bullet3/examples/ThirdPartyLibs/BussIK/VectorRn.h
erwin coumans 75e86051c2 Add inverse kinematics example with implementations by Sam Buss.
Uses Kuka IIWA model description and 4 methods:
Selectively Damped Least Squares,Damped Least Squares,
Jacobi Transpose, Jacobi Pseudo Inverse
Tweak some PD values in Inverse Dynamics example and Robot example.
2016-07-24 22:22:42 -07:00

238 lines
5.8 KiB
C++

/*
*
* Mathematics Subpackage (VrMath)
*
*
* Author: Samuel R. Buss, sbuss@ucsd.edu.
* Web page: http://math.ucsd.edu/~sbuss/MathCG
*
*
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*
*
*/
//
// VectorRn: Vector over Rn (Variable length vector)
//
// Not very sophisticated yet. Needs more functionality
// To do: better handling of resizing.
//
#ifndef VECTOR_RN_H
#define VECTOR_RN_H
#include <math.h>
#include <assert.h>
#include "LinearR3.h"
class VectorRn {
friend class MatrixRmn;
public:
VectorRn(); // Null constructor
VectorRn( long length ); // Constructor with length
~VectorRn(); // Destructor
void SetLength( long newLength );
long GetLength() const { return length; }
void SetZero();
void Fill( double d );
void Load( const double* d );
void LoadScaled( const double* d, double scaleFactor );
void Set ( const VectorRn& src );
// Two access methods identical in functionality
// Subscripts are ZERO-BASED!!
const double& operator[]( long i ) const { assert ( 0<=i && i<length ); return *(x+i); }
double& operator[]( long i ) { assert ( 0<=i && i<length ); return *(x+i); }
double Get( long i ) const { assert ( 0<=i && i<length ); return *(x+i); }
// Use GetPtr to get pointer into the array (efficient)
// Is friendly in that anyone can change the array contents (be careful!)
const double* GetPtr( long i ) const { assert(0<=i && i<length); return (x+i); }
double* GetPtr( long i ) { assert(0<=i && i<length); return (x+i); }
const double* GetPtr() const { return x; }
double* GetPtr() { return x; }
void Set( long i, double val ) { assert(0<=i && i<length), *(x+i) = val; }
void SetTriple( long i, const VectorR3& u );
VectorRn& operator+=( const VectorRn& src );
VectorRn& operator-=( const VectorRn& src );
void AddScaled (const VectorRn& src, double scaleFactor );
VectorRn& operator*=( double f );
double NormSq() const;
double Norm() const { return sqrt(NormSq()); }
double MaxAbs() const;
private:
long length; // Logical or actual length
long AllocLength; // Allocated length
double *x; // Array of vector entries
static VectorRn WorkVector; // Serves as a temporary vector
static VectorRn& GetWorkVector() { return WorkVector; }
static VectorRn& GetWorkVector( long len ) { WorkVector.SetLength(len); return WorkVector; }
};
inline VectorRn::VectorRn()
{
length = 0;
AllocLength = 0;
x = 0;
}
inline VectorRn::VectorRn( long initLength )
{
length = 0;
AllocLength = 0;
x = 0;
SetLength( initLength );
}
inline VectorRn::~VectorRn()
{
delete x;
}
// Resize.
// If the array is shortened, the information about the allocated length is lost.
inline void VectorRn::SetLength( long newLength )
{
assert ( newLength>0 );
if ( newLength>AllocLength ) {
delete x;
AllocLength = Max( newLength, AllocLength<<1 );
x = new double[AllocLength];
}
length = newLength;
}
// Zero out the entire vector
inline void VectorRn::SetZero()
{
double* target = x;
for ( long i=length; i>0; i-- ) {
*(target++) = 0.0;
}
}
// Set the value of the i-th triple of entries in the vector
inline void VectorRn::SetTriple( long i, const VectorR3& u )
{
long j = 3*i;
assert ( 0<=j && j+2 < length );
u.Dump( x+j );
}
inline void VectorRn::Fill( double d )
{
double *to = x;
for ( long i=length; i>0; i-- ) {
*(to++) = d;
}
}
inline void VectorRn::Load( const double* d )
{
double *to = x;
for ( long i=length; i>0; i-- ) {
*(to++) = *(d++);
}
}
inline void VectorRn::LoadScaled( const double* d, double scaleFactor )
{
double *to = x;
for ( long i=length; i>0; i-- ) {
*(to++) = (*(d++))*scaleFactor;
}
}
inline void VectorRn::Set( const VectorRn& src )
{
assert ( src.length == this->length );
double* to = x;
double* from = src.x;
for ( long i=length; i>0; i-- ) {
*(to++) = *(from++);
}
}
inline VectorRn& VectorRn::operator+=( const VectorRn& src )
{
assert ( src.length == this->length );
double* to = x;
double* from = src.x;
for ( long i=length; i>0; i-- ) {
*(to++) += *(from++);
}
return *this;
}
inline VectorRn& VectorRn::operator-=( const VectorRn& src )
{
assert ( src.length == this->length );
double* to = x;
double* from = src.x;
for ( long i=length; i>0; i-- ) {
*(to++) -= *(from++);
}
return *this;
}
inline void VectorRn::AddScaled (const VectorRn& src, double scaleFactor )
{
assert ( src.length == this->length );
double* to = x;
double* from = src.x;
for ( long i=length; i>0; i-- ) {
*(to++) += (*(from++))*scaleFactor;
}
}
inline VectorRn& VectorRn::operator*=( double f )
{
double* target = x;
for ( long i=length; i>0; i-- ) {
*(target++) *= f;
}
return *this;
}
inline double VectorRn::NormSq() const
{
double* target = x;
double res = 0.0;
for ( long i=length; i>0; i-- ) {
res += (*target)*(*target);
target++;
}
return res;
}
inline double Dot( const VectorRn& u, const VectorRn& v )
{
assert ( u.GetLength() == v.GetLength() );
double res = 0.0;
const double* p = u.GetPtr();
const double* q = v.GetPtr();
for ( long i = u.GetLength(); i>0; i-- ) {
res += (*(p++))*(*(q++));
}
return res;
}
#endif VECTOR_RN_H