bullet3/examples/Importers/ImportURDFDemo/ROSURDFImporter.cpp
Erwin Coumans (Google) 8517e85b21 fix various warning
add b3ResourcePath utility, to locate resources relative to executable
2015-07-03 18:17:14 -07:00

900 lines
28 KiB
C++

/* Copyright (C) 2015 Google
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "ROSURDFImporter.h"
#include "URDFImporterInterface.h"
#include "btBulletCollisionCommon.h"
#include "../ImportObjDemo/LoadMeshFromObj.h"
#include "../ImportSTLDemo/LoadMeshFromSTL.h"
#include "../ImportColladaDemo/LoadMeshFromCollada.h"
#include "BulletCollision/CollisionShapes/btShapeHull.h"//to create a tesselation of a generic btConvexShape
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "Bullet3Common/b3FileUtils.h"
#include <string>
#include "urdf/urdfdom/urdf_parser/include/urdf_parser/urdf_parser.h"
#include <iostream>
#include <fstream>
using namespace urdf;
void ROSconvertURDFToVisualShape(const Visual* visual, const char* pathPrefix, const btTransform& visualTransform, btAlignedObjectArray<GLInstanceVertex>& verticesOut, btAlignedObjectArray<int>& indicesOut);
btCollisionShape* ROSconvertURDFToCollisionShape(const Collision* visual, const char* pathPrefix);
static void ROSprintTreeInternal(my_shared_ptr<const Link> link,int level = 0)
{
level+=2;
int count = 0;
for (std::vector<my_shared_ptr<Link> >::const_iterator child = link->child_links.begin(); child != link->child_links.end(); child++)
{
if (*child)
{
for(int j=0;j<level;j++) std::cout << " "; //indent
std::cout << "child(" << (count++)+1 << "): " << (*child)->name << std::endl;
// first grandchild
ROSprintTreeInternal(*child,level);
}
else
{
for(int j=0;j<level;j++) std::cout << " "; //indent
std::cout << "root link: " << link->name << " has a null child!" << *child << std::endl;
}
}
}
struct ROSURDFInternalData
{
my_shared_ptr<ModelInterface> m_robot;
std::vector<my_shared_ptr<Link> > m_links;
struct GUIHelperInterface* m_guiHelper;
char m_pathPrefix[1024];
};
void ROSURDFImporter::printTree()
{
ROSprintTreeInternal(m_data->m_robot->getRoot(),0);
}
enum MyFileType
{
FILE_STL=1,
FILE_COLLADA=2,
FILE_OBJ=3,
};
ROSURDFImporter::ROSURDFImporter(struct GUIHelperInterface* helper)
{
m_data = new ROSURDFInternalData;
m_data->m_robot = 0;
m_data->m_guiHelper = helper;
m_data->m_pathPrefix[0]=0;
}
bool ROSURDFImporter::loadURDF(const char* fileName)
{
//int argc=0;
char relativeFileName[1024];
b3FileUtils fu;
bool fileFound = fu.findFile(fileName, relativeFileName, 1024);
std::string xml_string;
m_data->m_pathPrefix[0] = 0;
if (!fileFound){
std::cerr << "URDF file not found" << std::endl;
return false;
} else
{
int maxPathLen = 1024;
fu.extractPath(relativeFileName,m_data->m_pathPrefix,maxPathLen);
std::fstream xml_file(relativeFileName, std::fstream::in);
while ( xml_file.good() )
{
std::string line;
std::getline( xml_file, line);
xml_string += (line + "\n");
}
xml_file.close();
}
my_shared_ptr<ModelInterface> robot = parseURDF(xml_string);
if (!robot){
std::cerr << "ERROR: Model Parsing the xml failed" << std::endl;
return false;
}
std::cout << "robot name is: " << robot->getName() << std::endl;
// get info from parser
std::cout << "Successfully Parsed URDF" << std::endl;
// get root link
my_shared_ptr<const Link> root_link=robot->getRoot();
if (!root_link)
{
std::cout << "Failed to find root link in URDF" << std::endl;
return false;
}
m_data->m_robot = robot;
m_data->m_robot->getLinks(m_data->m_links);
//initialize the 'index' of each link
for (int i=0;i<(int)m_data->m_links.size();i++)
{
m_data->m_links[i]->m_link_index = i;
}
return true;
}
const char* ROSURDFImporter::getPathPrefix()
{
return m_data->m_pathPrefix;
}
ROSURDFImporter::~ROSURDFImporter()
{
delete m_data;
}
int ROSURDFImporter::getRootLinkIndex() const
{
if (m_data->m_links.size())
{
int rootLinkIndex = m_data->m_robot->getRoot()->m_link_index;
// btAssert(m_links[0]->m_link_index == rootLinkIndex);
return rootLinkIndex;
}
return -1;
};
void ROSURDFImporter::getLinkChildIndices(int linkIndex, btAlignedObjectArray<int>& childLinkIndices) const
{
childLinkIndices.resize(0);
int numChildren = m_data->m_links[linkIndex]->child_links.size();
for (int i=0;i<numChildren;i++)
{
int childIndex =m_data->m_links[linkIndex]->child_links[i]->m_link_index;
childLinkIndices.push_back(childIndex);
}
}
std::string ROSURDFImporter::getLinkName(int linkIndex) const
{
std::string n = m_data->m_links[linkIndex]->name;
return n;
}
std::string ROSURDFImporter::getJointName(int linkIndex) const
{
return m_data->m_links[linkIndex]->parent_joint->name;
}
void ROSURDFImporter::getMassAndInertia(int linkIndex, btScalar& mass,btVector3& localInertiaDiagonal, btTransform& inertialFrame) const
{
if ((*m_data->m_links[linkIndex]).inertial)
{
mass = (*m_data->m_links[linkIndex]).inertial->mass;
localInertiaDiagonal.setValue((*m_data->m_links[linkIndex]).inertial->ixx,(*m_data->m_links[linkIndex]).inertial->iyy,(*m_data->m_links[linkIndex]).inertial->izz);
inertialFrame.setOrigin(btVector3((*m_data->m_links[linkIndex]).inertial->origin.position.x,(*m_data->m_links[linkIndex]).inertial->origin.position.y,(*m_data->m_links[linkIndex]).inertial->origin.position.z));
inertialFrame.setRotation(btQuaternion((*m_data->m_links[linkIndex]).inertial->origin.rotation.x,(*m_data->m_links[linkIndex]).inertial->origin.rotation.y,(*m_data->m_links[linkIndex]).inertial->origin.rotation.z,(*m_data->m_links[linkIndex]).inertial->origin.rotation.w));
} else
{
mass = 1.f;
localInertiaDiagonal.setValue(1,1,1);
inertialFrame.setIdentity();
}
}
bool ROSURDFImporter::getJointInfo(int urdfLinkIndex, btTransform& parent2joint, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit) const
{
jointLowerLimit = 0.f;
jointUpperLimit = 0.f;
if ((*m_data->m_links[urdfLinkIndex]).parent_joint)
{
my_shared_ptr<Joint> pj =(*m_data->m_links[urdfLinkIndex]).parent_joint;
const urdf::Vector3 pos = pj->parent_to_joint_origin_transform.position;
const urdf::Rotation orn = pj->parent_to_joint_origin_transform.rotation;
jointAxisInJointSpace.setValue(pj->axis.x,pj->axis.y,pj->axis.z);
parent2joint.setOrigin(btVector3(pos.x,pos.y,pos.z));
parent2joint.setRotation(btQuaternion(orn.x,orn.y,orn.z,orn.w));
switch (pj->type)
{
case Joint::REVOLUTE:
jointType = URDFRevoluteJoint;
break;
case Joint::FIXED:
jointType = URDFFixedJoint;
break;
case Joint::PRISMATIC:
jointType = URDFPrismaticJoint;
break;
case Joint::PLANAR:
jointType = URDFPlanarJoint;
break;
case Joint::CONTINUOUS:
jointType = URDFContinuousJoint;
break;
default:
{
printf("Error: unknown joint type %d\n", pj->type);
btAssert(0);
}
};
if (pj->limits)
{
jointLowerLimit = pj->limits.get()->lower;
jointUpperLimit = pj->limits.get()->upper;
}
return true;
} else
{
parent2joint.setIdentity();
return false;
}
}
void ROSconvertURDFToVisualShape(const Visual* visual, const char* urdfPathPrefix, const btTransform& visualTransform, btAlignedObjectArray<GLInstanceVertex>& verticesOut, btAlignedObjectArray<int>& indicesOut)
{
GLInstanceGraphicsShape* glmesh = 0;
btConvexShape* convexColShape = 0;
switch (visual->geometry->type)
{
case Geometry::CYLINDER:
{
printf("processing a cylinder\n");
urdf::Cylinder* cyl = (urdf::Cylinder*)visual->geometry.get();
btAlignedObjectArray<btVector3> vertices;
//int numVerts = sizeof(barrel_vertices)/(9*sizeof(float));
int numSteps = 32;
for (int i = 0; i<numSteps; i++)
{
btVector3 vert(cyl->radius*btSin(SIMD_2_PI*(float(i) / numSteps)), cyl->radius*btCos(SIMD_2_PI*(float(i) / numSteps)), cyl->length / 2.);
vertices.push_back(vert);
vert[2] = -cyl->length / 2.;
vertices.push_back(vert);
}
btConvexHullShape* cylZShape = new btConvexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3));
cylZShape->setMargin(0.001);
convexColShape = cylZShape;
break;
}
case Geometry::BOX:
{
printf("processing a box\n");
urdf::Box* box = (urdf::Box*)visual->geometry.get();
btVector3 extents(box->dim.x, box->dim.y, box->dim.z);
btBoxShape* boxShape = new btBoxShape(extents*0.5f);
//btConvexShape* boxShape = new btConeShapeX(extents[2]*0.5,extents[0]*0.5);
convexColShape = boxShape;
convexColShape->setMargin(0.001);
break;
}
case Geometry::SPHERE:
{
printf("processing a sphere\n");
urdf::Sphere* sphere = (urdf::Sphere*)visual->geometry.get();
btScalar radius = sphere->radius;
btSphereShape* sphereShape = new btSphereShape(radius);
convexColShape = sphereShape;
convexColShape->setMargin(0.001);
break;
break;
}
case Geometry::MESH:
{
if (visual->name.length())
{
printf("visual->name=%s\n", visual->name.c_str());
}
if (visual->geometry)
{
const urdf::Mesh* mesh = (const urdf::Mesh*) visual->geometry.get();
if (mesh->filename.length())
{
const char* filename = mesh->filename.c_str();
printf("mesh->filename=%s\n", filename);
char fullPath[1024];
int fileType = 0;
char tmpPathPrefix[1024];
std::string xml_string;
int maxPathLen = 1024;
b3FileUtils::extractPath(filename,tmpPathPrefix,maxPathLen);
char visualPathPrefix[1024];
sprintf(visualPathPrefix,"%s%s",urdfPathPrefix,tmpPathPrefix);
sprintf(fullPath, "%s%s", urdfPathPrefix, filename);
b3FileUtils::toLower(fullPath);
if (strstr(fullPath, ".dae"))
{
fileType = FILE_COLLADA;
}
if (strstr(fullPath, ".stl"))
{
fileType = FILE_STL;
}
if (strstr(fullPath,".obj"))
{
fileType = FILE_OBJ;
}
sprintf(fullPath, "%s%s", urdfPathPrefix, filename);
FILE* f = fopen(fullPath, "rb");
if (f)
{
fclose(f);
switch (fileType)
{
case FILE_OBJ:
{
glmesh = LoadMeshFromObj(fullPath,visualPathPrefix);
break;
}
case FILE_STL:
{
glmesh = LoadMeshFromSTL(fullPath);
break;
}
case FILE_COLLADA:
{
btAlignedObjectArray<GLInstanceGraphicsShape> visualShapes;
btAlignedObjectArray<ColladaGraphicsInstance> visualShapeInstances;
btTransform upAxisTrans; upAxisTrans.setIdentity();
float unitMeterScaling = 1;
int upAxis = 2;
LoadMeshFromCollada(fullPath,
visualShapes,
visualShapeInstances,
upAxisTrans,
unitMeterScaling,
upAxis);
glmesh = new GLInstanceGraphicsShape;
//int index = 0;
glmesh->m_indices = new b3AlignedObjectArray<int>();
glmesh->m_vertices = new b3AlignedObjectArray<GLInstanceVertex>();
for (int i = 0; i<visualShapeInstances.size(); i++)
{
ColladaGraphicsInstance* instance = &visualShapeInstances[i];
GLInstanceGraphicsShape* gfxShape = &visualShapes[instance->m_shapeIndex];
b3AlignedObjectArray<GLInstanceVertex> verts;
verts.resize(gfxShape->m_vertices->size());
int baseIndex = glmesh->m_vertices->size();
for (int i = 0; i<gfxShape->m_vertices->size(); i++)
{
verts[i].normal[0] = gfxShape->m_vertices->at(i).normal[0];
verts[i].normal[1] = gfxShape->m_vertices->at(i).normal[1];
verts[i].normal[2] = gfxShape->m_vertices->at(i).normal[2];
verts[i].uv[0] = gfxShape->m_vertices->at(i).uv[0];
verts[i].uv[1] = gfxShape->m_vertices->at(i).uv[1];
verts[i].xyzw[0] = gfxShape->m_vertices->at(i).xyzw[0];
verts[i].xyzw[1] = gfxShape->m_vertices->at(i).xyzw[1];
verts[i].xyzw[2] = gfxShape->m_vertices->at(i).xyzw[2];
verts[i].xyzw[3] = gfxShape->m_vertices->at(i).xyzw[3];
}
int curNumIndices = glmesh->m_indices->size();
int additionalIndices = gfxShape->m_indices->size();
glmesh->m_indices->resize(curNumIndices + additionalIndices);
for (int k = 0; k<additionalIndices; k++)
{
glmesh->m_indices->at(curNumIndices + k) = gfxShape->m_indices->at(k) + baseIndex;
}
//compensate upAxisTrans and unitMeterScaling here
btMatrix4x4 upAxisMat;
upAxisMat.setIdentity();
// upAxisMat.setPureRotation(upAxisTrans.getRotation());
btMatrix4x4 unitMeterScalingMat;
unitMeterScalingMat.setPureScaling(btVector3(unitMeterScaling, unitMeterScaling, unitMeterScaling));
btMatrix4x4 worldMat = unitMeterScalingMat*upAxisMat*instance->m_worldTransform;
//btMatrix4x4 worldMat = instance->m_worldTransform;
int curNumVertices = glmesh->m_vertices->size();
int additionalVertices = verts.size();
glmesh->m_vertices->reserve(curNumVertices + additionalVertices);
for (int v = 0; v<verts.size(); v++)
{
btVector3 pos(verts[v].xyzw[0], verts[v].xyzw[1], verts[v].xyzw[2]);
pos = worldMat*pos;
verts[v].xyzw[0] = float(pos[0]);
verts[v].xyzw[1] = float(pos[1]);
verts[v].xyzw[2] = float(pos[2]);
glmesh->m_vertices->push_back(verts[v]);
}
}
glmesh->m_numIndices = glmesh->m_indices->size();
glmesh->m_numvertices = glmesh->m_vertices->size();
//glmesh = LoadMeshFromCollada(fullPath);
break;
}
default:
{
printf("Error: unsupported file type for Visual mesh: %s\n", fullPath);
btAssert(0);
}
}
if (glmesh && (glmesh->m_numvertices>0))
{
}
else
{
printf("issue extracting mesh from COLLADA/STL file %s\n", fullPath);
}
}
else
{
printf("mesh geometry not found %s\n", fullPath);
}
}
}
break;
}
default:
{
printf("Error: unknown visual geometry type\n");
}
}
//if we have a convex, tesselate into localVertices/localIndices
if (convexColShape)
{
btShapeHull* hull = new btShapeHull(convexColShape);
hull->buildHull(0.0);
{
// int strideInBytes = 9*sizeof(float);
int numVertices = hull->numVertices();
int numIndices = hull->numIndices();
glmesh = new GLInstanceGraphicsShape;
// int index = 0;
glmesh->m_indices = new b3AlignedObjectArray<int>();
glmesh->m_vertices = new b3AlignedObjectArray<GLInstanceVertex>();
for (int i = 0; i < numVertices; i++)
{
GLInstanceVertex vtx;
btVector3 pos = hull->getVertexPointer()[i];
vtx.xyzw[0] = pos.x();
vtx.xyzw[1] = pos.y();
vtx.xyzw[2] = pos.z();
vtx.xyzw[3] = 1.f;
pos.normalize();
vtx.normal[0] = pos.x();
vtx.normal[1] = pos.y();
vtx.normal[2] = pos.z();
vtx.uv[0] = 0.5f;
vtx.uv[1] = 0.5f;
glmesh->m_vertices->push_back(vtx);
}
btAlignedObjectArray<int> indices;
for (int i = 0; i < numIndices; i++)
{
glmesh->m_indices->push_back(hull->getIndexPointer()[i]);
}
glmesh->m_numvertices = glmesh->m_vertices->size();
glmesh->m_numIndices = glmesh->m_indices->size();
}
delete convexColShape;
convexColShape = 0;
}
if (glmesh && glmesh->m_numIndices>0 && glmesh->m_numvertices >0)
{
int baseIndex = verticesOut.size();
for (int i = 0; i < glmesh->m_indices->size(); i++)
{
indicesOut.push_back(glmesh->m_indices->at(i) + baseIndex);
}
for (int i = 0; i < glmesh->m_vertices->size(); i++)
{
GLInstanceVertex& v = glmesh->m_vertices->at(i);
btVector3 vert(v.xyzw[0],v.xyzw[1],v.xyzw[2]);
btVector3 vt = visualTransform*vert;
v.xyzw[0] = vt[0];
v.xyzw[1] = vt[1];
v.xyzw[2] = vt[2];
btVector3 triNormal(v.normal[0],v.normal[1],v.normal[2]);
triNormal = visualTransform.getBasis()*triNormal;
v.normal[0] = triNormal[0];
v.normal[1] = triNormal[1];
v.normal[2] = triNormal[2];
verticesOut.push_back(v);
}
}
}
btCollisionShape* convertURDFToCollisionShape(const Collision* visual, const char* urdfPathPrefix)
{
btCollisionShape* shape = 0;
switch (visual->geometry->type)
{
case Geometry::CYLINDER:
{
printf("processing a cylinder\n");
urdf::Cylinder* cyl = (urdf::Cylinder*)visual->geometry.get();
btAlignedObjectArray<btVector3> vertices;
//int numVerts = sizeof(barrel_vertices)/(9*sizeof(float));
int numSteps = 32;
for (int i=0;i<numSteps;i++)
{
btVector3 vert(cyl->radius*btSin(SIMD_2_PI*(float(i)/numSteps)),cyl->radius*btCos(SIMD_2_PI*(float(i)/numSteps)),cyl->length/2.);
vertices.push_back(vert);
vert[2] = -cyl->length/2.;
vertices.push_back(vert);
}
btConvexHullShape* cylZShape = new btConvexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3));
cylZShape->setMargin(0.001);
cylZShape->initializePolyhedralFeatures();
//btConvexShape* cylZShape = new btConeShapeZ(cyl->radius,cyl->length);//(vexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3));
//btVector3 halfExtents(cyl->radius,cyl->radius,cyl->length/2.);
//btCylinderShapeZ* cylZShape = new btCylinderShapeZ(halfExtents);
shape = cylZShape;
break;
}
case Geometry::BOX:
{
printf("processing a box\n");
urdf::Box* box = (urdf::Box*)visual->geometry.get();
btVector3 extents(box->dim.x,box->dim.y,box->dim.z);
btBoxShape* boxShape = new btBoxShape(extents*0.5f);
//btConvexShape* boxShape = new btConeShapeX(extents[2]*0.5,extents[0]*0.5);
shape = boxShape;
shape ->setMargin(0.001);
break;
}
case Geometry::SPHERE:
{
printf("processing a sphere\n");
urdf::Sphere* sphere = (urdf::Sphere*)visual->geometry.get();
btScalar radius = sphere->radius;
btSphereShape* sphereShape = new btSphereShape(radius);
shape = sphereShape;
shape ->setMargin(0.001);
break;
break;
}
case Geometry::MESH:
{
if (visual->name.length())
{
printf("visual->name=%s\n",visual->name.c_str());
}
if (visual->geometry)
{
const urdf::Mesh* mesh = (const urdf::Mesh*) visual->geometry.get();
if (mesh->filename.length())
{
const char* filename = mesh->filename.c_str();
printf("mesh->filename=%s\n",filename);
char fullPath[1024];
int fileType = 0;
sprintf(fullPath,"%s%s",urdfPathPrefix,filename);
b3FileUtils::toLower(fullPath);
char tmpPathPrefix[1024];
int maxPathLen = 1024;
b3FileUtils::extractPath(filename,tmpPathPrefix,maxPathLen);
char collisionPathPrefix[1024];
sprintf(collisionPathPrefix,"%s%s",urdfPathPrefix,tmpPathPrefix);
if (strstr(fullPath,".dae"))
{
fileType = FILE_COLLADA;
}
if (strstr(fullPath,".stl"))
{
fileType = FILE_STL;
}
if (strstr(fullPath,".obj"))
{
fileType = FILE_OBJ;
}
sprintf(fullPath,"%s%s",urdfPathPrefix,filename);
FILE* f = fopen(fullPath,"rb");
if (f)
{
fclose(f);
GLInstanceGraphicsShape* glmesh = 0;
switch (fileType)
{
case FILE_OBJ:
{
glmesh = LoadMeshFromObj(fullPath,collisionPathPrefix);
break;
}
case FILE_STL:
{
glmesh = LoadMeshFromSTL(fullPath);
break;
}
case FILE_COLLADA:
{
btAlignedObjectArray<GLInstanceGraphicsShape> visualShapes;
btAlignedObjectArray<ColladaGraphicsInstance> visualShapeInstances;
btTransform upAxisTrans;upAxisTrans.setIdentity();
float unitMeterScaling=1;
int upAxis = 2;
LoadMeshFromCollada(fullPath,
visualShapes,
visualShapeInstances,
upAxisTrans,
unitMeterScaling,
upAxis );
glmesh = new GLInstanceGraphicsShape;
// int index = 0;
glmesh->m_indices = new b3AlignedObjectArray<int>();
glmesh->m_vertices = new b3AlignedObjectArray<GLInstanceVertex>();
for (int i=0;i<visualShapeInstances.size();i++)
{
ColladaGraphicsInstance* instance = &visualShapeInstances[i];
GLInstanceGraphicsShape* gfxShape = &visualShapes[instance->m_shapeIndex];
b3AlignedObjectArray<GLInstanceVertex> verts;
verts.resize(gfxShape->m_vertices->size());
int baseIndex = glmesh->m_vertices->size();
for (int i=0;i<gfxShape->m_vertices->size();i++)
{
verts[i].normal[0] = gfxShape->m_vertices->at(i).normal[0];
verts[i].normal[1] = gfxShape->m_vertices->at(i).normal[1];
verts[i].normal[2] = gfxShape->m_vertices->at(i).normal[2];
verts[i].uv[0] = gfxShape->m_vertices->at(i).uv[0];
verts[i].uv[1] = gfxShape->m_vertices->at(i).uv[1];
verts[i].xyzw[0] = gfxShape->m_vertices->at(i).xyzw[0];
verts[i].xyzw[1] = gfxShape->m_vertices->at(i).xyzw[1];
verts[i].xyzw[2] = gfxShape->m_vertices->at(i).xyzw[2];
verts[i].xyzw[3] = gfxShape->m_vertices->at(i).xyzw[3];
}
int curNumIndices = glmesh->m_indices->size();
int additionalIndices = gfxShape->m_indices->size();
glmesh->m_indices->resize(curNumIndices+additionalIndices);
for (int k=0;k<additionalIndices;k++)
{
glmesh->m_indices->at(curNumIndices+k)=gfxShape->m_indices->at(k)+baseIndex;
}
//compensate upAxisTrans and unitMeterScaling here
btMatrix4x4 upAxisMat;
upAxisMat.setPureRotation(upAxisTrans.getRotation());
btMatrix4x4 unitMeterScalingMat;
unitMeterScalingMat.setPureScaling(btVector3(unitMeterScaling,unitMeterScaling,unitMeterScaling));
btMatrix4x4 worldMat = unitMeterScalingMat*instance->m_worldTransform*upAxisMat;
//btMatrix4x4 worldMat = instance->m_worldTransform;
int curNumVertices = glmesh->m_vertices->size();
int additionalVertices = verts.size();
glmesh->m_vertices->reserve(curNumVertices+additionalVertices);
for(int v=0;v<verts.size();v++)
{
btVector3 pos(verts[v].xyzw[0],verts[v].xyzw[1],verts[v].xyzw[2]);
pos = worldMat*pos;
verts[v].xyzw[0] = float(pos[0]);
verts[v].xyzw[1] = float(pos[1]);
verts[v].xyzw[2] = float(pos[2]);
glmesh->m_vertices->push_back(verts[v]);
}
}
glmesh->m_numIndices = glmesh->m_indices->size();
glmesh->m_numvertices = glmesh->m_vertices->size();
//glmesh = LoadMeshFromCollada(fullPath);
break;
}
default:
{
printf("Unsupported file type in Collision: %s\n",fullPath);
btAssert(0);
}
}
if (glmesh && (glmesh->m_numvertices>0))
{
printf("extracted %d verticed from STL file %s\n", glmesh->m_numvertices,fullPath);
//int shapeId = m_glApp->m_instancingRenderer->registerShape(&gvertices[0].pos[0],gvertices.size(),&indices[0],indices.size());
//convex->setUserIndex(shapeId);
btAlignedObjectArray<btVector3> convertedVerts;
convertedVerts.reserve(glmesh->m_numvertices);
for (int i=0;i<glmesh->m_numvertices;i++)
{
convertedVerts.push_back(btVector3(glmesh->m_vertices->at(i).xyzw[0],glmesh->m_vertices->at(i).xyzw[1],glmesh->m_vertices->at(i).xyzw[2]));
}
//btConvexHullShape* cylZShape = new btConvexHullShape(&glmesh->m_vertices->at(0).xyzw[0], glmesh->m_numvertices, sizeof(GLInstanceVertex));
btConvexHullShape* cylZShape = new btConvexHullShape(&convertedVerts[0].getX(), convertedVerts.size(), sizeof(btVector3));
//cylZShape->initializePolyhedralFeatures();
//btVector3 halfExtents(cyl->radius,cyl->radius,cyl->length/2.);
//btCylinderShapeZ* cylZShape = new btCylinderShapeZ(halfExtents);
cylZShape->setMargin(0.001);
shape = cylZShape;
} else
{
printf("issue extracting mesh from STL file %s\n", fullPath);
}
} else
{
printf("mesh geometry not found %s\n",fullPath);
}
}
}
break;
}
default:
{
printf("Error: unknown visual geometry type\n");
}
}
return shape;
}
int ROSURDFImporter::convertLinkVisualShapes(int linkIndex, const char* pathPrefix, const btTransform& inertialFrame) const
{
btAlignedObjectArray<GLInstanceVertex> vertices;
btAlignedObjectArray<int> indices;
btTransform startTrans; startTrans.setIdentity();
int graphicsIndex = -1;
for (int v = 0; v < (int)m_data->m_links[linkIndex]->visual_array.size(); v++)
{
const Visual* vis = m_data->m_links[linkIndex]->visual_array[v].get();
btVector3 childPos(vis->origin.position.x, vis->origin.position.y, vis->origin.position.z);
btQuaternion childOrn(vis->origin.rotation.x, vis->origin.rotation.y, vis->origin.rotation.z, vis->origin.rotation.w);
btTransform childTrans;
childTrans.setOrigin(childPos);
childTrans.setRotation(childOrn);
ROSconvertURDFToVisualShape(vis, pathPrefix, inertialFrame.inverse()*childTrans, vertices, indices);
}
if (vertices.size() && indices.size())
{
graphicsIndex = m_data->m_guiHelper->registerGraphicsShape(&vertices[0].xyzw[0], vertices.size(), &indices[0], indices.size());
}
return graphicsIndex;
}
class btCompoundShape* ROSURDFImporter::convertLinkCollisionShapes(int linkIndex, const char* pathPrefix, const btTransform& localInertiaFrame) const
{
btCompoundShape* compoundShape = new btCompoundShape();
compoundShape->setMargin(0.001);
for (int v=0;v<(int)m_data->m_links[linkIndex]->collision_array.size();v++)
{
const Collision* col = m_data->m_links[linkIndex]->collision_array[v].get();
btCollisionShape* childShape = convertURDFToCollisionShape(col ,pathPrefix);
if (childShape)
{
btVector3 childPos(col->origin.position.x, col->origin.position.y, col->origin.position.z);
btQuaternion childOrn(col->origin.rotation.x, col->origin.rotation.y, col->origin.rotation.z, col->origin.rotation.w);
btTransform childTrans;
childTrans.setOrigin(childPos);
childTrans.setRotation(childOrn);
compoundShape->addChildShape(localInertiaFrame.inverse()*childTrans,childShape);
}
}
return compoundShape;
}