bullet3/examples/pybullet/pybullet.c

2047 lines
66 KiB
C

#include "../SharedMemory/PhysicsClientC_API.h"
#include "../SharedMemory/PhysicsDirectC_API.h"
#include "../SharedMemory/SharedMemoryInProcessPhysicsC_API.h"
#ifdef __APPLE__
#include <Python/Python.h>
#else
#include <Python.h>
#endif
#ifdef PYBULLET_USE_NUMPY
#include <numpy/arrayobject.h>
#endif
#if PY_MAJOR_VERSION >= 3
#define PyInt_FromLong PyLong_FromLong
#define PyString_FromString PyBytes_FromString
#endif
enum eCONNECT_METHOD {
eCONNECT_GUI = 1,
eCONNECT_DIRECT = 2,
eCONNECT_SHARED_MEMORY = 3,
};
static PyObject* SpamError;
static b3PhysicsClientHandle sm = 0;
// Step through one timestep of the simulation
static PyObject* pybullet_stepSimulation(PyObject* self, PyObject* args) {
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
b3SharedMemoryStatusHandle statusHandle;
int statusType;
if (b3CanSubmitCommand(sm)) {
statusHandle = b3SubmitClientCommandAndWaitStatus(
sm, b3InitStepSimulationCommand(sm));
statusType = b3GetStatusType(statusHandle);
}
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject* pybullet_connectPhysicsServer(PyObject* self, PyObject* args) {
if (0 != sm) {
PyErr_SetString(SpamError,
"Already connected to physics server, disconnect first.");
return NULL;
}
{
int method = eCONNECT_GUI;
if (!PyArg_ParseTuple(args, "i", &method)) {
PyErr_SetString(SpamError,
"connectPhysicsServer expected argument eCONNECT_GUI, "
"eCONNECT_DIRECT or eCONNECT_SHARED_MEMORY");
return NULL;
}
switch (method) {
case eCONNECT_GUI: {
int argc = 0;
char* argv[1] = {0};
#ifdef __APPLE__
sm = b3CreateInProcessPhysicsServerAndConnectMainThread(argc, argv);
#else
sm = b3CreateInProcessPhysicsServerAndConnect(argc, argv);
#endif
break;
}
case eCONNECT_DIRECT: {
sm = b3ConnectPhysicsDirect();
break;
}
case eCONNECT_SHARED_MEMORY: {
sm = b3ConnectSharedMemory(SHARED_MEMORY_KEY);
break;
}
default: {
PyErr_SetString(SpamError, "connectPhysicsServer unexpected argument");
return NULL;
}
};
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject* pybullet_disconnectPhysicsServer(PyObject* self,
PyObject* args) {
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
b3DisconnectSharedMemory(sm);
sm = 0;
}
Py_INCREF(Py_None);
return Py_None;
}
// Load a URDF file indicating the links and joints of an object
// function can be called without arguments and will default
// to position (0,0,1) with orientation(0,0,0,1)
// els(x,y,z) or
// loadURDF(pos_x, pos_y, pos_z, orn_x, orn_y, orn_z, orn_w)
static PyObject* pybullet_loadURDF(PyObject* self, PyObject* args) {
int size = PySequence_Size(args);
int bodyIndex = -1;
const char* urdfFileName = "";
double startPosX = 0.0;
double startPosY = 0.0;
double startPosZ = 0.0;
double startOrnX = 0.0;
double startOrnY = 0.0;
double startOrnZ = 0.0;
double startOrnW = 1.0;
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
if (size == 1) {
if (!PyArg_ParseTuple(args, "s", &urdfFileName)) return NULL;
}
if (size == 4) {
if (!PyArg_ParseTuple(args, "sddd", &urdfFileName, &startPosX, &startPosY,
&startPosZ))
return NULL;
}
if (size == 8) {
if (!PyArg_ParseTuple(args, "sddddddd", &urdfFileName, &startPosX,
&startPosY, &startPosZ, &startOrnX, &startOrnY,
&startOrnZ, &startOrnW))
return NULL;
}
if (strlen(urdfFileName)) {
// printf("(%f, %f, %f) (%f, %f, %f, %f)\n",
// startPosX,startPosY,startPosZ,startOrnX, startOrnY,startOrnZ, startOrnW);
b3SharedMemoryStatusHandle statusHandle;
int statusType;
b3SharedMemoryCommandHandle command =
b3LoadUrdfCommandInit(sm, urdfFileName);
// setting the initial position, orientation and other arguments are
// optional
b3LoadUrdfCommandSetStartPosition(command, startPosX, startPosY, startPosZ);
b3LoadUrdfCommandSetStartOrientation(command, startOrnX, startOrnY,
startOrnZ, startOrnW);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
statusType = b3GetStatusType(statusHandle);
if (statusType != CMD_URDF_LOADING_COMPLETED) {
PyErr_SetString(SpamError, "Cannot load URDF file.");
return NULL;
}
bodyIndex = b3GetStatusBodyIndex(statusHandle);
} else {
PyErr_SetString(SpamError,
"Empty filename, method expects 1, 4 or 8 arguments.");
return NULL;
}
return PyLong_FromLong(bodyIndex);
}
static double pybullet_internalGetFloatFromSequence(PyObject* seq, int index) {
double v = 0.0;
PyObject* item;
if (PyList_Check(seq)) {
item = PyList_GET_ITEM(seq, index);
v = PyFloat_AsDouble(item);
} else {
item = PyTuple_GET_ITEM(seq, index);
v = PyFloat_AsDouble(item);
}
return v;
}
#define MAX_SDF_BODIES 512
static PyObject* pybullet_loadSDF(PyObject* self, PyObject* args) {
const char* sdfFileName = "";
int size = PySequence_Size(args);
int numBodies = 0;
int i;
int bodyIndicesOut[MAX_SDF_BODIES];
PyObject* pylist = 0;
b3SharedMemoryStatusHandle statusHandle;
int statusType;
b3SharedMemoryCommandHandle commandHandle;
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
if (size == 1) {
if (!PyArg_ParseTuple(args, "s", &sdfFileName)) return NULL;
}
commandHandle = b3LoadSdfCommandInit(sm, sdfFileName);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, commandHandle);
statusType = b3GetStatusType(statusHandle);
if (statusType != CMD_SDF_LOADING_COMPLETED) {
PyErr_SetString(SpamError, "Cannot load SDF file.");
return NULL;
}
numBodies =
b3GetStatusBodyIndices(statusHandle, bodyIndicesOut, MAX_SDF_BODIES);
if (numBodies > MAX_SDF_BODIES) {
PyErr_SetString(SpamError, "SDF exceeds body capacity");
return NULL;
}
pylist = PyTuple_New(numBodies);
if (numBodies > 0 && numBodies <= MAX_SDF_BODIES) {
for (i = 0; i < numBodies; i++) {
PyTuple_SetItem(pylist, i, PyInt_FromLong(bodyIndicesOut[i]));
}
}
return pylist;
}
// Reset the simulation to remove all loaded objects
static PyObject* pybullet_resetSimulation(PyObject* self, PyObject* args) {
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
b3SharedMemoryStatusHandle statusHandle;
statusHandle = b3SubmitClientCommandAndWaitStatus(
sm, b3InitResetSimulationCommand(sm));
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject* pybullet_setJointMotorControl(PyObject* self, PyObject* args) {
int size;
int bodyIndex, jointIndex, controlMode;
double targetPosition = 0.0;
double targetVelocity = 0.0;
double maxForce = 100000.0;
double appliedForce = 0.0;
double kp = 0.1;
double kd = 1.0;
int valid = 0;
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
size = PySequence_Size(args);
if (size == 4) {
double targetValue = 0.0;
// see switch statement below for convertsions dependent on controlMode
if (!PyArg_ParseTuple(args, "iiid", &bodyIndex, &jointIndex, &controlMode,
&targetValue)) {
PyErr_SetString(SpamError, "Error parsing arguments");
return NULL;
}
valid = 1;
switch (controlMode) {
case CONTROL_MODE_POSITION_VELOCITY_PD: {
targetPosition = targetValue;
break;
}
case CONTROL_MODE_VELOCITY: {
targetVelocity = targetValue;
break;
}
case CONTROL_MODE_TORQUE: {
appliedForce = targetValue;
break;
}
default: { valid = 0; }
}
}
if (size == 5) {
double targetValue = 0.0;
// See switch statement for conversions
if (!PyArg_ParseTuple(args, "iiidd", &bodyIndex, &jointIndex, &controlMode,
&targetValue, &maxForce)) {
PyErr_SetString(SpamError, "Error parsing arguments");
return NULL;
}
valid = 1;
switch (controlMode) {
case CONTROL_MODE_POSITION_VELOCITY_PD: {
targetPosition = targetValue;
break;
}
case CONTROL_MODE_VELOCITY: {
targetVelocity = targetValue;
break;
}
case CONTROL_MODE_TORQUE: {
valid = 0;
break;
}
default: { valid = 0; }
}
}
if (size == 6) {
double gain = 0.0;
double targetValue = 0.0;
if (!PyArg_ParseTuple(args, "iiiddd", &bodyIndex, &jointIndex, &controlMode,
&targetValue, &maxForce, &gain)) {
PyErr_SetString(SpamError, "Error parsing arguments");
return NULL;
}
valid = 1;
switch (controlMode) {
case CONTROL_MODE_POSITION_VELOCITY_PD: {
targetPosition = targetValue;
kp = gain;
break;
}
case CONTROL_MODE_VELOCITY: {
targetVelocity = targetValue;
kd = gain;
break;
}
case CONTROL_MODE_TORQUE: {
valid = 0;
break;
}
default: { valid = 0; }
}
}
if (size == 8) {
// only applicable for CONTROL_MODE_POSITION_VELOCITY_PD.
if (!PyArg_ParseTuple(args, "iiiddddd", &bodyIndex, &jointIndex,
&controlMode, &targetPosition, &targetVelocity,
&maxForce, &kp, &kd)) {
PyErr_SetString(SpamError, "Error parsing arguments");
return NULL;
}
valid = 1;
}
if (valid) {
int numJoints;
b3SharedMemoryCommandHandle commandHandle;
b3SharedMemoryStatusHandle statusHandle;
struct b3JointInfo info;
numJoints = b3GetNumJoints(sm, bodyIndex);
if ((jointIndex >= numJoints) || (jointIndex < 0)) {
PyErr_SetString(SpamError, "Joint index out-of-range.");
return NULL;
}
if ((controlMode != CONTROL_MODE_VELOCITY) &&
(controlMode != CONTROL_MODE_TORQUE) &&
(controlMode != CONTROL_MODE_POSITION_VELOCITY_PD)) {
PyErr_SetString(SpamError, "Illegral control mode.");
return NULL;
}
commandHandle = b3JointControlCommandInit2(sm, bodyIndex, controlMode);
b3GetJointInfo(sm, bodyIndex, jointIndex, &info);
switch (controlMode) {
case CONTROL_MODE_VELOCITY: {
b3JointControlSetDesiredVelocity(commandHandle, info.m_uIndex,
targetVelocity);
b3JointControlSetKd(commandHandle, info.m_uIndex, kd);
b3JointControlSetMaximumForce(commandHandle, info.m_uIndex, maxForce);
break;
}
case CONTROL_MODE_TORQUE: {
b3JointControlSetDesiredForceTorque(commandHandle, info.m_uIndex,
appliedForce);
break;
}
case CONTROL_MODE_POSITION_VELOCITY_PD: {
b3JointControlSetDesiredPosition(commandHandle, info.m_qIndex,
targetPosition);
b3JointControlSetKp(commandHandle, info.m_uIndex, kp);
b3JointControlSetDesiredVelocity(commandHandle, info.m_uIndex,
targetVelocity);
b3JointControlSetKd(commandHandle, info.m_uIndex, kd);
b3JointControlSetMaximumForce(commandHandle, info.m_uIndex, maxForce);
break;
}
default: {}
};
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, commandHandle);
Py_INCREF(Py_None);
return Py_None;
}
PyErr_SetString(SpamError, "Error parsing arguments in setJointControl.");
return NULL;
}
static PyObject* pybullet_setRealTimeSimulation(PyObject* self,
PyObject* args) {
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
int enableRealTimeSimulation = 0;
int ret;
b3SharedMemoryCommandHandle command = b3InitPhysicsParamCommand(sm);
b3SharedMemoryStatusHandle statusHandle;
if (!PyArg_ParseTuple(args, "i", &enableRealTimeSimulation)) {
PyErr_SetString(
SpamError,
"setRealTimeSimulation expected a single value (integer).");
return NULL;
}
ret =
b3PhysicsParamSetRealTimeSimulation(command, enableRealTimeSimulation);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
// ASSERT_EQ(b3GetStatusType(statusHandle), CMD_CLIENT_COMMAND_COMPLETED);
}
Py_INCREF(Py_None);
return Py_None;
}
// Set the gravity of the world with (x, y, z) arguments
static PyObject* pybullet_setGravity(PyObject* self, PyObject* args) {
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
double gravX = 0.0;
double gravY = 0.0;
double gravZ = -10.0;
int ret;
b3SharedMemoryCommandHandle command = b3InitPhysicsParamCommand(sm);
b3SharedMemoryStatusHandle statusHandle;
if (!PyArg_ParseTuple(args, "ddd", &gravX, &gravY, &gravZ)) {
PyErr_SetString(SpamError, "setGravity expected (x,y,z) values.");
return NULL;
}
ret = b3PhysicsParamSetGravity(command, gravX, gravY, gravZ);
// ret = b3PhysicsParamSetTimeStep(command, timeStep);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
// ASSERT_EQ(b3GetStatusType(statusHandle), CMD_CLIENT_COMMAND_COMPLETED);
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject* pybullet_setTimeStep(PyObject* self, PyObject* args) {
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
double timeStep = 0.001;
int ret;
b3SharedMemoryCommandHandle command = b3InitPhysicsParamCommand(sm);
b3SharedMemoryStatusHandle statusHandle;
if (!PyArg_ParseTuple(args, "d", &timeStep)) {
PyErr_SetString(SpamError,
"setTimeStep expected a single value (double).");
return NULL;
}
ret = b3PhysicsParamSetTimeStep(command, timeStep);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
// ASSERT_EQ(b3GetStatusType(statusHandle), CMD_CLIENT_COMMAND_COMPLETED);
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject *
pybullet_setDefaultContactERP(PyObject* self, PyObject* args)
{
if (0==sm)
{
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
double defaultContactERP=0.005;
int ret;
b3SharedMemoryCommandHandle command = b3InitPhysicsParamCommand(sm);
b3SharedMemoryStatusHandle statusHandle;
if (!PyArg_ParseTuple(args, "d", &defaultContactERP))
{
PyErr_SetString(SpamError, "default Contact ERP expected a single value (double).");
return NULL;
}
ret = b3PhysicsParamSetDefaultContactERP(command, defaultContactERP);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
}
Py_INCREF(Py_None);
return Py_None;
}
// Internal function used to get the base position and orientation
// Orientation is returned in quaternions
static int pybullet_internalGetBasePositionAndOrientation(
int bodyIndex, double basePosition[3], double baseOrientation[3]) {
basePosition[0] = 0.;
basePosition[1] = 0.;
basePosition[2] = 0.;
baseOrientation[0] = 0.;
baseOrientation[1] = 0.;
baseOrientation[2] = 0.;
baseOrientation[3] = 1.;
{
{
b3SharedMemoryCommandHandle cmd_handle =
b3RequestActualStateCommandInit(sm, bodyIndex);
b3SharedMemoryStatusHandle status_handle =
b3SubmitClientCommandAndWaitStatus(sm, cmd_handle);
const int status_type = b3GetStatusType(status_handle);
const double* actualStateQ;
// const double* jointReactionForces[];
int i;
if (status_type != CMD_ACTUAL_STATE_UPDATE_COMPLETED) {
PyErr_SetString(SpamError, "getBasePositionAndOrientation failed.");
return 0;
}
b3GetStatusActualState(
status_handle, 0 /* body_unique_id */,
0 /* num_degree_of_freedom_q */, 0 /* num_degree_of_freedom_u */,
0 /*root_local_inertial_frame*/, &actualStateQ,
0 /* actual_state_q_dot */, 0 /* joint_reaction_forces */);
// printf("joint reaction forces=");
// for (i=0; i < (sizeof(jointReactionForces)/sizeof(double)); i++) {
// printf("%f ", jointReactionForces[i]);
// }
// now, position x,y,z = actualStateQ[0],actualStateQ[1],actualStateQ[2]
// and orientation x,y,z,w =
// actualStateQ[3],actualStateQ[4],actualStateQ[5],actualStateQ[6]
basePosition[0] = actualStateQ[0];
basePosition[1] = actualStateQ[1];
basePosition[2] = actualStateQ[2];
baseOrientation[0] = actualStateQ[3];
baseOrientation[1] = actualStateQ[4];
baseOrientation[2] = actualStateQ[5];
baseOrientation[3] = actualStateQ[6];
}
}
return 1;
}
// Get the positions (x,y,z) and orientation (x,y,z,w) in quaternion
// values for the base link of your object
// Object is retrieved based on body index, which is the order
// the object was loaded into the simulation (0-based)
static PyObject* pybullet_getBasePositionAndOrientation(PyObject* self,
PyObject* args) {
int bodyIndex = -1;
double basePosition[3];
double baseOrientation[4];
PyObject* pylistPos;
PyObject* pylistOrientation;
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
if (!PyArg_ParseTuple(args, "i", &bodyIndex)) {
PyErr_SetString(SpamError, "Expected a body index (integer).");
return NULL;
}
if (0 == pybullet_internalGetBasePositionAndOrientation(
bodyIndex, basePosition, baseOrientation)) {
PyErr_SetString(SpamError,
"GetBasePositionAndOrientation failed (#joints/links "
"exceeds maximum?).");
return NULL;
}
{
PyObject* item;
int i;
int num = 3;
pylistPos = PyTuple_New(num);
for (i = 0; i < num; i++) {
item = PyFloat_FromDouble(basePosition[i]);
PyTuple_SetItem(pylistPos, i, item);
}
}
{
PyObject* item;
int i;
int num = 4;
pylistOrientation = PyTuple_New(num);
for (i = 0; i < num; i++) {
item = PyFloat_FromDouble(baseOrientation[i]);
PyTuple_SetItem(pylistOrientation, i, item);
}
}
{
PyObject* pylist;
pylist = PyTuple_New(2);
PyTuple_SetItem(pylist, 0, pylistPos);
PyTuple_SetItem(pylist, 1, pylistOrientation);
return pylist;
}
}
// Return the number of joints in an object based on
// body index; body index is based on order of sequence
// the object is loaded into simulation
static PyObject* pybullet_getNumJoints(PyObject* self, PyObject* args) {
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
int bodyIndex = -1;
int numJoints = 0;
if (!PyArg_ParseTuple(args, "i", &bodyIndex)) {
PyErr_SetString(SpamError, "Expected a body index (integer).");
return NULL;
}
numJoints = b3GetNumJoints(sm, bodyIndex);
#if PY_MAJOR_VERSION >= 3
return PyLong_FromLong(numJoints);
#else
return PyInt_FromLong(numJoints);
#endif
}
}
// Initalize all joint positions given a list of values
static PyObject* pybullet_resetJointState(PyObject* self, PyObject* args) {
int size;
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
size = PySequence_Size(args);
if (size == 3) {
int bodyIndex;
int jointIndex;
double targetValue;
if (PyArg_ParseTuple(args, "iid", &bodyIndex, &jointIndex, &targetValue)) {
b3SharedMemoryCommandHandle commandHandle;
b3SharedMemoryStatusHandle statusHandle;
int numJoints;
numJoints = b3GetNumJoints(sm, bodyIndex);
if ((jointIndex >= numJoints) || (jointIndex < 0)) {
PyErr_SetString(SpamError, "Joint index out-of-range.");
return NULL;
}
commandHandle = b3CreatePoseCommandInit(sm, bodyIndex);
b3CreatePoseCommandSetJointPosition(sm, commandHandle, jointIndex,
targetValue);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, commandHandle);
Py_INCREF(Py_None);
return Py_None;
}
}
PyErr_SetString(SpamError, "error in resetJointState.");
return NULL;
}
// Reset the position and orientation of the base/root link, position [x,y,z]
// and orientation quaternion [x,y,z,w]
static PyObject* pybullet_resetBasePositionAndOrientation(PyObject* self,
PyObject* args) {
int size;
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
size = PySequence_Size(args);
if (size == 3) {
int bodyIndex;
PyObject* posObj;
PyObject* ornObj;
double pos[3];
double orn[4]; // as a quaternion
if (PyArg_ParseTuple(args, "iOO", &bodyIndex, &posObj, &ornObj)) {
b3SharedMemoryCommandHandle commandHandle;
b3SharedMemoryStatusHandle statusHandle;
{
PyObject* seq;
int len, i;
seq = PySequence_Fast(posObj, "expected a sequence");
len = PySequence_Size(posObj);
if (len == 3) {
for (i = 0; i < 3; i++) {
pos[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
} else {
PyErr_SetString(SpamError, "position needs a 3 coordinates [x,y,z].");
Py_DECREF(seq);
return NULL;
}
Py_DECREF(seq);
}
{
PyObject* seq;
int len, i;
seq = PySequence_Fast(ornObj, "expected a sequence");
len = PySequence_Size(ornObj);
if (len == 4) {
for (i = 0; i < 4; i++) {
orn[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
} else {
PyErr_SetString(
SpamError,
"orientation needs a 4 coordinates, quaternion [x,y,z,w].");
Py_DECREF(seq);
return NULL;
}
Py_DECREF(seq);
}
commandHandle = b3CreatePoseCommandInit(sm, bodyIndex);
b3CreatePoseCommandSetBasePosition(commandHandle, pos[0], pos[1], pos[2]);
b3CreatePoseCommandSetBaseOrientation(commandHandle, orn[0], orn[1],
orn[2], orn[3]);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, commandHandle);
Py_INCREF(Py_None);
return Py_None;
}
}
PyErr_SetString(SpamError, "error in resetJointState.");
return NULL;
}
// Get the a single joint info for a specific bodyIndex
//
// Args:
// bodyIndex - integer indicating body in simulation
// jointIndex - integer indicating joint for a specific body
//
// Joint information includes:
// index, name, type, q-index, u-index,
// flags, joint damping, joint friction
//
// The format of the returned list is
// [int, str, int, int, int, int, float, float]
//
// TODO(hellojas): get joint positions for a body
static PyObject* pybullet_getJointInfo(PyObject* self, PyObject* args) {
PyObject* pyListJointInfo;
struct b3JointInfo info;
int bodyIndex = -1;
int jointIndex = -1;
int jointInfoSize = 8; // size of struct b3JointInfo
int size = PySequence_Size(args);
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
if (size == 2) // get body index and joint index
{
if (PyArg_ParseTuple(args, "ii", &bodyIndex, &jointIndex)) {
// printf("body index = %d, joint index =%d\n", bodyIndex, jointIndex);
pyListJointInfo = PyTuple_New(jointInfoSize);
if (b3GetJointInfo(sm, bodyIndex, jointIndex, &info)) {
// printf("Joint%d %s, type %d, at q-index %d and u-index %d\n",
// info.m_jointIndex,
// info.m_jointName,
// info.m_jointType,
// info.m_qIndex,
// info.m_uIndex);
// printf(" flags=%d jointDamping=%f jointFriction=%f\n",
// info.m_flags,
// info.m_jointDamping,
// info.m_jointFriction);
PyTuple_SetItem(pyListJointInfo, 0, PyInt_FromLong(info.m_jointIndex));
PyTuple_SetItem(pyListJointInfo, 1,
PyString_FromString(info.m_jointName));
PyTuple_SetItem(pyListJointInfo, 2, PyInt_FromLong(info.m_jointType));
PyTuple_SetItem(pyListJointInfo, 3, PyInt_FromLong(info.m_qIndex));
PyTuple_SetItem(pyListJointInfo, 4, PyInt_FromLong(info.m_uIndex));
PyTuple_SetItem(pyListJointInfo, 5, PyInt_FromLong(info.m_flags));
PyTuple_SetItem(pyListJointInfo, 6,
PyFloat_FromDouble(info.m_jointDamping));
PyTuple_SetItem(pyListJointInfo, 7,
PyFloat_FromDouble(info.m_jointFriction));
return pyListJointInfo;
} else {
PyErr_SetString(SpamError, "GetJointInfo failed.");
return NULL;
}
}
}
Py_INCREF(Py_None);
return Py_None;
}
// Returns the state of a specific joint in a given bodyIndex
//
// Args:
// bodyIndex - integer indicating body in simulation
// jointIndex - integer indicating joint for a specific body
//
// The state of a joint includes the following:
// position, velocity, force torque (6 values), and motor torque
// The returned pylist is an array of [float, float, float[6], float]
// TODO(hellojas): check accuracy of position and velocity
// TODO(hellojas): check force torque values
static PyObject* pybullet_getJointState(PyObject* self, PyObject* args) {
PyObject* pyListJointForceTorque;
PyObject* pyListJointState;
PyObject* item;
struct b3JointInfo info;
struct b3JointSensorState sensorState;
int bodyIndex = -1;
int jointIndex = -1;
int sensorStateSize = 4; // size of struct b3JointSensorState
int forceTorqueSize = 6; // size of force torque list from b3JointSensorState
int i, j;
int size = PySequence_Size(args);
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
if (size == 2) // get body index and joint index
{
if (PyArg_ParseTuple(args, "ii", &bodyIndex, &jointIndex)) {
int status_type = 0;
b3SharedMemoryCommandHandle cmd_handle =
b3RequestActualStateCommandInit(sm, bodyIndex);
b3SharedMemoryStatusHandle status_handle =
b3SubmitClientCommandAndWaitStatus(sm, cmd_handle);
status_type = b3GetStatusType(status_handle);
if (status_type != CMD_ACTUAL_STATE_UPDATE_COMPLETED) {
PyErr_SetString(SpamError, "getBasePositionAndOrientation failed.");
return NULL;
}
pyListJointState = PyTuple_New(sensorStateSize);
pyListJointForceTorque = PyTuple_New(forceTorqueSize);
b3GetJointState(sm, status_handle, jointIndex, &sensorState);
PyTuple_SetItem(pyListJointState, 0,
PyFloat_FromDouble(sensorState.m_jointPosition));
PyTuple_SetItem(pyListJointState, 1,
PyFloat_FromDouble(sensorState.m_jointVelocity));
for (j = 0; j < forceTorqueSize; j++) {
PyTuple_SetItem(pyListJointForceTorque, j,
PyFloat_FromDouble(sensorState.m_jointForceTorque[j]));
}
PyTuple_SetItem(pyListJointState, 2, pyListJointForceTorque);
PyTuple_SetItem(pyListJointState, 3,
PyFloat_FromDouble(sensorState.m_jointMotorTorque));
return pyListJointState;
}
} else {
PyErr_SetString(
SpamError,
"getJointState expects 2 arguments (objectUniqueId and joint index).");
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
// internal function to set a float matrix[16]
// used to initialize camera position with
// a view and projection matrix in renderImage()
//
// // Args:
// matrix - float[16] which will be set by values from objMat
static int pybullet_internalSetMatrix(PyObject* objMat, float matrix[16]) {
int i, len;
PyObject* seq;
seq = PySequence_Fast(objMat, "expected a sequence");
len = PySequence_Size(objMat);
if (len == 16) {
for (i = 0; i < len; i++) {
matrix[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
Py_DECREF(seq);
return 1;
}
Py_DECREF(seq);
return 0;
}
// internal function to set a float vector[3]
// used to initialize camera position with
// a view and projection matrix in renderImage()
//
// // Args:
// vector - float[3] which will be set by values from objMat
static int pybullet_internalSetVector(PyObject* objMat, float vector[3]) {
int i, len;
PyObject* seq;
seq = PySequence_Fast(objMat, "expected a sequence");
len = PySequence_Size(objMat);
if (len == 3) {
for (i = 0; i < len; i++) {
vector[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
Py_DECREF(seq);
return 1;
}
Py_DECREF(seq);
return 0;
}
// vector - double[3] which will be set by values from obVec
static int pybullet_internalSetVectord(PyObject* obVec, double vector[3]) {
int i, len;
PyObject* seq;
seq = PySequence_Fast(obVec, "expected a sequence");
len = PySequence_Size(obVec);
if (len == 3) {
for (i = 0; i < len; i++) {
vector[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
Py_DECREF(seq);
return 1;
}
Py_DECREF(seq);
return 0;
}
// vector - double[3] which will be set by values from obVec
static int pybullet_internalSetVector4(PyObject* obVec, double vector[4]) {
int i, len;
PyObject* seq;
seq = PySequence_Fast(obVec, "expected a sequence");
len = PySequence_Size(obVec);
if (len == 4) {
for (i = 0; i < len; i++) {
vector[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
Py_DECREF(seq);
return 1;
}
Py_DECREF(seq);
return 0;
}
static PyObject* pybullet_getContactPointData(PyObject* self, PyObject* args) {
int size = PySequence_Size(args);
int objectUniqueIdA = -1;
int objectUniqueIdB = -1;
b3SharedMemoryCommandHandle commandHandle;
struct b3ContactInformation contactPointData;
b3SharedMemoryStatusHandle statusHandle;
int statusType;
int i;
PyObject* pyResultList = 0;
if (size == 1) {
if (!PyArg_ParseTuple(args, "i", &objectUniqueIdA)) {
PyErr_SetString(SpamError, "Error parsing object unique id");
return NULL;
}
}
if (size == 2) {
if (!PyArg_ParseTuple(args, "ii", &objectUniqueIdA, &objectUniqueIdB)) {
PyErr_SetString(SpamError, "Error parsing object unique id");
return NULL;
}
}
commandHandle = b3InitRequestContactPointInformation(sm);
b3SetContactFilterBodyA(commandHandle, objectUniqueIdA);
b3SetContactFilterBodyB(commandHandle, objectUniqueIdB);
b3SubmitClientCommand(sm, commandHandle);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, commandHandle);
statusType = b3GetStatusType(statusHandle);
if (statusType == CMD_CONTACT_POINT_INFORMATION_COMPLETED) {
/*
0 int m_contactFlags;
1 int m_bodyUniqueIdA;
2 int m_bodyUniqueIdB;
3 int m_linkIndexA;
4 int m_linkIndexB;
5-6-7 double m_positionOnAInWS[3];//contact point location on object A,
in world space coordinates
8-9-10 double m_positionOnBInWS[3];//contact point location on object
A, in world space coordinates
11-12-13 double m_contactNormalOnBInWS[3];//the separating contact
normal, pointing from object B towards object A
14 double m_contactDistance;//negative number is penetration, positive
is distance.
15 double m_normalForce;
*/
b3GetContactPointInformation(sm, &contactPointData);
pyResultList = PyTuple_New(contactPointData.m_numContactPoints);
for (i = 0; i < contactPointData.m_numContactPoints; i++) {
PyObject* contactObList = PyTuple_New(16); // see above 16 fields
PyObject* item;
item =
PyInt_FromLong(contactPointData.m_contactPointData[i].m_contactFlags);
PyTuple_SetItem(contactObList, 0, item);
item = PyInt_FromLong(
contactPointData.m_contactPointData[i].m_bodyUniqueIdA);
PyTuple_SetItem(contactObList, 1, item);
item = PyInt_FromLong(
contactPointData.m_contactPointData[i].m_bodyUniqueIdB);
PyTuple_SetItem(contactObList, 2, item);
item =
PyInt_FromLong(contactPointData.m_contactPointData[i].m_linkIndexA);
PyTuple_SetItem(contactObList, 3, item);
item =
PyInt_FromLong(contactPointData.m_contactPointData[i].m_linkIndexB);
PyTuple_SetItem(contactObList, 4, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_positionOnAInWS[0]);
PyTuple_SetItem(contactObList, 5, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_positionOnAInWS[1]);
PyTuple_SetItem(contactObList, 6, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_positionOnAInWS[2]);
PyTuple_SetItem(contactObList, 7, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_positionOnBInWS[0]);
PyTuple_SetItem(contactObList, 8, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_positionOnBInWS[1]);
PyTuple_SetItem(contactObList, 9, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_positionOnBInWS[2]);
PyTuple_SetItem(contactObList, 10, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_contactNormalOnBInWS[0]);
PyTuple_SetItem(contactObList, 11, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_contactNormalOnBInWS[1]);
PyTuple_SetItem(contactObList, 12, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_contactNormalOnBInWS[2]);
PyTuple_SetItem(contactObList, 13, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_contactDistance);
PyTuple_SetItem(contactObList, 14, item);
item = PyFloat_FromDouble(
contactPointData.m_contactPointData[i].m_normalForce);
PyTuple_SetItem(contactObList, 15, item);
PyTuple_SetItem(pyResultList, i, contactObList);
}
return pyResultList;
}
Py_INCREF(Py_None);
return Py_None;
}
// Render an image from the current timestep of the simulation
//
// Examples:
// renderImage() - default image resolution and camera position
// renderImage(w, h) - image resolution of (w,h), default camera
// renderImage(w, h, view[16], projection[16]) - set both resolution
// and initialize camera to the view and projection values
// renderImage(w, h, cameraPos, targetPos, cameraUp, nearVal, farVal) - set
// resolution and initialize camera based on camera position, target
// position, camera up and fulstrum near/far values.
// renderImage(w, h, cameraPos, targetPos, cameraUp, nearVal, farVal, fov) -
// set resolution and initialize camera based on camera position, target
// position, camera up, fulstrum near/far values and camera field of view.
// renderImage(w, h, targetPos, distance, yaw, pitch, upAxisIndex, nearVal,
// farVal, fov)
//
// Note if the (w,h) is too small, the objects may not appear based on
// where the camera has been set
//
// TODO(hellojas): fix image is cut off at head
// TODO(hellojas): should we add check to give minimum image resolution
// to see object based on camera position?
static PyObject* pybullet_renderImage(PyObject* self, PyObject* args) {
/// request an image from a simulated camera, using a software renderer.
struct b3CameraImageData imageData;
PyObject* objViewMat, *objProjMat;
PyObject* objCameraPos, *objTargetPos, *objCameraUp;
int width, height;
int size = PySequence_Size(args);
float viewMatrix[16];
float projectionMatrix[16];
float cameraPos[3];
float targetPos[3];
float cameraUp[3];
float left, right, bottom, top, aspect;
float nearVal, farVal;
float fov;
// inialize cmd
b3SharedMemoryCommandHandle command;
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
command = b3InitRequestCameraImage(sm);
if (size == 2) // only set camera resolution
{
if (PyArg_ParseTuple(args, "ii", &width, &height)) {
b3RequestCameraImageSetPixelResolution(command, width, height);
}
} else if (size == 4) // set camera resolution and view and projection matrix
{
if (PyArg_ParseTuple(args, "iiOO", &width, &height, &objViewMat,
&objProjMat)) {
b3RequestCameraImageSetPixelResolution(command, width, height);
// set camera matrices only if set matrix function succeeds
if (pybullet_internalSetMatrix(objViewMat, viewMatrix) &&
(pybullet_internalSetMatrix(objProjMat, projectionMatrix))) {
b3RequestCameraImageSetCameraMatrices(command, viewMatrix,
projectionMatrix);
} else {
PyErr_SetString(SpamError, "Error parsing view or projection matrix.");
return NULL;
}
}
} else if (size == 7) // set camera resolution, camera positions and
// calculate projection using near/far values.
{
if (PyArg_ParseTuple(args, "iiOOOff", &width, &height, &objCameraPos,
&objTargetPos, &objCameraUp, &nearVal, &farVal)) {
b3RequestCameraImageSetPixelResolution(command, width, height);
if (pybullet_internalSetVector(objCameraPos, cameraPos) &&
pybullet_internalSetVector(objTargetPos, targetPos) &&
pybullet_internalSetVector(objCameraUp, cameraUp)) {
b3RequestCameraImageSetViewMatrix(command, cameraPos, targetPos,
cameraUp);
} else {
PyErr_SetString(SpamError,
"Error parsing camera position, target or up.");
return NULL;
}
aspect = width / height;
left = -aspect * nearVal;
right = aspect * nearVal;
bottom = -nearVal;
top = nearVal;
b3RequestCameraImageSetProjectionMatrix(command, left, right, bottom, top,
nearVal, farVal);
}
} else if (size == 8) // set camera resolution, camera positions and
// calculate projection using near/far values & field
// of view
{
if (PyArg_ParseTuple(args, "iiOOOfff", &width, &height, &objCameraPos,
&objTargetPos, &objCameraUp, &nearVal, &farVal,
&fov)) {
b3RequestCameraImageSetPixelResolution(command, width, height);
if (pybullet_internalSetVector(objCameraPos, cameraPos) &&
pybullet_internalSetVector(objTargetPos, targetPos) &&
pybullet_internalSetVector(objCameraUp, cameraUp)) {
b3RequestCameraImageSetViewMatrix(command, cameraPos, targetPos,
cameraUp);
} else {
PyErr_SetString(SpamError,
"Error parsing camera position, target or up.");
return NULL;
}
aspect = width / height;
b3RequestCameraImageSetFOVProjectionMatrix(command, fov, aspect, nearVal,
farVal);
}
} else if (size == 11) {
int upAxisIndex = 1;
float camDistance, yaw, pitch, roll;
// sometimes more arguments are better :-)
if (PyArg_ParseTuple(args, "iiOffffifff", &width, &height, &objTargetPos,
&camDistance, &yaw, &pitch, &roll, &upAxisIndex,
&nearVal, &farVal, &fov)) {
b3RequestCameraImageSetPixelResolution(command, width, height);
if (pybullet_internalSetVector(objTargetPos, targetPos)) {
// printf("width = %d, height = %d, targetPos = %f,%f,%f, distance = %f,
// yaw = %f, pitch = %f, upAxisIndex = %d, near=%f, far=%f,
// fov=%f\n",width,height,targetPos[0],targetPos[1],targetPos[2],camDistance,yaw,pitch,upAxisIndex,nearVal,farVal,fov);
b3RequestCameraImageSetViewMatrix2(command, targetPos, camDistance, yaw,
pitch, roll, upAxisIndex);
aspect = width / height;
b3RequestCameraImageSetFOVProjectionMatrix(command, fov, aspect,
nearVal, farVal);
} else {
PyErr_SetString(SpamError, "Error parsing camera target pos");
}
} else {
PyErr_SetString(SpamError, "Error parsing arguments");
}
} else {
PyErr_SetString(SpamError, "Invalid number of args passed to renderImage.");
return NULL;
}
if (b3CanSubmitCommand(sm)) {
b3SharedMemoryStatusHandle statusHandle;
int statusType;
// b3RequestCameraImageSelectRenderer(command,ER_BULLET_HARDWARE_OPENGL);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
statusType = b3GetStatusType(statusHandle);
if (statusType == CMD_CAMERA_IMAGE_COMPLETED) {
PyObject* item2;
PyObject* pyResultList; // store 4 elements in this result: width,
// height, rgbData, depth
#ifdef PYBULLET_USE_NUMPY
PyObject* pyRGB;
PyObject* pyDep;
PyObject* pySeg;
int i, j, p;
b3GetCameraImageData(sm, &imageData);
// TODO(hellojas): error handling if image size is 0
pyResultList = PyTuple_New(5);
PyTuple_SetItem(pyResultList, 0, PyInt_FromLong(imageData.m_pixelWidth));
PyTuple_SetItem(pyResultList, 1, PyInt_FromLong(imageData.m_pixelHeight));
int bytesPerPixel = 4; // Red, Green, Blue, and Alpha each 8 bit values
npy_intp rgb_dims[3] = {imageData.m_pixelHeight, imageData.m_pixelWidth,
bytesPerPixel};
npy_intp dep_dims[2] = {imageData.m_pixelHeight, imageData.m_pixelWidth};
npy_intp seg_dims[2] = {imageData.m_pixelHeight, imageData.m_pixelWidth};
pyRGB = PyArray_SimpleNew(3, rgb_dims, NPY_UINT8);
pyDep = PyArray_SimpleNew(2, dep_dims, NPY_FLOAT32);
pySeg = PyArray_SimpleNew(2, seg_dims, NPY_INT32);
memcpy(PyArray_DATA(pyRGB), imageData.m_rgbColorData,
imageData.m_pixelHeight * imageData.m_pixelWidth * bytesPerPixel);
memcpy(PyArray_DATA(pyDep), imageData.m_depthValues,
imageData.m_pixelHeight * imageData.m_pixelWidth);
memcpy(PyArray_DATA(pySeg), imageData.m_segmentationMaskValues,
imageData.m_pixelHeight * imageData.m_pixelWidth);
PyTuple_SetItem(pyResultList, 2, pyRGB);
PyTuple_SetItem(pyResultList, 3, pyDep);
PyTuple_SetItem(pyResultList, 4, pySeg);
#else//PYBULLET_USE_NUMPY
PyObject* pylistRGB;
PyObject* pylistDep;
PyObject* pylistSeg;
int i, j, p;
b3GetCameraImageData(sm, &imageData);
// TODO(hellojas): error handling if image size is 0
pyResultList = PyTuple_New(5);
PyTuple_SetItem(pyResultList, 0, PyInt_FromLong(imageData.m_pixelWidth));
PyTuple_SetItem(pyResultList, 1, PyInt_FromLong(imageData.m_pixelHeight));
{
PyObject* item;
int bytesPerPixel = 4; // Red, Green, Blue, and Alpha each 8 bit values
int num =
bytesPerPixel * imageData.m_pixelWidth * imageData.m_pixelHeight;
pylistRGB = PyTuple_New(num);
pylistDep =
PyTuple_New(imageData.m_pixelWidth * imageData.m_pixelHeight);
pylistSeg =
PyTuple_New(imageData.m_pixelWidth * imageData.m_pixelHeight);
for (i = 0; i < imageData.m_pixelWidth; i++) {
for (j = 0; j < imageData.m_pixelHeight; j++) {
// TODO(hellojas): validate depth values make sense
int depIndex = i + j * imageData.m_pixelWidth;
{
item = PyFloat_FromDouble(imageData.m_depthValues[depIndex]);
PyTuple_SetItem(pylistDep, depIndex, item);
}
{
item2 =
PyLong_FromLong(imageData.m_segmentationMaskValues[depIndex]);
PyTuple_SetItem(pylistSeg, depIndex, item2);
}
for (p = 0; p < bytesPerPixel; p++) {
int pixelIndex =
bytesPerPixel * (i + j * imageData.m_pixelWidth) + p;
item = PyInt_FromLong(imageData.m_rgbColorData[pixelIndex]);
PyTuple_SetItem(pylistRGB, pixelIndex, item);
}
}
}
}
PyTuple_SetItem(pyResultList, 2, pylistRGB);
PyTuple_SetItem(pyResultList, 3, pylistDep);
PyTuple_SetItem(pyResultList, 4, pylistSeg);
return pyResultList;
#endif//PYBULLET_USE_NUMPY
return pyResultList;
}
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject* pybullet_applyExternalForce(PyObject* self, PyObject* args) {
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
int objectUniqueId, linkIndex, flags;
double force[3];
double position[3] = {0.0, 0.0, 0.0};
PyObject* forceObj, *posObj;
b3SharedMemoryCommandHandle command;
b3SharedMemoryStatusHandle statusHandle;
int size = PySequence_Size(args);
if (size == 5) {
if (!PyArg_ParseTuple(args, "iiOOi", &objectUniqueId, &linkIndex,
&forceObj, &posObj, &flags)) {
PyErr_SetString(SpamError, "applyBaseForce couldn't parse arguments");
return NULL;
}
} else {
PyErr_SetString(SpamError,
"applyBaseForce needs 5 arguments: objectUniqueId, "
"linkIndex (-1 for base/root link), force [x,y,z], "
"position [x,y,z], flags");
return NULL;
}
{
PyObject* seq;
int len, i;
seq = PySequence_Fast(forceObj, "expected a sequence");
len = PySequence_Size(forceObj);
if (len == 3) {
for (i = 0; i < 3; i++) {
force[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
} else {
PyErr_SetString(SpamError, "force needs a 3 coordinates [x,y,z].");
Py_DECREF(seq);
return NULL;
}
Py_DECREF(seq);
}
{
PyObject* seq;
int len, i;
seq = PySequence_Fast(posObj, "expected a sequence");
len = PySequence_Size(posObj);
if (len == 3) {
for (i = 0; i < 3; i++) {
position[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
} else {
PyErr_SetString(SpamError, "position needs a 3 coordinates [x,y,z].");
Py_DECREF(seq);
return NULL;
}
Py_DECREF(seq);
}
if ((flags != EF_WORLD_FRAME) && (flags != EF_LINK_FRAME)) {
PyErr_SetString(SpamError,
"flag has to be either WORLD_FRAME or LINK_FRAME");
return NULL;
}
command = b3ApplyExternalForceCommandInit(sm);
b3ApplyExternalForce(command, objectUniqueId, linkIndex, force, position,
flags);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject* pybullet_applyExternalTorque(PyObject* self, PyObject* args) {
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
int objectUniqueId, linkIndex, flags;
double torque[3];
PyObject* torqueObj;
if (PyArg_ParseTuple(args, "iiOi", &objectUniqueId, &linkIndex, &torqueObj,
&flags)) {
PyObject* seq;
int len, i;
seq = PySequence_Fast(torqueObj, "expected a sequence");
len = PySequence_Size(torqueObj);
if (len == 3) {
for (i = 0; i < 3; i++) {
torque[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
} else {
PyErr_SetString(SpamError, "torque needs a 3 coordinates [x,y,z].");
Py_DECREF(seq);
return NULL;
}
Py_DECREF(seq);
if (linkIndex < -1) {
PyErr_SetString(SpamError,
"Invalid link index, has to be -1 or larger");
return NULL;
}
if ((flags != EF_WORLD_FRAME) && (flags != EF_LINK_FRAME)) {
PyErr_SetString(SpamError,
"flag has to be either WORLD_FRAME or LINK_FRAME");
return NULL;
}
{
b3SharedMemoryStatusHandle statusHandle;
b3SharedMemoryCommandHandle command =
b3ApplyExternalForceCommandInit(sm);
b3ApplyExternalTorque(command, objectUniqueId, -1, torque, flags);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
}
}
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject* pybullet_getQuaternionFromEuler(PyObject* self,
PyObject* args) {
double rpy[3];
PyObject* eulerObj;
if (PyArg_ParseTuple(args, "O", &eulerObj)) {
PyObject* seq;
int len, i;
seq = PySequence_Fast(eulerObj, "expected a sequence");
len = PySequence_Size(eulerObj);
if (len == 3) {
for (i = 0; i < 3; i++) {
rpy[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
} else {
PyErr_SetString(SpamError,
"Euler angles need a 3 coordinates [roll, pitch, yaw].");
Py_DECREF(seq);
return NULL;
}
Py_DECREF(seq);
} else {
PyErr_SetString(SpamError,
"Euler angles need a 3 coordinates [roll, pitch, yaw].");
return NULL;
}
{
double phi, the, psi;
double roll = rpy[0];
double pitch = rpy[1];
double yaw = rpy[2];
phi = roll / 2.0;
the = pitch / 2.0;
psi = yaw / 2.0;
{
double quat[4] = {
sin(phi) * cos(the) * cos(psi) - cos(phi) * sin(the) * sin(psi),
cos(phi) * sin(the) * cos(psi) + sin(phi) * cos(the) * sin(psi),
cos(phi) * cos(the) * sin(psi) - sin(phi) * sin(the) * cos(psi),
cos(phi) * cos(the) * cos(psi) + sin(phi) * sin(the) * sin(psi)};
// normalize the quaternion
double len = sqrt(quat[0] * quat[0] + quat[1] * quat[1] +
quat[2] * quat[2] + quat[3] * quat[3]);
quat[0] /= len;
quat[1] /= len;
quat[2] /= len;
quat[3] /= len;
{
PyObject* pylist;
int i;
pylist = PyTuple_New(4);
for (i = 0; i < 4; i++)
PyTuple_SetItem(pylist, i, PyFloat_FromDouble(quat[i]));
return pylist;
}
}
}
Py_INCREF(Py_None);
return Py_None;
}
/// quaternion <-> euler yaw/pitch/roll convention from URDF/SDF, see Gazebo
/// https://github.com/arpg/Gazebo/blob/master/gazebo/math/Quaternion.cc
static PyObject* pybullet_getEulerFromQuaternion(PyObject* self,
PyObject* args) {
double squ;
double sqx;
double sqy;
double sqz;
double quat[4];
PyObject* quatObj;
if (PyArg_ParseTuple(args, "O", &quatObj)) {
PyObject* seq;
int len, i;
seq = PySequence_Fast(quatObj, "expected a sequence");
len = PySequence_Size(quatObj);
if (len == 4) {
for (i = 0; i < 4; i++) {
quat[i] = pybullet_internalGetFloatFromSequence(seq, i);
}
} else {
PyErr_SetString(SpamError, "Quaternion need a 4 components [x,y,z,w].");
Py_DECREF(seq);
return NULL;
}
Py_DECREF(seq);
} else {
PyErr_SetString(SpamError, "Quaternion need a 4 components [x,y,z,w].");
return NULL;
}
{
double rpy[3];
double sarg;
sqx = quat[0] * quat[0];
sqy = quat[1] * quat[1];
sqz = quat[2] * quat[2];
squ = quat[3] * quat[3];
rpy[0] = atan2(2 * (quat[1] * quat[2] + quat[3] * quat[0]),
squ - sqx - sqy + sqz);
sarg = -2 * (quat[0] * quat[2] - quat[3] * quat[1]);
rpy[1] = sarg <= -1.0 ? -0.5 * 3.141592538
: (sarg >= 1.0 ? 0.5 * 3.141592538 : asin(sarg));
rpy[2] = atan2(2 * (quat[0] * quat[1] + quat[3] * quat[2]),
squ + sqx - sqy - sqz);
{
PyObject* pylist;
int i;
pylist = PyTuple_New(3);
for (i = 0; i < 3; i++)
PyTuple_SetItem(pylist, i, PyFloat_FromDouble(rpy[i]));
return pylist;
}
}
Py_INCREF(Py_None);
return Py_None;
}
///Experimental Inverse Kinematics binding ,7-dof KUKA IIWA only
static PyObject* pybullet_calculateInverseKinematicsKuka(PyObject* self,
PyObject* args) {
int size;
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
size = PySequence_Size(args);
if (size == 2)
{
int bodyIndex;
int endEffectorLinkIndex;
PyObject* targetPosObj;
PyObject* targetOrnObj;
if (PyArg_ParseTuple(args, "iiOO", &bodyIndex, &endEffectorLinkIndex, &targetPosObj,&targetOrnObj))
{
double pos[3];
double ori[4]={0,1.0,0,0};
if (pybullet_internalSetVectord(targetPosObj,pos) && pybullet_internalSetVector4(targetOrnObj,ori))
{
b3SharedMemoryStatusHandle statusHandle;
int numPos=0;
int resultBodyIndex;
int result;
b3SharedMemoryCommandHandle command = b3CalculateInverseKinematicsCommandInit(sm,bodyIndex);
b3CalculateInverseKinematicsAddTargetPositionWithOrientation(command,6,pos,ori);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
result = b3GetStatusInverseKinematicsJointPositions(statusHandle,
&resultBodyIndex,
&numPos,
0);
if (result && numPos)
{
int i;
PyObject* pylist;
double* ikOutPutJointPos = (double*)malloc(numPos*sizeof(double));
result = b3GetStatusInverseKinematicsJointPositions(statusHandle,
&resultBodyIndex,
&numPos,
ikOutPutJointPos);
pylist = PyTuple_New(numPos);
for (i = 0; i < numPos; i++)
{
PyTuple_SetItem(pylist, i,
PyFloat_FromDouble(ikOutPutJointPos[i]));
}
free(ikOutPutJointPos);
return pylist;
}
else
{
PyErr_SetString(SpamError,
"Error in calculateInverseKinematics");
return NULL;
}
} else
{
PyErr_SetString(SpamError,
"calculateInverseKinematics couldn't extract position vector3");
return NULL;
}
}
} else
{
PyErr_SetString(SpamError,
"calculateInverseKinematics expects 2 arguments, body index, "
"and target position for end effector");
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
/// Given an object id, joint positions, joint velocities and joint
/// accelerations,
/// compute the joint forces using Inverse Dynamics
static PyObject* pybullet_calculateInverseDynamics(PyObject* self,
PyObject* args) {
int size;
if (0 == sm) {
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
size = PySequence_Size(args);
if (size == 4) {
int bodyIndex;
PyObject* objPositionsQ;
PyObject* objVelocitiesQdot;
PyObject* objAccelerations;
if (PyArg_ParseTuple(args, "iOOO", &bodyIndex, &objPositionsQ,
&objVelocitiesQdot, &objAccelerations)) {
int szObPos = PySequence_Size(objPositionsQ);
int szObVel = PySequence_Size(objVelocitiesQdot);
int szObAcc = PySequence_Size(objAccelerations);
int numJoints = b3GetNumJoints(sm, bodyIndex);
if (numJoints && (szObPos == numJoints) && (szObVel == numJoints) &&
(szObAcc == numJoints)) {
int szInBytes = sizeof(double) * numJoints;
int i;
PyObject* pylist = 0;
double* jointPositionsQ = (double*)malloc(szInBytes);
double* jointVelocitiesQdot = (double*)malloc(szInBytes);
double* jointAccelerations = (double*)malloc(szInBytes);
double* jointForcesOutput = (double*)malloc(szInBytes);
for (i = 0; i < numJoints; i++) {
jointPositionsQ[i] =
pybullet_internalGetFloatFromSequence(objPositionsQ, i);
jointVelocitiesQdot[i] =
pybullet_internalGetFloatFromSequence(objVelocitiesQdot, i);
jointAccelerations[i] =
pybullet_internalGetFloatFromSequence(objAccelerations, i);
}
{
b3SharedMemoryStatusHandle statusHandle;
int statusType;
b3SharedMemoryCommandHandle commandHandle =
b3CalculateInverseDynamicsCommandInit(
sm, bodyIndex, jointPositionsQ, jointVelocitiesQdot,
jointAccelerations);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, commandHandle);
statusType = b3GetStatusType(statusHandle);
if (statusType == CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED) {
int bodyUniqueId;
int dofCount;
b3GetStatusInverseDynamicsJointForces(statusHandle, &bodyUniqueId,
&dofCount, 0);
if (dofCount) {
b3GetStatusInverseDynamicsJointForces(statusHandle, 0, 0,
jointForcesOutput);
{
{
int i;
pylist = PyTuple_New(dofCount);
for (i = 0; i < dofCount; i++)
PyTuple_SetItem(pylist, i,
PyFloat_FromDouble(jointForcesOutput[i]));
}
}
}
} else {
PyErr_SetString(SpamError,
"Internal error in calculateInverseDynamics");
}
}
free(jointPositionsQ);
free(jointVelocitiesQdot);
free(jointAccelerations);
free(jointForcesOutput);
if (pylist) return pylist;
} else {
PyErr_SetString(SpamError,
"calculateInverseDynamics numJoints needs to be "
"positive and [joint positions], [joint velocities], "
"[joint accelerations] need to match the number of "
"joints.");
return NULL;
}
} else {
PyErr_SetString(SpamError,
"calculateInverseDynamics expects 4 arguments, body "
"index, [joint positions], [joint velocities], [joint "
"accelerations].");
return NULL;
}
} else {
PyErr_SetString(SpamError,
"calculateInverseDynamics expects 4 arguments, body index, "
"[joint positions], [joint velocities], [joint "
"accelerations].");
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyMethodDef SpamMethods[] = {
{"connect", pybullet_connectPhysicsServer, METH_VARARGS,
"Connect to an existing physics server (using shared memory by default)."},
{"disconnect", pybullet_disconnectPhysicsServer, METH_VARARGS,
"Disconnect from the physics server."},
{"resetSimulation", pybullet_resetSimulation, METH_VARARGS,
"Reset the simulation: remove all objects and start from an empty world."},
{"stepSimulation", pybullet_stepSimulation, METH_VARARGS,
"Step the simulation using forward dynamics."},
{"setGravity", pybullet_setGravity, METH_VARARGS,
"Set the gravity acceleration (x,y,z)."},
{"setTimeStep", pybullet_setTimeStep, METH_VARARGS,
"Set the amount of time to proceed at each call to stepSimulation. (unit "
"is seconds, typically range is 0.01 or 0.001)"},
{"setTimeStep", pybullet_setTimeStep, METH_VARARGS,
"Set the amount of time to proceed at each call to stepSimulation."
" (unit is seconds, typically range is 0.01 or 0.001)"},
{"setDefaultContactERP", pybullet_setDefaultContactERP, METH_VARARGS,
"Set the amount of contact penetration Error Recovery Paramater "
"(ERP) in each time step. \
This is an tuning parameter to control resting contact stability. "
"This value depends on the time step."},
{ "setRealTimeSimulation", pybullet_setRealTimeSimulation, METH_VARARGS,
"Enable or disable real time simulation (using the real time clock,"
" RTC) in the physics server. Expects one integer argument, 0 or 1" },
{"loadURDF", pybullet_loadURDF, METH_VARARGS,
"Create a multibody by loading a URDF file."},
{"loadSDF", pybullet_loadSDF, METH_VARARGS,
"Load multibodies from an SDF file."},
{"getBasePositionAndOrientation", pybullet_getBasePositionAndOrientation,
METH_VARARGS,
"Get the world position and orientation of the base of the object. "
"(x,y,z) position vector and (x,y,z,w) quaternion orientation."},
{"resetBasePositionAndOrientation",
pybullet_resetBasePositionAndOrientation, METH_VARARGS,
"Reset the world position and orientation of the base of the object "
"instantaneously, not through physics simulation. (x,y,z) position vector "
"and (x,y,z,w) quaternion orientation."},
{"getNumJoints", pybullet_getNumJoints, METH_VARARGS,
"Get the number of joints for an object."},
{"getJointInfo", pybullet_getJointInfo, METH_VARARGS,
"Get the name and type info for a joint on a body."},
{"getJointState", pybullet_getJointState, METH_VARARGS,
"Get the state (position, velocity etc) for a joint on a body."},
{"resetJointState", pybullet_resetJointState, METH_VARARGS,
"Reset the state (position, velocity etc) for a joint on a body "
"instantaneously, not through physics simulation."},
{"setJointMotorControl", pybullet_setJointMotorControl, METH_VARARGS,
"Set a single joint motor control mode and desired target value. There is "
"no immediate state change, stepSimulation will process the motors."},
{"applyExternalForce", pybullet_applyExternalForce, METH_VARARGS,
"for objectUniqueId, linkIndex (-1 for base/root link), apply a force "
"[x,y,z] at the a position [x,y,z], flag to select FORCE_IN_LINK_FRAME or "
"FORCE_IN_WORLD_FRAME coordinates"},
{"applyExternalTorque", pybullet_applyExternalTorque, METH_VARARGS,
"for objectUniqueId, linkIndex (-1 for base/root link) apply a torque "
"[x,y,z] in Cartesian coordinates, flag to select TORQUE_IN_LINK_FRAME or "
"TORQUE_IN_WORLD_FRAME coordinates"},
{"renderImage", pybullet_renderImage, METH_VARARGS,
"Render an image (given the pixel resolution width, height, camera view "
"matrix, projection matrix, near, and far values), and return the "
"8-8-8bit RGB pixel data and floating point depth values"
#ifdef PYBULLET_USE_NUMPY
" as NumPy arrays"
#endif
},
{"getContactPointData", pybullet_getContactPointData, METH_VARARGS,
"Return the contact point information for all or some of pairwise "
"object-object collisions. Optional arguments one or two object unique "
"ids, that need to be involved in the contact."},
{"getQuaternionFromEuler", pybullet_getQuaternionFromEuler, METH_VARARGS,
"Convert Euler [roll, pitch, yaw] as in URDF/SDF convention, to "
"quaternion [x,y,z,w]"},
{"getEulerFromQuaternion", pybullet_getEulerFromQuaternion, METH_VARARGS,
"Convert quaternion [x,y,z,w] to Euler [roll, pitch, yaw] as in URDF/SDF "
"convention"},
{"calculateInverseDynamics", pybullet_calculateInverseDynamics,
METH_VARARGS,
"Given an object id, joint positions, joint velocities and joint "
"accelerations, compute the joint forces using Inverse Dynamics"},
{"calculateInverseKinematicsKuka", pybullet_calculateInverseKinematicsKuka,
METH_VARARGS,
"Experimental, KUKA IIWA only: Given an object id, "
"current joint positions and target position"
" for the end effector,"
"compute the inverse kinematics and return the new joint state"},
// todo(erwincoumans)
// saveSnapshot
// loadSnapshot
// raycast info
// object names
{NULL, NULL, 0, NULL} /* Sentinel */
};
#if PY_MAJOR_VERSION >= 3
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT, "pybullet", /* m_name */
"Python bindings for Bullet Physics Robotics API (also known as Shared "
"Memory API)", /* m_doc */
-1, /* m_size */
SpamMethods, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
#endif
PyMODINIT_FUNC
#if PY_MAJOR_VERSION >= 3
PyInit_pybullet(void)
#else
initpybullet(void)
#endif
{
PyObject* m;
#if PY_MAJOR_VERSION >= 3
m = PyModule_Create(&moduledef);
#else
m = Py_InitModule3("pybullet", SpamMethods, "Python bindings for Bullet");
#endif
#if PY_MAJOR_VERSION >= 3
if (m == NULL) return m;
#else
if (m == NULL) return;
#endif
PyModule_AddIntConstant(m, "SHARED_MEMORY",
eCONNECT_SHARED_MEMORY); // user read
PyModule_AddIntConstant(m, "DIRECT", eCONNECT_DIRECT); // user read
PyModule_AddIntConstant(m, "GUI", eCONNECT_GUI); // user read
PyModule_AddIntConstant(m, "TORQUE_CONTROL", CONTROL_MODE_TORQUE);
PyModule_AddIntConstant(m, "VELOCITY_CONTROL",
CONTROL_MODE_VELOCITY); // user read
PyModule_AddIntConstant(m, "POSITION_CONTROL",
CONTROL_MODE_POSITION_VELOCITY_PD); // user read
PyModule_AddIntConstant(m, "LINK_FRAME", EF_LINK_FRAME);
PyModule_AddIntConstant(m, "WORLD_FRAME", EF_WORLD_FRAME);
SpamError = PyErr_NewException("pybullet.error", NULL, NULL);
Py_INCREF(SpamError);
PyModule_AddObject(m, "error", SpamError);
#ifdef PYBULLET_USE_NUMPY
// Initialize numpy array.
import_array();
#endif //PYBULLET_USE_NUMPY
#if PY_MAJOR_VERSION >= 3
return m;
#endif
}