0; i < usedHandles.size(); i++)
{
int texHandle = usedHandles[i];
InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(texHandle);
if (texH && (texH->m_tinyRendererTextureId == visualShapeStoragePtr->m_tinyRendererTextureId))
{
visualShapeStoragePtr->m_openglTextureId = texH->m_openglTextureId;
visualShapeStoragePtr->m_textureUniqueId = texHandle;
}
}
}
serverCmd.m_sendVisualShapeArgs.m_numRemainingVisualShapes = remain - 1;
serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied = 1;
serverCmd.m_sendVisualShapeArgs.m_startingVisualShapeIndex = clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex;
serverCmd.m_sendVisualShapeArgs.m_bodyUniqueId = clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId;
serverCmd.m_numDataStreamBytes = sizeof(b3VisualShapeData) * serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied;
serverCmd.m_type = CMD_VISUAL_SHAPE_INFO_COMPLETED;
}
else
{
b3Warning("failed to get shape info");
}
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processUpdateVisualShapeCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_UPDATE_VISUAL_SHAPE");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_VISUAL_SHAPE_UPDATE_FAILED;
InternalTextureHandle* texHandle = 0;
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE)
{
if (clientCmd.m_updateVisualShapeDataArguments.m_textureUniqueId >= 0)
{
texHandle = m_data->m_textureHandles.getHandle(clientCmd.m_updateVisualShapeDataArguments.m_textureUniqueId);
}
if (clientCmd.m_updateVisualShapeDataArguments.m_textureUniqueId >= -1)
{
if (texHandle)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->changeShapeTexture(clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId,
clientCmd.m_updateVisualShapeDataArguments.m_jointIndex,
clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex,
texHandle->m_tinyRendererTextureId);
}
}
else
{
m_data->m_pluginManager.getRenderInterface()->changeShapeTexture(clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId,
clientCmd.m_updateVisualShapeDataArguments.m_jointIndex,
clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex,
-1);
}
}
}
{
int bodyUniqueId = clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId;
int linkIndex = clientCmd.m_updateVisualShapeDataArguments.m_jointIndex;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (bodyHandle)
{
if (bodyHandle->m_multiBody)
{
if (linkIndex == -1)
{
if (bodyHandle->m_multiBody->getBaseCollider())
{
int graphicsIndex = bodyHandle->m_multiBody->getBaseCollider()->getUserIndex();
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE)
{
int shapeIndex = m_data->m_guiHelper->getShapeIndexFromInstance(graphicsIndex);
if (texHandle)
{
m_data->m_guiHelper->replaceTexture(shapeIndex, texHandle->m_openglTextureId);
}
else
{
m_data->m_guiHelper->replaceTexture(shapeIndex, -1);
}
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->changeRGBAColor(bodyUniqueId, linkIndex,
clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex,
clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
m_data->m_guiHelper->changeRGBAColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR)
{
m_data->m_guiHelper->changeSpecularColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_specularColor);
}
}
}
else
{
if (linkIndex < bodyHandle->m_multiBody->getNumLinks())
{
if (bodyHandle->m_multiBody->getLink(linkIndex).m_collider)
{
int graphicsIndex = bodyHandle->m_multiBody->getLink(linkIndex).m_collider->getUserIndex();
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE)
{
int shapeIndex = m_data->m_guiHelper->getShapeIndexFromInstance(graphicsIndex);
if (texHandle)
{
m_data->m_guiHelper->replaceTexture(shapeIndex, texHandle->m_openglTextureId);
}
else
{
m_data->m_guiHelper->replaceTexture(shapeIndex, -1);
}
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->changeRGBAColor(bodyUniqueId, linkIndex,
clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
m_data->m_guiHelper->changeRGBAColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR)
{
m_data->m_guiHelper->changeSpecularColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_specularColor);
}
}
}
}
}
else
{
if (bodyHandle->m_rigidBody)
{
int graphicsIndex = bodyHandle->m_rigidBody->getUserIndex();
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE)
{
if (texHandle)
{
int shapeIndex = m_data->m_guiHelper->getShapeIndexFromInstance(graphicsIndex);
m_data->m_guiHelper->replaceTexture(shapeIndex, texHandle->m_openglTextureId);
}
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->changeRGBAColor(bodyUniqueId, linkIndex,
clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
m_data->m_guiHelper->changeRGBAColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR)
{
m_data->m_guiHelper->changeSpecularColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_specularColor);
}
}
}
}
}
serverCmd.m_type = CMD_VISUAL_SHAPE_UPDATE_COMPLETED;
b3Notification notification;
notification.m_notificationType = VISUAL_SHAPE_CHANGED;
notification.m_visualShapeArgs.m_bodyUniqueId = clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId;
notification.m_visualShapeArgs.m_linkIndex = clientCmd.m_updateVisualShapeDataArguments.m_jointIndex;
notification.m_visualShapeArgs.m_visualShapeIndex = clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex;
m_data->m_pluginManager.addNotification(notification);
return hasStatus;
}
bool PhysicsServerCommandProcessor::processChangeTextureCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CHANGE_TEXTURE_COMMAND_FAILED;
InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(clientCmd.m_changeTextureArgs.m_textureUniqueId);
if (texH)
{
int gltex = texH->m_openglTextureId;
m_data->m_guiHelper->changeTexture(gltex,
(const unsigned char*)bufferServerToClient, clientCmd.m_changeTextureArgs.m_width, clientCmd.m_changeTextureArgs.m_height);
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadTextureCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_LOAD_TEXTURE");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_LOAD_TEXTURE_FAILED;
char relativeFileName[1024];
char pathPrefix[1024];
CommonFileIOInterface* fileIO(m_data->m_pluginManager.getFileIOInterface());
if (fileIO->findResourcePath(clientCmd.m_loadTextureArguments.m_textureFileName, relativeFileName, 1024))
{
b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024);
int texHandle = m_data->m_textureHandles.allocHandle();
InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(texHandle);
if (texH)
{
texH->m_tinyRendererTextureId = -1;
texH->m_openglTextureId = -1;
int uid = -1;
if (m_data->m_pluginManager.getRenderInterface())
{
uid = m_data->m_pluginManager.getRenderInterface()->loadTextureFile(relativeFileName, fileIO);
}
if (uid >= 0)
{
texH->m_tinyRendererTextureId = uid;
}
{
int width, height, n;
unsigned char* imageData = 0;
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
if (fileIO)
{
b3AlignedObjectArray<char> buffer;
buffer.reserve(1024);
int fileId = fileIO->fileOpen(relativeFileName, "rb");
if (fileId >= 0)
{
int size = fileIO->getFileSize(fileId);
if (size > 0)
{
buffer.resize(size);
int actual = fileIO->fileRead(fileId, &buffer[0], size);
if (actual != size)
{
b3Warning("image filesize mismatch!\n");
buffer.resize(0);
}
}
fileIO->fileClose(fileId);
}
if (buffer.size())
{
imageData = stbi_load_from_memory((const unsigned char*)&buffer[0], buffer.size(), &width, &height, &n, 3);
}
}
else
{
imageData = stbi_load(relativeFileName, &width, &height, &n, 3);
}
if (imageData)
{
texH->m_openglTextureId = m_data->m_guiHelper->registerTexture(imageData, width, height);
free(imageData);
}
else
{
b3Warning("Unsupported texture image format [%s]\n", relativeFileName);
}
}
serverCmd.m_loadTextureResultArguments.m_textureUniqueId = texHandle;
serverCmd.m_type = CMD_LOAD_TEXTURE_COMPLETED;
}
}
else
{
serverCmd.m_type = CMD_LOAD_TEXTURE_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSaveStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
BT_PROFILE("CMD_SAVE_STATE");
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_SAVE_STATE_FAILED;
btDefaultSerializer* ser = new btDefaultSerializer();
int currentFlags = ser->getSerializationFlags();
ser->setSerializationFlags(currentFlags | BT_SERIALIZE_CONTACT_MANIFOLDS);
m_data->m_dynamicsWorld->serialize(ser);
bParse::btBulletFile* bulletFile = new bParse::btBulletFile((char*)ser->getBufferPointer(), ser->getCurrentBufferSize());
bulletFile->parse(false);
if (bulletFile->ok())
{
serverCmd.m_type = CMD_SAVE_STATE_COMPLETED;
//re-use state if available
int reuseStateId = -1;
for (int i = 0; i < m_data->m_savedStates.size(); i++)
{
if (m_data->m_savedStates[i].m_bulletFile == 0)
{
reuseStateId = i;
break;
}
}
SaveStateData sd;
sd.m_bulletFile = bulletFile;
sd.m_serializer = ser;
if (reuseStateId >= 0)
{
serverCmd.m_saveStateResultArgs.m_stateId = reuseStateId;
m_data->m_savedStates[reuseStateId] = sd;
}
else
{
serverCmd.m_saveStateResultArgs.m_stateId = m_data->m_savedStates.size();
m_data->m_savedStates.push_back(sd);
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRemoveStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
BT_PROFILE("CMD_REMOVE_STATE");
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_REMOVE_STATE_FAILED;
if (clientCmd.m_loadStateArguments.m_stateId >= 0)
{
if (clientCmd.m_loadStateArguments.m_stateId < m_data->m_savedStates.size())
{
SaveStateData& sd = m_data->m_savedStates[clientCmd.m_loadStateArguments.m_stateId];
delete sd.m_bulletFile;
delete sd.m_serializer;
sd.m_bulletFile = 0;
sd.m_serializer = 0;
serverCmd.m_type = CMD_REMOVE_STATE_COMPLETED;
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRestoreStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
BT_PROFILE("CMD_RESTORE_STATE");
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_RESTORE_STATE_FAILED;
btMultiBodyWorldImporter* importer = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld);
importer->setImporterFlags(eRESTORE_EXISTING_OBJECTS);
bool ok = false;
if (clientCmd.m_loadStateArguments.m_stateId >= 0)
{
if (clientCmd.m_loadStateArguments.m_stateId < m_data->m_savedStates.size())
{
bParse::btBulletFile* bulletFile = m_data->m_savedStates[clientCmd.m_loadStateArguments.m_stateId].m_bulletFile;
if (bulletFile)
{
ok = importer->convertAllObjects(bulletFile);
}
}
}
else
{
bool found = false;
char fileName[1024];
fileName[0] = 0;
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
b3AlignedObjectArray<char> buffer;
buffer.reserve(1024);
if (fileIO)
{
int fileId = -1;
found = fileIO->findResourcePath(clientCmd.m_fileArguments.m_fileName, fileName, 1024);
if (found)
{
fileId = fileIO->fileOpen(fileName, "rb");
}
if (fileId >= 0)
{
int size = fileIO->getFileSize(fileId);
if (size > 0)
{
buffer.resize(size);
int actual = fileIO->fileRead(fileId, &buffer[0], size);
if (actual != size)
{
b3Warning("image filesize mismatch!\n");
buffer.resize(0);
}
else
{
found = true;
}
}
fileIO->fileClose(fileId);
}
}
if (found && buffer.size())
{
ok = importer->loadFileFromMemory(&buffer[0], buffer.size());
}
else
{
b3Error("Error in restoreState: cannot load file %s\n", clientCmd.m_fileArguments.m_fileName);
}
}
delete importer;
if (ok)
{
serverCmd.m_type = CMD_RESTORE_STATE_COMPLETED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadBulletCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
BT_PROFILE("CMD_LOAD_BULLET");
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_BULLET_LOADING_FAILED;
//btBulletWorldImporter* importer = new btBulletWorldImporter(m_data->m_dynamicsWorld);
btMultiBodyWorldImporter* importer = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld);
bool found = false;
CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface();
b3AlignedObjectArray<char> buffer;
buffer.reserve(1024);
if (fileIO)
{
char fileName[1024];
int fileId = -1;
found = fileIO->findResourcePath(clientCmd.m_fileArguments.m_fileName, fileName, 1024);
if (found)
{
fileId = fileIO->fileOpen(fileName, "rb");
}
if (fileId >= 0)
{
int size = fileIO->getFileSize(fileId);
if (size > 0)
{
buffer.resize(size);
int actual = fileIO->fileRead(fileId, &buffer[0], size);
if (actual != size)
{
b3Warning("image filesize mismatch!\n");
buffer.resize(0);
}
else
{
found = true;
}
}
fileIO->fileClose(fileId);
}
}
if (found && buffer.size())
{
bool ok = importer->loadFileFromMemory(&buffer[0], buffer.size());
if (ok)
{
int numRb = importer->getNumRigidBodies();
serverStatusOut.m_sdfLoadedArgs.m_numBodies = 0;
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0;
for (int i = 0; i < numRb; i++)
{
btCollisionObject* colObj = importer->getRigidBodyByIndex(i);
if (colObj)
{
btRigidBody* rb = btRigidBody::upcast(colObj);
if (rb)
{
int bodyUniqueId = m_data->m_bodyHandles.allocHandle();
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
colObj->setUserIndex2(bodyUniqueId);
bodyHandle->m_rigidBody = rb;
if (serverStatusOut.m_sdfLoadedArgs.m_numBodies < MAX_SDF_BODIES)
{
serverStatusOut.m_sdfLoadedArgs.m_numBodies++;
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = bodyUniqueId;
}
b3Notification notification;
notification.m_notificationType = BODY_ADDED;
notification.m_bodyArgs.m_bodyUniqueId = bodyUniqueId;
m_data->m_pluginManager.addNotification(notification);
}
}
}
serverCmd.m_type = CMD_BULLET_LOADING_COMPLETED;
m_data->m_guiHelper->autogenerateGraphicsObjects(m_data->m_dynamicsWorld);
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadMJCFCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_LOAD_MJCF");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_MJCF_LOADING_FAILED;
const MjcfArgs& mjcfArgs = clientCmd.m_mjcfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_MJCF:%s", mjcfArgs.m_mjcfFileName);
}
bool useMultiBody = (clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (mjcfArgs.m_useMultiBody != 0) : true;
int flags = CUF_USE_MJCF;
if (clientCmd.m_updateFlags & URDF_ARGS_HAS_CUSTOM_URDF_FLAGS)
{
flags |= clientCmd.m_mjcfArguments.m_flags;
}
bool completedOk = loadMjcf(mjcfArgs.m_mjcfFileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags);
if (completedOk)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
serverStatusOut.m_sdfLoadedArgs.m_numBodies = m_data->m_sdfRecentLoadedBodies.size();
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0;
int maxBodies = btMin(MAX_SDF_BODIES, serverStatusOut.m_sdfLoadedArgs.m_numBodies);
for (int i = 0; i < maxBodies; i++)
{
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = m_data->m_sdfRecentLoadedBodies[i];
}
serverStatusOut.m_type = CMD_MJCF_LOADING_COMPLETED;
}
else
{
serverStatusOut.m_type = CMD_MJCF_LOADING_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSaveBulletCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SAVE_BULLET");
SharedMemoryStatus& serverCmd = serverStatusOut;
FILE* f = fopen(clientCmd.m_fileArguments.m_fileName, "wb");
if (f)
{
btDefaultSerializer* ser = new btDefaultSerializer();
int currentFlags = ser->getSerializationFlags();
ser->setSerializationFlags(currentFlags | BT_SERIALIZE_CONTACT_MANIFOLDS);
m_data->m_dynamicsWorld->serialize(ser);
fwrite(ser->getBufferPointer(), ser->getCurrentBufferSize(), 1, f);
fclose(f);
serverCmd.m_type = CMD_BULLET_SAVING_COMPLETED;
delete ser;
return hasStatus;
}
serverCmd.m_type = CMD_BULLET_SAVING_FAILED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
// BT_PROFILE("processCommand");
int sz = sizeof(SharedMemoryStatus);
int sz2 = sizeof(SharedMemoryCommand);
bool hasStatus = false;
if (m_data->m_commandLogger)
{
m_data->m_commandLogger->logCommand(clientCmd);
}
serverStatusOut.m_type = CMD_INVALID_STATUS;
serverStatusOut.m_numDataStreamBytes = 0;
serverStatusOut.m_dataStream = 0;
//consume the command
switch (clientCmd.m_type)
{
case CMD_STATE_LOGGING:
{
hasStatus = processStateLoggingCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SET_VR_CAMERA_STATE:
{
hasStatus = processSetVRCameraStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_VR_EVENTS_DATA:
{
hasStatus = processRequestVREventsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_REQUEST_MOUSE_EVENTS_DATA:
{
hasStatus = processRequestMouseEventsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_REQUEST_KEYBOARD_EVENTS_DATA:
{
hasStatus = processRequestKeyboardEventsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_REQUEST_RAY_CAST_INTERSECTIONS:
{
hasStatus = processRequestRaycastIntersectionsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_REQUEST_DEBUG_LINES:
{
hasStatus = processRequestDebugLinesCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_CAMERA_IMAGE_DATA:
{
hasStatus = processRequestCameraImageCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SYNC_BODY_INFO:
{
hasStatus = processSyncBodyInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_BODY_INFO:
{
hasStatus = processRequestBodyInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SAVE_WORLD:
{
hasStatus = processSaveWorldCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_SDF:
{
hasStatus = processLoadSDFCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_COLLISION_SHAPE:
{
hasStatus = processCreateCollisionShapeCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_VISUAL_SHAPE:
{
hasStatus = processCreateVisualShapeCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_MESH_DATA:
{
hasStatus = processRequestMeshDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_MULTI_BODY:
{
hasStatus = processCreateMultiBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SET_ADDITIONAL_SEARCH_PATH:
{
hasStatus = processSetAdditionalSearchPathCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_URDF:
{
hasStatus = processLoadURDFCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_SOFT_BODY:
{
hasStatus = processLoadSoftBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_SENSOR:
{
hasStatus = processCreateSensorCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_PROFILE_TIMING:
{
hasStatus = processProfileTimingCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SEND_DESIRED_STATE:
{
hasStatus = processSendDesiredStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_COLLISION_INFO:
{
hasStatus = processRequestCollisionInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_ACTUAL_STATE:
{
hasStatus = processRequestActualStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_STEP_FORWARD_SIMULATION:
{
hasStatus = processForwardDynamicsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_INTERNAL_DATA:
{
hasStatus = processRequestInternalDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_CHANGE_DYNAMICS_INFO:
{
hasStatus = processChangeDynamicsInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_GET_DYNAMICS_INFO:
{
hasStatus = processGetDynamicsInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS:
{
hasStatus = processRequestPhysicsSimulationParametersCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS:
{
hasStatus = processSendPhysicsParametersCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_INIT_POSE:
{
hasStatus = processInitPoseCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_RESET_SIMULATION:
{
hasStatus = processResetSimulationCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_RIGID_BODY:
{
hasStatus = processCreateRigidBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_BOX_COLLISION_SHAPE:
{
//for backward compatibility, CMD_CREATE_BOX_COLLISION_SHAPE is the same as CMD_CREATE_RIGID_BODY
hasStatus = processCreateRigidBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_PICK_BODY:
{
hasStatus = processPickBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_MOVE_PICKED_BODY:
{
hasStatus = processMovePickedBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REMOVE_PICKING_CONSTRAINT_BODY:
{
hasStatus = processRemovePickingConstraintCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_AABB_OVERLAP:
{
hasStatus = processRequestAabbOverlapCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_OPENGL_VISUALIZER_CAMERA:
{
hasStatus = processRequestOpenGLVisualizeCameraCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CONFIGURE_OPENGL_VISUALIZER:
{
hasStatus = processConfigureOpenGLVisualizerCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_CONTACT_POINT_INFORMATION:
{
hasStatus = processRequestContactpointInformationCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CALCULATE_INVERSE_DYNAMICS:
{
hasStatus = processInverseDynamicsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CALCULATE_JACOBIAN:
{
hasStatus = processCalculateJacobianCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CALCULATE_MASS_MATRIX:
{
hasStatus = processCalculateMassMatrixCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_APPLY_EXTERNAL_FORCE:
{
hasStatus = processApplyExternalForceCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REMOVE_BODY:
{
hasStatus = processRemoveBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_USER_CONSTRAINT:
{
hasStatus = processCreateUserConstraintCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CALCULATE_INVERSE_KINEMATICS:
{
if (clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices == 1)
{
hasStatus = processCalculateInverseKinematicsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
}
else
{
hasStatus = processCalculateInverseKinematicsCommand2(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
}
break;
}
case CMD_REQUEST_VISUAL_SHAPE_INFO:
{
hasStatus = processRequestVisualShapeInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_COLLISION_SHAPE_INFO:
{
hasStatus = processRequestCollisionShapeInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_UPDATE_VISUAL_SHAPE:
{
hasStatus = processUpdateVisualShapeCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CHANGE_TEXTURE:
{
hasStatus = processChangeTextureCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_TEXTURE:
{
hasStatus = processLoadTextureCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_RESTORE_STATE:
{
hasStatus = processRestoreStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SAVE_STATE:
{
hasStatus = processSaveStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REMOVE_STATE:
{
hasStatus = processRemoveStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_BULLET:
{
hasStatus = processLoadBulletCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SAVE_BULLET:
{
hasStatus = processSaveBulletCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_MJCF:
{
hasStatus = processLoadMJCFCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_USER_DEBUG_DRAW:
{
hasStatus = processUserDebugDrawCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CUSTOM_COMMAND:
{
hasStatus = processCustomCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SYNC_USER_DATA:
{
hasStatus = processSyncUserDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_USER_DATA:
{
hasStatus = processRequestUserDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_ADD_USER_DATA:
{
hasStatus = processAddUserDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REMOVE_USER_DATA:
{
hasStatus = processRemoveUserDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_COLLISION_FILTER:
{
hasStatus = processCollisionFilterCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
default:
{
BT_PROFILE("CMD_UNKNOWN");
b3Error("Unknown command encountered");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_UNKNOWN_COMMAND_FLUSHED;
hasStatus = true;
}
};
return hasStatus;
}
void PhysicsServerCommandProcessor::syncPhysicsToGraphics()
{
m_data->m_guiHelper->syncPhysicsToGraphics(m_data->m_dynamicsWorld);
}
void PhysicsServerCommandProcessor::syncPhysicsToGraphics2()
{
m_data->m_guiHelper->syncPhysicsToGraphics2(m_data->m_dynamicsWorld);
}
void PhysicsServerCommandProcessor::renderScene(int renderFlags)
{
if (m_data->m_guiHelper)
{
if (0 == (renderFlags & COV_DISABLE_SYNC_RENDERING))
{
m_data->m_guiHelper->syncPhysicsToGraphics(m_data->m_dynamicsWorld);
}
m_data->m_guiHelper->render(m_data->m_dynamicsWorld);
}
}
void PhysicsServerCommandProcessor::physicsDebugDraw(int debugDrawFlags)
{
if (m_data->m_dynamicsWorld)
{
if (m_data->m_dynamicsWorld->getDebugDrawer())
{
m_data->m_dynamicsWorld->getDebugDrawer()->setDebugMode(debugDrawFlags);
m_data->m_dynamicsWorld->debugDrawWorld();
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
{
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
for (int i = 0; i < deformWorld->getSoftBodyArray().size(); i++)
{
btSoftBody* psb = (btSoftBody*)deformWorld->getSoftBodyArray()[i];
if (m_data->m_dynamicsWorld->getDebugDrawer() && !(m_data->m_dynamicsWorld->getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe)))
{
//btSoftBodyHelpers::DrawFrame(psb,m_data->m_dynamicsWorld->getDebugDrawer());
btSoftBodyHelpers::Draw(psb, m_data->m_dynamicsWorld->getDebugDrawer(),deformWorld->getDrawFlags());
}
}
}
}
{
btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld();
if (softWorld)
{
for (int i = 0; i < softWorld->getSoftBodyArray().size(); i++)
{
btSoftBody* psb = (btSoftBody*)softWorld->getSoftBodyArray()[i];
if (m_data->m_dynamicsWorld->getDebugDrawer() && !(m_data->m_dynamicsWorld->getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe)))
{
//btSoftBodyHelpers::DrawFrame(psb,m_data->m_dynamicsWorld->getDebugDrawer());
btSoftBodyHelpers::Draw(psb, m_data->m_dynamicsWorld->getDebugDrawer(),softWorld->getDrawFlags());
}
}
}
}
#endif
}
}
}
struct MyResultCallback : public btCollisionWorld::ClosestRayResultCallback
{
MyResultCallback(const btVector3& rayFromWorld, const btVector3& rayToWorld)
: btCollisionWorld::ClosestRayResultCallback(rayFromWorld, rayToWorld)
{
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
return true;
}
};
bool PhysicsServerCommandProcessor::pickBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
if (m_data->m_dynamicsWorld == 0)
return false;
//btCollisionWorld::ClosestRayResultCallback rayCallback(rayFromWorld, rayToWorld);
MyResultCallback rayCallback(rayFromWorld, rayToWorld);
rayCallback.m_flags |= btTriangleRaycastCallback::kF_UseGjkConvexCastRaytest;
m_data->m_dynamicsWorld->rayTest(rayFromWorld, rayToWorld, rayCallback);
if (rayCallback.hasHit())
{
btVector3 pickPos = rayCallback.m_hitPointWorld;
btRigidBody* body = (btRigidBody*)btRigidBody::upcast(rayCallback.m_collisionObject);
if (body)
{
//other exclusions?
if (!(body->isStaticObject() || body->isKinematicObject()))
{
m_data->m_pickedBody = body;
m_data->m_savedActivationState = body->getActivationState();
m_data->m_pickedBody->setActivationState(DISABLE_DEACTIVATION);
//printf("pickPos=%f,%f,%f\n",pickPos.getX(),pickPos.getY(),pickPos.getZ());
btVector3 localPivot = body->getCenterOfMassTransform().inverse() * pickPos;
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body, localPivot);
m_data->m_dynamicsWorld->addConstraint(p2p, true);
m_data->m_pickedConstraint = p2p;
btScalar mousePickClamping = 30.f;
p2p->m_setting.m_impulseClamp = mousePickClamping;
//very weak constraint for picking
p2p->m_setting.m_tau = 0.001f;
}
}
else
{
btMultiBodyLinkCollider* multiCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(rayCallback.m_collisionObject);
if (multiCol && multiCol->m_multiBody)
{
m_data->m_prevCanSleep = multiCol->m_multiBody->getCanSleep();
multiCol->m_multiBody->setCanSleep(false);
btVector3 pivotInA = multiCol->m_multiBody->worldPosToLocal(multiCol->m_link, pickPos);
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(multiCol->m_multiBody, multiCol->m_link, 0, pivotInA, pickPos);
//if you add too much energy to the system, causing high angular velocities, simulation 'explodes'
//see also http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=949
//so we try to avoid it by clamping the maximum impulse (force) that the mouse pick can apply
//it is not satisfying, hopefully we find a better solution (higher order integrator, using joint friction using a zero-velocity target motor with limited force etc?)
btScalar scaling = 10;
p2p->setMaxAppliedImpulse(2 * scaling);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(p2p);
m_data->m_pickingMultiBodyPoint2Point = p2p;
}
}
// pickObject(pickPos, rayCallback.m_collisionObject);
m_data->m_oldPickingPos = rayToWorld;
m_data->m_hitPos = pickPos;
m_data->m_oldPickingDist = (pickPos - rayFromWorld).length();
// printf("hit !\n");
//add p2p
}
return false;
}
bool PhysicsServerCommandProcessor::movePickedBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
if (m_data->m_pickedBody && m_data->m_pickedConstraint)
{
btPoint2PointConstraint* pickCon = static_cast<btPoint2PointConstraint*>(m_data->m_pickedConstraint);
if (pickCon)
{
//keep it at the same picking distance
btVector3 dir = rayToWorld - rayFromWorld;
dir.normalize();
dir *= m_data->m_oldPickingDist;
btVector3 newPivotB = rayFromWorld + dir;
pickCon->setPivotB(newPivotB);
}
}
if (m_data->m_pickingMultiBodyPoint2Point)
{
//keep it at the same picking distance
btVector3 dir = rayToWorld - rayFromWorld;
dir.normalize();
dir *= m_data->m_oldPickingDist;
btVector3 newPivotB = rayFromWorld + dir;
m_data->m_pickingMultiBodyPoint2Point->setPivotInB(newPivotB);
}
return false;
}
void PhysicsServerCommandProcessor::removePickingConstraint()
{
if (m_data->m_pickedConstraint)
{
m_data->m_dynamicsWorld->removeConstraint(m_data->m_pickedConstraint);
delete m_data->m_pickedConstraint;
m_data->m_pickedConstraint = 0;
m_data->m_pickedBody->forceActivationState(m_data->m_savedActivationState);
m_data->m_pickedBody = 0;
}
if (m_data->m_pickingMultiBodyPoint2Point)
{
m_data->m_pickingMultiBodyPoint2Point->getMultiBodyA()->setCanSleep(m_data->m_prevCanSleep);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld;
world->removeMultiBodyConstraint(m_data->m_pickingMultiBodyPoint2Point);
delete m_data->m_pickingMultiBodyPoint2Point;
m_data->m_pickingMultiBodyPoint2Point = 0;
}
}
void PhysicsServerCommandProcessor::enableCommandLogging(bool enable, const char* fileName)
{
if (enable)
{
if (0 == m_data->m_commandLogger)
{
m_data->m_commandLogger = new CommandLogger(fileName);
}
}
else
{
if (0 != m_data->m_commandLogger)
{
delete m_data->m_commandLogger;
m_data->m_commandLogger = 0;
}
}
}
void PhysicsServerCommandProcessor::replayFromLogFile(const char* fileName)
{
CommandLogPlayback* pb = new CommandLogPlayback(fileName);
m_data->m_logPlayback = pb;
}
int gDroppedSimulationSteps = 0;
int gNumSteps = 0;
double gDtInSec = 0.f;
double gSubStep = 0.f;
void PhysicsServerCommandProcessor::enableRealTimeSimulation(bool enableRealTimeSim)
{
m_data->m_useRealTimeSimulation = enableRealTimeSim;
}
bool PhysicsServerCommandProcessor::isRealTimeSimulationEnabled() const
{
return m_data->m_useRealTimeSimulation;
}
void PhysicsServerCommandProcessor::stepSimulationRealTime(double dtInSec, const struct b3VRControllerEvent* vrControllerEvents, int numVRControllerEvents, const struct b3KeyboardEvent* keyEvents, int numKeyEvents, const struct b3MouseEvent* mouseEvents, int numMouseEvents)
{
m_data->m_vrControllerEvents.addNewVREvents(vrControllerEvents, numVRControllerEvents);
m_data->m_pluginManager.addEvents(vrControllerEvents, numVRControllerEvents, keyEvents, numKeyEvents, mouseEvents, numMouseEvents);
for (int i = 0; i < m_data->m_stateLoggers.size(); i++)
{
if (m_data->m_stateLoggers[i]->m_loggingType == STATE_LOGGING_VR_CONTROLLERS)
{
VRControllerStateLogger* vrLogger = (VRControllerStateLogger*)m_data->m_stateLoggers[i];
vrLogger->m_vrEvents.addNewVREvents(vrControllerEvents, numVRControllerEvents);
}
}
for (int ii = 0; ii < numMouseEvents; ii++)
{
const b3MouseEvent& event = mouseEvents[ii];
bool found = false;
//search a matching one first, otherwise add new event
for (int e = 0; e < m_data->m_mouseEvents.size(); e++)
{
if (event.m_eventType == m_data->m_mouseEvents[e].m_eventType)
{
if (event.m_eventType == MOUSE_MOVE_EVENT)
{
m_data->m_mouseEvents[e].m_mousePosX = event.m_mousePosX;
m_data->m_mouseEvents[e].m_mousePosY = event.m_mousePosY;
found = true;
}
else if ((event.m_eventType == MOUSE_BUTTON_EVENT) && event.m_buttonIndex == m_data->m_mouseEvents[e].m_buttonIndex)
{
m_data->m_mouseEvents[e].m_buttonState |= event.m_buttonState;
if (event.m_buttonState & eButtonIsDown)
{
m_data->m_mouseEvents[e].m_buttonState |= eButtonIsDown;
}
else
{
m_data->m_mouseEvents[e].m_buttonState &= ~eButtonIsDown;
}
found = true;
}
}
}
if (!found)
{
m_data->m_mouseEvents.push_back(event);
}
}
for (int i = 0; i < numKeyEvents; i++)
{
const b3KeyboardEvent& event = keyEvents[i];
bool found = false;
//search a matching one first, otherwise add new event
for (int e = 0; e < m_data->m_keyboardEvents.size(); e++)
{
if (event.m_keyCode == m_data->m_keyboardEvents[e].m_keyCode)
{
m_data->m_keyboardEvents[e].m_keyState |= event.m_keyState;
if (event.m_keyState & eButtonIsDown)
{
m_data->m_keyboardEvents[e].m_keyState |= eButtonIsDown;
}
else
{
m_data->m_keyboardEvents[e].m_keyState &= ~eButtonIsDown;
}
found = true;
}
}
if (!found)
{
m_data->m_keyboardEvents.push_back(event);
}
}
if (gResetSimulation)
{
resetSimulation();
gResetSimulation = false;
}
if (gVRTrackingObjectUniqueId >= 0)
{
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(gVRTrackingObjectUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
// gVRTrackingObjectTr = bodyHandle->m_multiBody->getBaseWorldTransform();
if (gVRTrackingObjectUniqueId >= 0)
{
gVRTrackingObjectTr.setOrigin(bodyHandle->m_multiBody->getBaseWorldTransform().getOrigin());
gVRTeleportPos1 = gVRTrackingObjectTr.getOrigin();
}
if (gVRTrackingObjectFlag & VR_CAMERA_TRACK_OBJECT_ORIENTATION)
{
gVRTrackingObjectTr.setBasis(bodyHandle->m_multiBody->getBaseWorldTransform().getBasis());
gVRTeleportOrn = gVRTrackingObjectTr.getRotation();
}
}
}
if ((m_data->m_useRealTimeSimulation) && m_data->m_guiHelper)
{
int maxSteps = m_data->m_numSimulationSubSteps + 3;
if (m_data->m_numSimulationSubSteps)
{
gSubStep = m_data->m_physicsDeltaTime / m_data->m_numSimulationSubSteps;
}
else
{
gSubStep = m_data->m_physicsDeltaTime;
}
btScalar deltaTimeScaled = dtInSec * simTimeScalingFactor;
int numSteps = m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, maxSteps, gSubStep);
m_data->m_simulationTimestamp += deltaTimeScaled;
gDroppedSimulationSteps += numSteps > maxSteps ? numSteps - maxSteps : 0;
if (numSteps)
{
gNumSteps = numSteps;
gDtInSec = dtInSec;
addBodyChangedNotifications();
}
}
}
b3Notification createTransformChangedNotification(int bodyUniqueId, int linkIndex, const btCollisionObject* colObj)
{
b3Notification notification;
notification.m_notificationType = TRANSFORM_CHANGED;
notification.m_transformChangeArgs.m_bodyUniqueId = bodyUniqueId;
notification.m_transformChangeArgs.m_linkIndex = linkIndex;
const btTransform& tr = colObj->getWorldTransform();
notification.m_transformChangeArgs.m_worldPosition[0] = tr.getOrigin()[0];
notification.m_transformChangeArgs.m_worldPosition[1] = tr.getOrigin()[1];
notification.m_transformChangeArgs.m_worldPosition[2] = tr.getOrigin()[2];
notification.m_transformChangeArgs.m_worldRotation[0] = tr.getRotation()[0];
notification.m_transformChangeArgs.m_worldRotation[1] = tr.getRotation()[1];
notification.m_transformChangeArgs.m_worldRotation[2] = tr.getRotation()[2];
notification.m_transformChangeArgs.m_worldRotation[3] = tr.getRotation()[3];
const btVector3& scaling = colObj->getCollisionShape()->getLocalScaling();
notification.m_transformChangeArgs.m_localScaling[0] = scaling[0];
notification.m_transformChangeArgs.m_localScaling[1] = scaling[1];
notification.m_transformChangeArgs.m_localScaling[2] = scaling[2];
return notification;
}
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
b3Notification createSoftBodyChangedNotification(int bodyUniqueId, int linkIndex)
{
b3Notification notification;
notification.m_notificationType = SOFTBODY_CHANGED;
notification.m_softBodyChangeArgs.m_bodyUniqueId = bodyUniqueId;
notification.m_softBodyChangeArgs.m_linkIndex = linkIndex;
return notification;
}
#endif
void PhysicsServerCommandProcessor::addBodyChangedNotifications()
{
b3Notification notification;
notification.m_notificationType = SIMULATION_STEPPED;
m_data->m_pluginManager.addNotification(notification);
b3AlignedObjectArray<int> usedHandles;
m_data->m_bodyHandles.getUsedHandles(usedHandles);
for (int i = 0; i < usedHandles.size(); i++)
{
int bodyUniqueId = usedHandles[i];
InternalBodyData* bodyData = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (!bodyData)
{
continue;
}
if (bodyData->m_multiBody)
{
btMultiBody* mb = bodyData->m_multiBody;
if (mb->getBaseCollider()->isActive())
{
m_data->m_pluginManager.addNotification(createTransformChangedNotification(bodyUniqueId, -1, mb->getBaseCollider()));
}
for (int linkIndex = 0; linkIndex < mb->getNumLinks(); linkIndex++)
{
if (mb->getLinkCollider(linkIndex)->isActive())
{
m_data->m_pluginManager.addNotification(createTransformChangedNotification(bodyUniqueId, linkIndex, mb->getLinkCollider(linkIndex)));
}
}
}
else if (bodyData->m_rigidBody && bodyData->m_rigidBody->isActive())
{
m_data->m_pluginManager.addNotification(createTransformChangedNotification(bodyUniqueId, -1, bodyData->m_rigidBody));
}
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
else if (bodyData->m_softBody)
{
int linkIndex = -1;
m_data->m_pluginManager.addNotification(createSoftBodyChangedNotification(bodyUniqueId, linkIndex));
}
#endif
}
}
void PhysicsServerCommandProcessor::resetSimulation(int flags)
{
//clean up all data
m_data->m_remoteSyncTransformTime = m_data->m_remoteSyncTransformInterval;
m_data->m_simulationTimestamp = 0;
m_data->m_cachedVUrdfisualShapes.clear();
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
if (m_data && m_data->m_dynamicsWorld)
{
{
btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld();
if (deformWorld)
{
deformWorld ->getWorldInfo().m_sparsesdf.Reset();
}
}
{
btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld();
if (softWorld)
{
softWorld->getWorldInfo().m_sparsesdf.Reset();
}
}
}
#endif
if (m_data && m_data->m_guiHelper)
{
m_data->m_guiHelper->removeAllGraphicsInstances();
m_data->m_guiHelper->removeAllUserDebugItems();
}
if (m_data)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->resetAll();
}
if (m_data->m_pluginManager.getCollisionInterface())
{
m_data->m_pluginManager.getCollisionInterface()->resetAll();
}
for (int i = 0; i < m_data->m_savedStates.size(); i++)
{
delete m_data->m_savedStates[i].m_bulletFile;
delete m_data->m_savedStates[i].m_serializer;
}
m_data->m_savedStates.clear();
}
removePickingConstraint();
deleteDynamicsWorld();
createEmptyDynamicsWorld(flags);
m_data->m_bodyHandles.exitHandles();
m_data->m_bodyHandles.initHandles();
m_data->m_userCollisionShapeHandles.exitHandles();
m_data->m_userCollisionShapeHandles.initHandles();
m_data->m_userDataHandles.exitHandles();
m_data->m_userDataHandles.initHandles();
m_data->m_userDataHandleLookup.clear();
b3Notification notification;
notification.m_notificationType = SIMULATION_RESET;
m_data->m_pluginManager.addNotification(notification);
syncPhysicsToGraphics2();
}
void PhysicsServerCommandProcessor::setTimeOut(double /*timeOutInSeconds*/)
{
}
const btVector3& PhysicsServerCommandProcessor::getVRTeleportPosition() const
{
return gVRTeleportPos1;
}
void PhysicsServerCommandProcessor::setVRTeleportPosition(const btVector3& vrTeleportPos)
{
gVRTeleportPos1 = vrTeleportPos;
}
const btQuaternion& PhysicsServerCommandProcessor::getVRTeleportOrientation() const
{
return gVRTeleportOrn;
}
void PhysicsServerCommandProcessor::setVRTeleportOrientation(const btQuaternion& vrTeleportOrn)
{
gVRTeleportOrn = vrTeleportOrn;
}