bullet3/examples/ThirdPartyLibs/BussIK/Tree.cpp
2016-11-07 21:13:48 -08:00

218 lines
4.3 KiB
C++

/*
*
* Inverse Kinematics software, with several solvers including
* Selectively Damped Least Squares Method
* Damped Least Squares Method
* Pure Pseudoinverse Method
* Jacobian Transpose Method
*
*
* Author: Samuel R. Buss, sbuss@ucsd.edu.
* Web page: http://www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/index.html
*
*
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*
*
*/
//
// VectorRn: Vector over Rn (Variable length vector)
//
#include <iostream>
using namespace std;
#include "LinearR3.h"
#include "Tree.h"
#include "Node.h"
Tree::Tree()
{
root = 0;
nNode = nEffector = nJoint = 0;
}
void Tree::SetSeqNum(Node* node)
{
switch (node->purpose) {
case JOINT:
node->seqNumJoint = nJoint++;
node->seqNumEffector = -1;
break;
case EFFECTOR:
node->seqNumJoint = -1;
node->seqNumEffector = nEffector++;
break;
}
}
void Tree::InsertRoot(Node* root)
{
assert( nNode==0 );
nNode++;
Tree::root = root;
root->r = root->attach;
assert( !(root->left || root->right) );
SetSeqNum(root);
}
void Tree::InsertLeftChild(Node* parent, Node* child)
{
assert(parent);
nNode++;
parent->left = child;
child->realparent = parent;
child->r = child->attach - child->realparent->attach;
assert( !(child->left || child->right) );
SetSeqNum(child);
}
void Tree::InsertRightSibling(Node* parent, Node* child)
{
assert(parent);
nNode++;
parent->right = child;
child->realparent = parent->realparent;
child->r = child->attach - child->realparent->attach;
assert( !(child->left || child->right) );
SetSeqNum(child);
}
// Search recursively below "node" for the node with index value.
Node* Tree::SearchJoint(Node* node, int index)
{
Node* ret;
if (node != 0) {
if (node->seqNumJoint == index) {
return node;
} else {
if ((ret = SearchJoint(node->left, index))) {
return ret;
}
if ((ret = SearchJoint(node->right, index))) {
return ret;
}
return NULL;
}
}
else {
return NULL;
}
}
// Get the joint with the index value
Node* Tree::GetJoint(int index)
{
return SearchJoint(root, index);
}
// Search recursively below node for the end effector with the index value
Node* Tree::SearchEffector(Node* node, int index)
{
Node* ret;
if (node != 0) {
if (node->seqNumEffector == index) {
return node;
} else {
if ((ret = SearchEffector(node->left, index))) {
return ret;
}
if ((ret = SearchEffector(node->right, index))) {
return ret;
}
return NULL;
}
} else {
return NULL;
}
}
// Get the end effector for the index value
Node* Tree::GetEffector(int index)
{
return SearchEffector(root, index);
}
// Returns the global position of the effector.
const VectorR3& Tree::GetEffectorPosition(int index)
{
Node* effector = GetEffector(index);
assert(effector);
return (effector->s);
}
void Tree::ComputeTree(Node* node)
{
if (node != 0) {
node->ComputeS();
node->ComputeW();
ComputeTree(node->left);
ComputeTree(node->right);
}
}
void Tree::Compute(void)
{
ComputeTree(root);
}
void Tree::PrintTree(Node* node)
{
if (node != 0) {
node->PrintNode();
PrintTree(node->left);
PrintTree(node->right);
}
}
void Tree::Print(void)
{
PrintTree(root);
cout << "\n";
}
// Recursively initialize tree below the node
void Tree::InitTree(Node* node)
{
if (node != 0) {
node->InitNode();
InitTree(node->left);
InitTree(node->right);
}
}
// Initialize all nodes in the tree
void Tree::Init(void)
{
InitTree(root);
}
void Tree::UnFreezeTree(Node* node)
{
if (node != 0) {
node->UnFreeze();
UnFreezeTree(node->left);
UnFreezeTree(node->right);
}
}
void Tree::UnFreeze(void)
{
UnFreezeTree(root);
}