bullet3/examples/MultiBody/SerialChains.cpp
erwincoumans ab8f16961e Code-style consistency improvement:
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
2018-09-23 14:17:31 -07:00

394 lines
13 KiB
C++

#include "SerialChains.h"
#include "../OpenGLWindow/SimpleOpenGL3App.h"
#include "btBulletDynamicsCommon.h"
#include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
#include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h"
#include "BulletDynamics/Featherstone/btMultiBody.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyLink.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodySliderConstraint.h"
#include "../OpenGLWindow/GLInstancingRenderer.h"
#include "BulletCollision/CollisionShapes/btShapeHull.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
class SerialChains : public CommonMultiBodyBase
{
public:
SerialChains(GUIHelperInterface* helper);
virtual ~SerialChains();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 1;
float pitch = -35;
float yaw = 50;
float targetPos[3] = {-3, 2.8, -2.5};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
btMultiBody* createFeatherstoneMultiBody(class btMultiBodyDynamicsWorld* world, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical = false, bool fixedBase = false);
void createGround(const btVector3& halfExtents = btVector3(50, 50, 50), btScalar zOffSet = btScalar(-1.55));
void addColliders(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents);
};
static bool g_fixedBase = true;
static bool g_firstInit = true;
static float scaling = 0.4f;
static float friction = 1.;
static int g_constraintSolverType = 0;
SerialChains::SerialChains(GUIHelperInterface* helper)
: CommonMultiBodyBase(helper)
{
m_guiHelper->setUpAxis(1);
}
SerialChains::~SerialChains()
{
// Do nothing
}
void SerialChains::stepSimulation(float deltaTime)
{
//use a smaller internal timestep, there are stability issues
float internalTimeStep = 1. / 240.f;
m_dynamicsWorld->stepSimulation(deltaTime, 10, internalTimeStep);
}
void SerialChains::initPhysics()
{
m_guiHelper->setUpAxis(1);
if (g_firstInit)
{
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraDistance(btScalar(10. * scaling));
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraPitch(50);
g_firstInit = false;
}
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_broadphase = new btDbvtBroadphase();
if (g_constraintSolverType == 3)
{
g_constraintSolverType = 0;
g_fixedBase = !g_fixedBase;
}
btMLCPSolverInterface* mlcp;
switch (g_constraintSolverType++)
{
case 0:
m_solver = new btMultiBodyConstraintSolver;
b3Printf("Constraint Solver: Sequential Impulse");
break;
case 1:
mlcp = new btSolveProjectedGaussSeidel();
m_solver = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("Constraint Solver: MLCP + PGS");
break;
default:
mlcp = new btDantzigSolver();
m_solver = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("Constraint Solver: MLCP + Dantzig");
break;
}
btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration);
m_dynamicsWorld = world;
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->setGravity(btVector3(0, -10, 0));
m_dynamicsWorld->getSolverInfo().m_globalCfm = btScalar(1e-4); //todo: what value is good?
///create a few basic rigid bodies
btVector3 groundHalfExtents(50, 50, 50);
btCollisionShape* groundShape = new btBoxShape(groundHalfExtents);
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, -50, 00));
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
bool damping = true;
bool gyro = true;
int numLinks = 5;
bool spherical = true; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool multibodyOnly = true; //false
bool canSleep = true;
bool selfCollide = true;
btVector3 linkHalfExtents(0.05, 0.37, 0.1);
btVector3 baseHalfExtents(0.05, 0.37, 0.1);
btMultiBody* mbC1 = createFeatherstoneMultiBody(world, numLinks, btVector3(-0.4f, 3.f, 0.f), linkHalfExtents, baseHalfExtents, spherical, g_fixedBase);
btMultiBody* mbC2 = createFeatherstoneMultiBody(world, numLinks, btVector3(-0.4f, 3.0f, 0.5f), linkHalfExtents, baseHalfExtents, spherical, g_fixedBase);
mbC1->setCanSleep(canSleep);
mbC1->setHasSelfCollision(selfCollide);
mbC1->setUseGyroTerm(gyro);
if (!damping)
{
mbC1->setLinearDamping(0.f);
mbC1->setAngularDamping(0.f);
}
else
{
mbC1->setLinearDamping(0.1f);
mbC1->setAngularDamping(0.9f);
}
//
m_dynamicsWorld->setGravity(btVector3(0, -9.81, 0));
//////////////////////////////////////////////
if (numLinks > 0)
{
btScalar q0 = 45.f * SIMD_PI / 180.f;
if (!spherical)
{
mbC1->setJointPosMultiDof(0, &q0);
}
else
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC1->setJointPosMultiDof(0, quat0);
}
}
///
addColliders(mbC1, world, baseHalfExtents, linkHalfExtents);
mbC2->setCanSleep(canSleep);
mbC2->setHasSelfCollision(selfCollide);
mbC2->setUseGyroTerm(gyro);
//
if (!damping)
{
mbC2->setLinearDamping(0.f);
mbC2->setAngularDamping(0.f);
}
else
{
mbC2->setLinearDamping(0.1f);
mbC2->setAngularDamping(0.9f);
}
//
m_dynamicsWorld->setGravity(btVector3(0, -9.81, 0));
//////////////////////////////////////////////
if (numLinks > 0)
{
btScalar q0 = -45.f * SIMD_PI / 180.f;
if (!spherical)
{
mbC2->setJointPosMultiDof(0, &q0);
}
else
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC2->setJointPosMultiDof(0, quat0);
}
}
///
addColliders(mbC2, world, baseHalfExtents, linkHalfExtents);
/////////////////////////////////////////////////////////////////
btScalar groundHeight = -51.55;
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
groundShape->calculateLocalInertia(mass, localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, groundHeight, 0));
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body, 1, 1 + 2); //,1,1+2);
/////////////////////////////////////////////////////////////////
createGround();
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
/////////////////////////////////////////////////////////////////
}
btMultiBody* SerialChains::createFeatherstoneMultiBody(btMultiBodyDynamicsWorld* pWorld, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical, bool fixedBase)
{
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 1.f;
if (baseMass)
{
btCollisionShape* pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag);
delete pTempBox;
}
bool canSleep = false;
btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, fixedBase, canSleep);
btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
pMultiBody->setBasePos(basePosition);
pMultiBody->setWorldToBaseRot(baseOriQuat);
btVector3 vel(0, 0, 0);
//init the links
btVector3 hingeJointAxis(1, 0, 0);
float linkMass = 1.f;
btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
btCollisionShape* pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));
pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag);
delete pTempBox;
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//////
btScalar q0 = 0.f * SIMD_PI / 180.f;
btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
quat0.normalize();
/////
for (int i = 0; i < numLinks; ++i)
{
if (!spherical)
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, true);
else
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, true);
}
pMultiBody->finalizeMultiDof();
///
pWorld->addMultiBody(pMultiBody);
///
return pMultiBody;
}
void SerialChains::createGround(const btVector3& halfExtents, btScalar zOffSet)
{
btCollisionShape* groundShape = new btBoxShape(halfExtents);
m_collisionShapes.push_back(groundShape);
// rigidbody is dynamic if and only if mass is non zero, otherwise static
btScalar mass(0.);
const bool isDynamic = (mass != 0.f);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
groundShape->calculateLocalInertia(mass, localInertia);
// using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, -halfExtents.z() + zOffSet, 0));
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
// add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body, 1, 1 + 2);
}
void SerialChains::addColliders(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents)
{
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
{
btScalar quat[4] = {-world_to_local[0].x(), -world_to_local[0].y(), -world_to_local[0].z(), world_to_local[0].w()};
if (1)
{
btCollisionShape* box = new btBoxShape(baseHalfExtents);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(box);
btTransform tr;
tr.setIdentity();
tr.setOrigin(local_origin[0]);
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
pWorld->addCollisionObject(col, 2, 1 + 2);
col->setFriction(friction);
pMultiBody->setBaseCollider(col);
}
}
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1];
local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i)));
}
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i + 1];
btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()};
btCollisionShape* box = new btBoxShape(linkHalfExtents);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
col->setCollisionShape(box);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
col->setFriction(friction);
pWorld->addCollisionObject(col, 2, 1 + 2);
pMultiBody->getLink(i).m_collider = col;
}
}
CommonExampleInterface* SerialChainsCreateFunc(CommonExampleOptions& options)
{
return new SerialChains(options.m_guiHelper);
}