mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-14 13:50:04 +00:00
1312 lines
35 KiB
C++
1312 lines
35 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
///September 2006: VehicleDemo is work in progress, this file is mostly just a placeholder
|
|
///This VehicleDemo file is very early in development, please check it later
|
|
///@todo is a basic engine model:
|
|
///A function that maps user input (throttle) into torque/force applied on the wheels
|
|
///with gears etc.
|
|
#include "btBulletDynamicsCommon.h"
|
|
#include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h"
|
|
|
|
|
|
#include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
|
|
#include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h"
|
|
#include "BulletDynamics/MLCPSolvers/btMLCPSolver.h"
|
|
|
|
class btVehicleTuning;
|
|
struct btVehicleRaycaster;
|
|
class btCollisionShape;
|
|
|
|
#include "BulletDynamics/Vehicle/btRaycastVehicle.h"
|
|
#include "BulletDynamics/ConstraintSolver/btHingeConstraint.h"
|
|
#include "BulletDynamics/ConstraintSolver/btSliderConstraint.h"
|
|
|
|
#include "../CommonInterfaces/ExampleInterface.h"
|
|
#include "LinearMath/btAlignedObjectArray.h"
|
|
#include "btBulletCollisionCommon.h"
|
|
#include "../ExampleBrowser/GUIHelperInterface.h"
|
|
#include "../CommonInterfaces/CommonRenderInterface.h"
|
|
#include "../CommonInterfaces/CommonWindowInterface.h"
|
|
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
|
|
|
|
///VehicleDemo shows how to setup and use the built-in raycast vehicle
|
|
class ForkLiftDemo : public ExampleInterface
|
|
{
|
|
public:
|
|
|
|
/* extra stuff*/
|
|
btVector3 m_cameraPosition;
|
|
class btDiscreteDynamicsWorld* m_dynamicsWorld;
|
|
btDiscreteDynamicsWorld* getDynamicsWorld()
|
|
{
|
|
return m_dynamicsWorld;
|
|
}
|
|
btRigidBody* m_carChassis;
|
|
btRigidBody* localCreateRigidBody(btScalar mass, const btTransform& worldTransform, btCollisionShape* colSape);
|
|
|
|
GUIHelperInterface* m_guiHelper;
|
|
int m_wheelInstances[4];
|
|
|
|
//----------------------------
|
|
btRigidBody* m_liftBody;
|
|
btVector3 m_liftStartPos;
|
|
btHingeConstraint* m_liftHinge;
|
|
|
|
btRigidBody* m_forkBody;
|
|
btVector3 m_forkStartPos;
|
|
btSliderConstraint* m_forkSlider;
|
|
|
|
btRigidBody* m_loadBody;
|
|
btVector3 m_loadStartPos;
|
|
|
|
void lockLiftHinge(void);
|
|
void lockForkSlider(void);
|
|
|
|
bool m_useDefaultCamera;
|
|
//----------------------------
|
|
|
|
|
|
btAlignedObjectArray<btCollisionShape*> m_collisionShapes;
|
|
|
|
class btBroadphaseInterface* m_overlappingPairCache;
|
|
|
|
class btCollisionDispatcher* m_dispatcher;
|
|
|
|
class btConstraintSolver* m_constraintSolver;
|
|
|
|
class btDefaultCollisionConfiguration* m_collisionConfiguration;
|
|
|
|
class btTriangleIndexVertexArray* m_indexVertexArrays;
|
|
|
|
btVector3* m_vertices;
|
|
|
|
|
|
btRaycastVehicle::btVehicleTuning m_tuning;
|
|
btVehicleRaycaster* m_vehicleRayCaster;
|
|
btRaycastVehicle* m_vehicle;
|
|
btCollisionShape* m_wheelShape;
|
|
|
|
float m_cameraHeight;
|
|
|
|
float m_minCameraDistance;
|
|
float m_maxCameraDistance;
|
|
|
|
|
|
ForkLiftDemo(struct GUIHelperInterface* helper);
|
|
|
|
virtual ~ForkLiftDemo();
|
|
|
|
virtual void stepSimulation(float deltaTime);
|
|
|
|
virtual void resetForklift();
|
|
|
|
virtual void clientResetScene();
|
|
|
|
virtual void displayCallback();
|
|
|
|
///a very basic camera following the vehicle
|
|
virtual void updateCamera();
|
|
|
|
virtual void specialKeyboard(int key, int x, int y);
|
|
|
|
virtual void specialKeyboardUp(int key, int x, int y);
|
|
|
|
virtual bool mouseMoveCallback(float x,float y)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
virtual bool mouseButtonCallback(int button, int state, float x, float y)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
virtual bool keyboardCallback(int key, int state);
|
|
|
|
virtual void renderScene();
|
|
|
|
virtual void physicsDebugDraw(int debugFlags);
|
|
|
|
|
|
void initPhysics();
|
|
void exitPhysics();
|
|
|
|
/*static DemoApplication* Create()
|
|
{
|
|
ForkLiftDemo* demo = new ForkLiftDemo();
|
|
demo->myinit();
|
|
demo->initPhysics();
|
|
return demo;
|
|
}
|
|
*/
|
|
};
|
|
|
|
|
|
btScalar maxMotorImpulse = 1400.f;
|
|
|
|
//the sequential impulse solver has difficulties dealing with large mass ratios (differences), between loadMass and the fork parts
|
|
btScalar loadMass = 350.f;//
|
|
//btScalar loadMass = 10.f;//this should work fine for the SI solver
|
|
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
#ifndef M_PI_2
|
|
#define M_PI_2 1.57079632679489661923
|
|
#endif
|
|
|
|
#ifndef M_PI_4
|
|
#define M_PI_4 0.785398163397448309616
|
|
#endif
|
|
|
|
//#define LIFT_EPS 0.0000001f
|
|
//
|
|
// By default, Bullet Vehicle uses Y as up axis.
|
|
// You can override the up axis, for example Z-axis up. Enable this define to see how to:
|
|
//#define FORCE_ZAXIS_UP 1
|
|
//
|
|
|
|
#ifdef FORCE_ZAXIS_UP
|
|
int rightIndex = 0;
|
|
int upIndex = 2;
|
|
int forwardIndex = 1;
|
|
btVector3 wheelDirectionCS0(0,0,-1);
|
|
btVector3 wheelAxleCS(1,0,0);
|
|
#else
|
|
int rightIndex = 0;
|
|
int upIndex = 1;
|
|
int forwardIndex = 2;
|
|
btVector3 wheelDirectionCS0(0,-1,0);
|
|
btVector3 wheelAxleCS(-1,0,0);
|
|
#endif
|
|
|
|
bool useMCLPSolver = true;
|
|
|
|
|
|
#include <stdio.h> //printf debugging
|
|
|
|
|
|
#include "ForkLiftDemo.h"
|
|
|
|
|
|
const int maxProxies = 32766;
|
|
const int maxOverlap = 65535;
|
|
|
|
///btRaycastVehicle is the interface for the constraint that implements the raycast vehicle
|
|
///notice that for higher-quality slow-moving vehicles, another approach might be better
|
|
///implementing explicit hinged-wheel constraints with cylinder collision, rather then raycasts
|
|
float gEngineForce = 0.f;
|
|
|
|
float defaultBreakingForce = 10.f;
|
|
float gBreakingForce = 100.f;
|
|
|
|
float maxEngineForce = 1000.f;//this should be engine/velocity dependent
|
|
float maxBreakingForce = 100.f;
|
|
|
|
float gVehicleSteering = 0.f;
|
|
float steeringIncrement = 0.04f;
|
|
float steeringClamp = 0.3f;
|
|
float wheelRadius = 0.5f;
|
|
float wheelWidth = 0.4f;
|
|
float wheelFriction = 1000;//BT_LARGE_FLOAT;
|
|
float suspensionStiffness = 20.f;
|
|
float suspensionDamping = 2.3f;
|
|
float suspensionCompression = 4.4f;
|
|
float rollInfluence = 0.1f;//1.0f;
|
|
|
|
|
|
btScalar suspensionRestLength(0.6);
|
|
|
|
#define CUBE_HALF_EXTENTS 1
|
|
|
|
|
|
|
|
////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
ForkLiftDemo::ForkLiftDemo(struct GUIHelperInterface* helper)
|
|
:m_guiHelper(helper),
|
|
m_carChassis(0),
|
|
m_liftBody(0),
|
|
m_forkBody(0),
|
|
m_loadBody(0),
|
|
m_indexVertexArrays(0),
|
|
m_vertices(0),
|
|
m_cameraHeight(4.f),
|
|
m_minCameraDistance(3.f),
|
|
m_maxCameraDistance(10.f)
|
|
{
|
|
helper->setUpAxis(1);
|
|
m_vehicle = 0;
|
|
m_wheelShape = 0;
|
|
m_cameraPosition = btVector3(30,30,30);
|
|
m_useDefaultCamera = false;
|
|
// setTexturing(true);
|
|
// setShadows(true);
|
|
|
|
}
|
|
|
|
|
|
void ForkLiftDemo::exitPhysics()
|
|
{
|
|
//cleanup in the reverse order of creation/initialization
|
|
|
|
//remove the rigidbodies from the dynamics world and delete them
|
|
int i;
|
|
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
|
|
{
|
|
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
|
|
btRigidBody* body = btRigidBody::upcast(obj);
|
|
if (body && body->getMotionState())
|
|
{
|
|
|
|
while (body->getNumConstraintRefs())
|
|
{
|
|
btTypedConstraint* constraint = body->getConstraintRef(0);
|
|
m_dynamicsWorld->removeConstraint(constraint);
|
|
delete constraint;
|
|
}
|
|
delete body->getMotionState();
|
|
m_dynamicsWorld->removeRigidBody(body);
|
|
} else
|
|
{
|
|
m_dynamicsWorld->removeCollisionObject( obj );
|
|
}
|
|
delete obj;
|
|
}
|
|
|
|
//delete collision shapes
|
|
for (int j=0;j<m_collisionShapes.size();j++)
|
|
{
|
|
btCollisionShape* shape = m_collisionShapes[j];
|
|
delete shape;
|
|
}
|
|
m_collisionShapes.clear();
|
|
|
|
delete m_indexVertexArrays;
|
|
delete m_vertices;
|
|
|
|
//delete dynamics world
|
|
delete m_dynamicsWorld;
|
|
m_dynamicsWorld=0;
|
|
|
|
delete m_vehicleRayCaster;
|
|
m_vehicleRayCaster = 0;
|
|
|
|
delete m_vehicle;
|
|
m_vehicle=0;
|
|
|
|
delete m_wheelShape;
|
|
m_wheelShape=0;
|
|
|
|
//delete solver
|
|
delete m_constraintSolver;
|
|
m_constraintSolver=0;
|
|
|
|
//delete broadphase
|
|
delete m_overlappingPairCache;
|
|
m_overlappingPairCache=0;
|
|
|
|
//delete dispatcher
|
|
delete m_dispatcher;
|
|
m_dispatcher=0;
|
|
|
|
delete m_collisionConfiguration;
|
|
m_collisionConfiguration=0;
|
|
|
|
}
|
|
|
|
ForkLiftDemo::~ForkLiftDemo()
|
|
{
|
|
//exitPhysics();
|
|
}
|
|
|
|
void ForkLiftDemo::initPhysics()
|
|
{
|
|
|
|
#ifdef FORCE_ZAXIS_UP
|
|
m_cameraUp = btVector3(0,0,1);
|
|
m_forwardAxis = 1;
|
|
#endif
|
|
|
|
btCollisionShape* groundShape = new btBoxShape(btVector3(50,3,50));
|
|
m_collisionShapes.push_back(groundShape);
|
|
m_collisionConfiguration = new btDefaultCollisionConfiguration();
|
|
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
|
|
btVector3 worldMin(-1000,-1000,-1000);
|
|
btVector3 worldMax(1000,1000,1000);
|
|
m_overlappingPairCache = new btAxisSweep3(worldMin,worldMax);
|
|
if (useMCLPSolver)
|
|
{
|
|
btDantzigSolver* mlcp = new btDantzigSolver();
|
|
//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
|
|
btMLCPSolver* sol = new btMLCPSolver(mlcp);
|
|
m_constraintSolver = sol;
|
|
} else
|
|
{
|
|
m_constraintSolver = new btSequentialImpulseConstraintSolver();
|
|
}
|
|
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_overlappingPairCache,m_constraintSolver,m_collisionConfiguration);
|
|
if (useMCLPSolver)
|
|
{
|
|
m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 1;//for direct solver it is better to have a small A matrix
|
|
} else
|
|
{
|
|
m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 128;//for direct solver, it is better to solve multiple objects together, small batches have high overhead
|
|
}
|
|
|
|
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
|
|
|
|
#ifdef FORCE_ZAXIS_UP
|
|
m_dynamicsWorld->setGravity(btVector3(0,0,-10));
|
|
#endif
|
|
|
|
//m_dynamicsWorld->setGravity(btVector3(0,0,0));
|
|
btTransform tr;
|
|
tr.setIdentity();
|
|
tr.setOrigin(btVector3(0,-3,0));
|
|
|
|
//either use heightfield or triangle mesh
|
|
|
|
|
|
//create ground object
|
|
localCreateRigidBody(0,tr,groundShape);
|
|
|
|
#ifdef FORCE_ZAXIS_UP
|
|
// indexRightAxis = 0;
|
|
// indexUpAxis = 2;
|
|
// indexForwardAxis = 1;
|
|
btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,2.f, 0.5f));
|
|
btCompoundShape* compound = new btCompoundShape();
|
|
btTransform localTrans;
|
|
localTrans.setIdentity();
|
|
//localTrans effectively shifts the center of mass with respect to the chassis
|
|
localTrans.setOrigin(btVector3(0,0,1));
|
|
#else
|
|
btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f));
|
|
m_collisionShapes.push_back(chassisShape);
|
|
|
|
btCompoundShape* compound = new btCompoundShape();
|
|
m_collisionShapes.push_back(compound);
|
|
btTransform localTrans;
|
|
localTrans.setIdentity();
|
|
//localTrans effectively shifts the center of mass with respect to the chassis
|
|
localTrans.setOrigin(btVector3(0,1,0));
|
|
#endif
|
|
|
|
compound->addChildShape(localTrans,chassisShape);
|
|
|
|
{
|
|
btCollisionShape* suppShape = new btBoxShape(btVector3(0.5f,0.1f,0.5f));
|
|
btTransform suppLocalTrans;
|
|
suppLocalTrans.setIdentity();
|
|
//localTrans effectively shifts the center of mass with respect to the chassis
|
|
suppLocalTrans.setOrigin(btVector3(0,1.0,2.5));
|
|
compound->addChildShape(suppLocalTrans, suppShape);
|
|
}
|
|
|
|
tr.setOrigin(btVector3(0,0.f,0));
|
|
|
|
m_carChassis = localCreateRigidBody(800,tr,compound);//chassisShape);
|
|
//m_carChassis->setDamping(0.2,0.2);
|
|
|
|
m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));
|
|
|
|
m_guiHelper->createCollisionShapeGraphicsObject(m_wheelShape);
|
|
int wheelGraphicsIndex = m_wheelShape->getUserIndex();
|
|
|
|
const float position[4]={0,10,10,0};
|
|
const float quaternion[4]={0,0,0,1};
|
|
const float color[4]={0,1,0,1};
|
|
const float scaling[4] = {1,1,1,1};
|
|
|
|
for (int i=0;i<4;i++)
|
|
{
|
|
m_wheelInstances[i] = m_guiHelper->registerGraphicsInstance(wheelGraphicsIndex, position, quaternion, color, scaling);
|
|
}
|
|
|
|
|
|
|
|
{
|
|
btCollisionShape* liftShape = new btBoxShape(btVector3(0.5f,2.0f,0.05f));
|
|
m_collisionShapes.push_back(liftShape);
|
|
btTransform liftTrans;
|
|
m_liftStartPos = btVector3(0.0f, 2.5f, 3.05f);
|
|
liftTrans.setIdentity();
|
|
liftTrans.setOrigin(m_liftStartPos);
|
|
m_liftBody = localCreateRigidBody(10,liftTrans, liftShape);
|
|
|
|
btTransform localA, localB;
|
|
localA.setIdentity();
|
|
localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0, M_PI_2, 0);
|
|
localA.setOrigin(btVector3(0.0, 1.0, 3.05));
|
|
localB.getBasis().setEulerZYX(0, M_PI_2, 0);
|
|
localB.setOrigin(btVector3(0.0, -1.5, -0.05));
|
|
m_liftHinge = new btHingeConstraint(*m_carChassis,*m_liftBody, localA, localB);
|
|
// m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
|
|
m_liftHinge->setLimit(0.0f, 0.0f);
|
|
m_dynamicsWorld->addConstraint(m_liftHinge, true);
|
|
|
|
btCollisionShape* forkShapeA = new btBoxShape(btVector3(1.0f,0.1f,0.1f));
|
|
m_collisionShapes.push_back(forkShapeA);
|
|
btCompoundShape* forkCompound = new btCompoundShape();
|
|
m_collisionShapes.push_back(forkCompound);
|
|
btTransform forkLocalTrans;
|
|
forkLocalTrans.setIdentity();
|
|
forkCompound->addChildShape(forkLocalTrans, forkShapeA);
|
|
|
|
btCollisionShape* forkShapeB = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
|
|
m_collisionShapes.push_back(forkShapeB);
|
|
forkLocalTrans.setIdentity();
|
|
forkLocalTrans.setOrigin(btVector3(-0.9f, -0.08f, 0.7f));
|
|
forkCompound->addChildShape(forkLocalTrans, forkShapeB);
|
|
|
|
btCollisionShape* forkShapeC = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
|
|
m_collisionShapes.push_back(forkShapeC);
|
|
forkLocalTrans.setIdentity();
|
|
forkLocalTrans.setOrigin(btVector3(0.9f, -0.08f, 0.7f));
|
|
forkCompound->addChildShape(forkLocalTrans, forkShapeC);
|
|
|
|
btTransform forkTrans;
|
|
m_forkStartPos = btVector3(0.0f, 0.6f, 3.2f);
|
|
forkTrans.setIdentity();
|
|
forkTrans.setOrigin(m_forkStartPos);
|
|
m_forkBody = localCreateRigidBody(5, forkTrans, forkCompound);
|
|
|
|
localA.setIdentity();
|
|
localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0, 0, M_PI_2);
|
|
localA.setOrigin(btVector3(0.0f, -1.9f, 0.05f));
|
|
localB.getBasis().setEulerZYX(0, 0, M_PI_2);
|
|
localB.setOrigin(btVector3(0.0, 0.0, -0.1));
|
|
m_forkSlider = new btSliderConstraint(*m_liftBody, *m_forkBody, localA, localB, true);
|
|
m_forkSlider->setLowerLinLimit(0.1f);
|
|
m_forkSlider->setUpperLinLimit(0.1f);
|
|
// m_forkSlider->setLowerAngLimit(-LIFT_EPS);
|
|
// m_forkSlider->setUpperAngLimit(LIFT_EPS);
|
|
m_forkSlider->setLowerAngLimit(0.0f);
|
|
m_forkSlider->setUpperAngLimit(0.0f);
|
|
m_dynamicsWorld->addConstraint(m_forkSlider, true);
|
|
|
|
|
|
btCompoundShape* loadCompound = new btCompoundShape();
|
|
m_collisionShapes.push_back(loadCompound);
|
|
btCollisionShape* loadShapeA = new btBoxShape(btVector3(2.0f,0.5f,0.5f));
|
|
m_collisionShapes.push_back(loadShapeA);
|
|
btTransform loadTrans;
|
|
loadTrans.setIdentity();
|
|
loadCompound->addChildShape(loadTrans, loadShapeA);
|
|
btCollisionShape* loadShapeB = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
|
|
m_collisionShapes.push_back(loadShapeB);
|
|
loadTrans.setIdentity();
|
|
loadTrans.setOrigin(btVector3(2.1f, 0.0f, 0.0f));
|
|
loadCompound->addChildShape(loadTrans, loadShapeB);
|
|
btCollisionShape* loadShapeC = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
|
|
m_collisionShapes.push_back(loadShapeC);
|
|
loadTrans.setIdentity();
|
|
loadTrans.setOrigin(btVector3(-2.1f, 0.0f, 0.0f));
|
|
loadCompound->addChildShape(loadTrans, loadShapeC);
|
|
loadTrans.setIdentity();
|
|
m_loadStartPos = btVector3(0.0f, 3.5f, 7.0f);
|
|
loadTrans.setOrigin(m_loadStartPos);
|
|
m_loadBody = localCreateRigidBody(loadMass, loadTrans, loadCompound);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// create vehicle
|
|
{
|
|
|
|
m_vehicleRayCaster = new btDefaultVehicleRaycaster(m_dynamicsWorld);
|
|
m_vehicle = new btRaycastVehicle(m_tuning,m_carChassis,m_vehicleRayCaster);
|
|
|
|
///never deactivate the vehicle
|
|
m_carChassis->setActivationState(DISABLE_DEACTIVATION);
|
|
|
|
m_dynamicsWorld->addVehicle(m_vehicle);
|
|
|
|
float connectionHeight = 1.2f;
|
|
|
|
|
|
bool isFrontWheel=true;
|
|
|
|
//choose coordinate system
|
|
m_vehicle->setCoordinateSystem(rightIndex,upIndex,forwardIndex);
|
|
|
|
#ifdef FORCE_ZAXIS_UP
|
|
btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),2*CUBE_HALF_EXTENTS-wheelRadius, connectionHeight);
|
|
#else
|
|
btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);
|
|
#endif
|
|
|
|
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
|
|
#ifdef FORCE_ZAXIS_UP
|
|
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),2*CUBE_HALF_EXTENTS-wheelRadius, connectionHeight);
|
|
#else
|
|
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);
|
|
#endif
|
|
|
|
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
|
|
#ifdef FORCE_ZAXIS_UP
|
|
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),-2*CUBE_HALF_EXTENTS+wheelRadius, connectionHeight);
|
|
#else
|
|
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
|
|
#endif //FORCE_ZAXIS_UP
|
|
isFrontWheel = false;
|
|
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
|
|
#ifdef FORCE_ZAXIS_UP
|
|
connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),-2*CUBE_HALF_EXTENTS+wheelRadius, connectionHeight);
|
|
#else
|
|
connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
|
|
#endif
|
|
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
|
|
|
|
for (int i=0;i<m_vehicle->getNumWheels();i++)
|
|
{
|
|
btWheelInfo& wheel = m_vehicle->getWheelInfo(i);
|
|
wheel.m_suspensionStiffness = suspensionStiffness;
|
|
wheel.m_wheelsDampingRelaxation = suspensionDamping;
|
|
wheel.m_wheelsDampingCompression = suspensionCompression;
|
|
wheel.m_frictionSlip = wheelFriction;
|
|
wheel.m_rollInfluence = rollInfluence;
|
|
}
|
|
}
|
|
|
|
resetForklift();
|
|
|
|
// setCameraDistance(26.f);
|
|
|
|
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
|
|
}
|
|
|
|
void ForkLiftDemo::physicsDebugDraw(int debugFlags)
|
|
{
|
|
if (m_dynamicsWorld && m_dynamicsWorld->getDebugDrawer())
|
|
{
|
|
m_dynamicsWorld->getDebugDrawer()->setDebugMode(debugFlags);
|
|
m_dynamicsWorld->debugDrawWorld();
|
|
}
|
|
}
|
|
|
|
//to be implemented by the demo
|
|
void ForkLiftDemo::renderScene()
|
|
{
|
|
m_guiHelper->syncPhysicsToGraphics(m_dynamicsWorld);
|
|
|
|
for (int i=0;i<m_vehicle->getNumWheels();i++)
|
|
{
|
|
//synchronize the wheels with the (interpolated) chassis worldtransform
|
|
m_vehicle->updateWheelTransform(i,true);
|
|
|
|
CommonRenderInterface* renderer = m_guiHelper->getRenderInterface();
|
|
if (renderer)
|
|
{
|
|
btTransform tr = m_vehicle->getWheelInfo(i).m_worldTransform;
|
|
btVector3 pos=tr.getOrigin();
|
|
btQuaternion orn = tr.getRotation();
|
|
renderer->writeSingleInstanceTransformToCPU(pos,orn,m_wheelInstances[i]);
|
|
}
|
|
}
|
|
|
|
|
|
if (m_guiHelper->getRenderInterface())
|
|
{
|
|
m_guiHelper->getRenderInterface()->renderScene();
|
|
}
|
|
|
|
updateCamera();
|
|
|
|
ATTRIBUTE_ALIGNED16(btScalar) m[16];
|
|
int i;
|
|
|
|
btVector3 wheelColor(1,0,0);
|
|
|
|
btVector3 worldBoundsMin,worldBoundsMax;
|
|
getDynamicsWorld()->getBroadphase()->getBroadphaseAabb(worldBoundsMin,worldBoundsMax);
|
|
|
|
|
|
|
|
for (i=0;i<m_vehicle->getNumWheels();i++)
|
|
{
|
|
//synchronize the wheels with the (interpolated) chassis worldtransform
|
|
m_vehicle->updateWheelTransform(i,true);
|
|
//draw wheels (cylinders)
|
|
m_vehicle->getWheelInfo(i).m_worldTransform.getOpenGLMatrix(m);
|
|
// m_shapeDrawer->drawOpenGL(m,m_wheelShape,wheelColor,getDebugMode(),worldBoundsMin,worldBoundsMax);
|
|
}
|
|
|
|
#if 0
|
|
int lineWidth=400;
|
|
int xStart = m_glutScreenWidth - lineWidth;
|
|
int yStart = 20;
|
|
|
|
if((getDebugMode() & btIDebugDraw::DBG_NoHelpText)==0)
|
|
{
|
|
setOrthographicProjection();
|
|
glDisable(GL_LIGHTING);
|
|
glColor3f(0, 0, 0);
|
|
char buf[124];
|
|
|
|
sprintf(buf,"SHIFT+Cursor Left/Right - rotate lift");
|
|
GLDebugDrawString(xStart,20,buf);
|
|
yStart+=20;
|
|
sprintf(buf,"SHIFT+Cursor UP/Down - fork up/down");
|
|
yStart+=20;
|
|
GLDebugDrawString(xStart,yStart,buf);
|
|
|
|
if (m_useDefaultCamera)
|
|
{
|
|
sprintf(buf,"F5 - camera mode (free)");
|
|
} else
|
|
{
|
|
sprintf(buf,"F5 - camera mode (follow)");
|
|
}
|
|
yStart+=20;
|
|
GLDebugDrawString(xStart,yStart,buf);
|
|
|
|
yStart+=20;
|
|
if (m_dynamicsWorld->getConstraintSolver()->getSolverType()==BT_MLCP_SOLVER)
|
|
{
|
|
sprintf(buf,"F6 - solver (direct MLCP)");
|
|
} else
|
|
{
|
|
sprintf(buf,"F6 - solver (sequential impulse)");
|
|
}
|
|
GLDebugDrawString(xStart,yStart,buf);
|
|
btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*) m_dynamicsWorld;
|
|
if (world->getLatencyMotionStateInterpolation())
|
|
{
|
|
sprintf(buf,"F7 - motionstate interpolation (on)");
|
|
} else
|
|
{
|
|
sprintf(buf,"F7 - motionstate interpolation (off)");
|
|
}
|
|
yStart+=20;
|
|
GLDebugDrawString(xStart,yStart,buf);
|
|
|
|
sprintf(buf,"Click window for keyboard focus");
|
|
yStart+=20;
|
|
GLDebugDrawString(xStart,yStart,buf);
|
|
|
|
|
|
resetPerspectiveProjection();
|
|
glEnable(GL_LIGHTING);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ForkLiftDemo::stepSimulation(float deltaTime)
|
|
{
|
|
|
|
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
|
|
|
|
{
|
|
int wheelIndex = 2;
|
|
m_vehicle->applyEngineForce(gEngineForce,wheelIndex);
|
|
m_vehicle->setBrake(gBreakingForce,wheelIndex);
|
|
wheelIndex = 3;
|
|
m_vehicle->applyEngineForce(gEngineForce,wheelIndex);
|
|
m_vehicle->setBrake(gBreakingForce,wheelIndex);
|
|
|
|
|
|
wheelIndex = 0;
|
|
m_vehicle->setSteeringValue(gVehicleSteering,wheelIndex);
|
|
wheelIndex = 1;
|
|
m_vehicle->setSteeringValue(gVehicleSteering,wheelIndex);
|
|
|
|
}
|
|
|
|
|
|
float dt = deltaTime;
|
|
|
|
if (m_dynamicsWorld)
|
|
{
|
|
//during idle mode, just run 1 simulation step maximum
|
|
int maxSimSubSteps = 2;
|
|
|
|
int numSimSteps;
|
|
numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps);
|
|
|
|
if (m_dynamicsWorld->getConstraintSolver()->getSolverType()==BT_MLCP_SOLVER)
|
|
{
|
|
btMLCPSolver* sol = (btMLCPSolver*) m_dynamicsWorld->getConstraintSolver();
|
|
int numFallbacks = sol->getNumFallbacks();
|
|
if (numFallbacks)
|
|
{
|
|
static int totalFailures = 0;
|
|
totalFailures+=numFallbacks;
|
|
printf("MLCP solver failed %d times, falling back to btSequentialImpulseSolver (SI)\n",totalFailures);
|
|
}
|
|
sol->setNumFallbacks(0);
|
|
}
|
|
|
|
|
|
//#define VERBOSE_FEEDBACK
|
|
#ifdef VERBOSE_FEEDBACK
|
|
if (!numSimSteps)
|
|
printf("Interpolated transforms\n");
|
|
else
|
|
{
|
|
if (numSimSteps > maxSimSubSteps)
|
|
{
|
|
//detect dropping frames
|
|
printf("Dropped (%i) simulation steps out of %i\n",numSimSteps - maxSimSubSteps,numSimSteps);
|
|
} else
|
|
{
|
|
printf("Simulated (%i) steps\n",numSimSteps);
|
|
}
|
|
}
|
|
#endif //VERBOSE_FEEDBACK
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void ForkLiftDemo::displayCallback(void)
|
|
{
|
|
// glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
|
|
//renderme();
|
|
|
|
//optional but useful: debug drawing
|
|
if (m_dynamicsWorld)
|
|
m_dynamicsWorld->debugDrawWorld();
|
|
|
|
// glFlush();
|
|
// glutSwapBuffers();
|
|
}
|
|
|
|
|
|
void ForkLiftDemo::clientResetScene()
|
|
{
|
|
exitPhysics();
|
|
initPhysics();
|
|
}
|
|
|
|
void ForkLiftDemo::resetForklift()
|
|
{
|
|
gVehicleSteering = 0.f;
|
|
gBreakingForce = defaultBreakingForce;
|
|
gEngineForce = 0.f;
|
|
|
|
m_carChassis->setCenterOfMassTransform(btTransform::getIdentity());
|
|
m_carChassis->setLinearVelocity(btVector3(0,0,0));
|
|
m_carChassis->setAngularVelocity(btVector3(0,0,0));
|
|
m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(m_carChassis->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher());
|
|
if (m_vehicle)
|
|
{
|
|
m_vehicle->resetSuspension();
|
|
for (int i=0;i<m_vehicle->getNumWheels();i++)
|
|
{
|
|
//synchronize the wheels with the (interpolated) chassis worldtransform
|
|
m_vehicle->updateWheelTransform(i,true);
|
|
}
|
|
}
|
|
btTransform liftTrans;
|
|
liftTrans.setIdentity();
|
|
liftTrans.setOrigin(m_liftStartPos);
|
|
m_liftBody->activate();
|
|
m_liftBody->setCenterOfMassTransform(liftTrans);
|
|
m_liftBody->setLinearVelocity(btVector3(0,0,0));
|
|
m_liftBody->setAngularVelocity(btVector3(0,0,0));
|
|
|
|
btTransform forkTrans;
|
|
forkTrans.setIdentity();
|
|
forkTrans.setOrigin(m_forkStartPos);
|
|
m_forkBody->activate();
|
|
m_forkBody->setCenterOfMassTransform(forkTrans);
|
|
m_forkBody->setLinearVelocity(btVector3(0,0,0));
|
|
m_forkBody->setAngularVelocity(btVector3(0,0,0));
|
|
|
|
// m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
|
|
m_liftHinge->setLimit(0.0f, 0.0f);
|
|
m_liftHinge->enableAngularMotor(false, 0, 0);
|
|
|
|
|
|
m_forkSlider->setLowerLinLimit(0.1f);
|
|
m_forkSlider->setUpperLinLimit(0.1f);
|
|
m_forkSlider->setPoweredLinMotor(false);
|
|
|
|
btTransform loadTrans;
|
|
loadTrans.setIdentity();
|
|
loadTrans.setOrigin(m_loadStartPos);
|
|
m_loadBody->activate();
|
|
m_loadBody->setCenterOfMassTransform(loadTrans);
|
|
m_loadBody->setLinearVelocity(btVector3(0,0,0));
|
|
m_loadBody->setAngularVelocity(btVector3(0,0,0));
|
|
|
|
}
|
|
|
|
|
|
bool ForkLiftDemo::keyboardCallback(int key, int state)
|
|
{
|
|
bool handled = false;
|
|
bool isShiftPressed = m_guiHelper->getAppInterface()->m_window->isModifierKeyPressed(B3G_SHIFT);
|
|
|
|
if (state)
|
|
{
|
|
if (isShiftPressed)
|
|
{
|
|
switch (key)
|
|
{
|
|
case B3G_LEFT_ARROW :
|
|
{
|
|
|
|
m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
|
|
m_liftHinge->enableAngularMotor(true, -0.1, maxMotorImpulse);
|
|
handled = true;
|
|
break;
|
|
}
|
|
case B3G_RIGHT_ARROW :
|
|
{
|
|
|
|
m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
|
|
m_liftHinge->enableAngularMotor(true, 0.1, maxMotorImpulse);
|
|
handled = true;
|
|
break;
|
|
}
|
|
case B3G_UP_ARROW :
|
|
{
|
|
m_forkSlider->setLowerLinLimit(0.1f);
|
|
m_forkSlider->setUpperLinLimit(3.9f);
|
|
m_forkSlider->setPoweredLinMotor(true);
|
|
m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
|
|
m_forkSlider->setTargetLinMotorVelocity(1.0);
|
|
handled = true;
|
|
break;
|
|
}
|
|
case B3G_DOWN_ARROW :
|
|
{
|
|
m_forkSlider->setLowerLinLimit(0.1f);
|
|
m_forkSlider->setUpperLinLimit(3.9f);
|
|
m_forkSlider->setPoweredLinMotor(true);
|
|
m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
|
|
m_forkSlider->setTargetLinMotorVelocity(-1.0);
|
|
handled = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
} else
|
|
{
|
|
switch (key)
|
|
{
|
|
case B3G_LEFT_ARROW :
|
|
{
|
|
handled = true;
|
|
gVehicleSteering += steeringIncrement;
|
|
if ( gVehicleSteering > steeringClamp)
|
|
gVehicleSteering = steeringClamp;
|
|
|
|
break;
|
|
}
|
|
case B3G_RIGHT_ARROW :
|
|
{
|
|
handled = true;
|
|
gVehicleSteering -= steeringIncrement;
|
|
if ( gVehicleSteering < -steeringClamp)
|
|
gVehicleSteering = -steeringClamp;
|
|
|
|
break;
|
|
}
|
|
case B3G_UP_ARROW :
|
|
{
|
|
handled = true;
|
|
gEngineForce = maxEngineForce;
|
|
gBreakingForce = 0.f;
|
|
break;
|
|
}
|
|
case B3G_DOWN_ARROW :
|
|
{
|
|
handled = true;
|
|
gEngineForce = -maxEngineForce;
|
|
gBreakingForce = 0.f;
|
|
break;
|
|
}
|
|
|
|
case B3G_F7:
|
|
{
|
|
handled = true;
|
|
btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*)m_dynamicsWorld;
|
|
world->setLatencyMotionStateInterpolation(!world->getLatencyMotionStateInterpolation());
|
|
printf("world latencyMotionStateInterpolation = %d\n", world->getLatencyMotionStateInterpolation());
|
|
break;
|
|
}
|
|
case B3G_F6:
|
|
{
|
|
handled = true;
|
|
//switch solver (needs demo restart)
|
|
useMCLPSolver = !useMCLPSolver;
|
|
printf("switching to useMLCPSolver = %d\n", useMCLPSolver);
|
|
|
|
delete m_constraintSolver;
|
|
if (useMCLPSolver)
|
|
{
|
|
btDantzigSolver* mlcp = new btDantzigSolver();
|
|
//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
|
|
btMLCPSolver* sol = new btMLCPSolver(mlcp);
|
|
m_constraintSolver = sol;
|
|
} else
|
|
{
|
|
m_constraintSolver = new btSequentialImpulseConstraintSolver();
|
|
}
|
|
|
|
m_dynamicsWorld->setConstraintSolver(m_constraintSolver);
|
|
|
|
|
|
//exitPhysics();
|
|
//initPhysics();
|
|
break;
|
|
}
|
|
|
|
case B3G_F5:
|
|
handled = true;
|
|
m_useDefaultCamera = !m_useDefaultCamera;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
} else
|
|
{
|
|
switch (key)
|
|
{
|
|
case B3G_UP_ARROW:
|
|
{
|
|
lockForkSlider();
|
|
gEngineForce = 0.f;
|
|
gBreakingForce = defaultBreakingForce;
|
|
handled=true;
|
|
break;
|
|
}
|
|
case B3G_DOWN_ARROW:
|
|
{
|
|
lockForkSlider();
|
|
gEngineForce = 0.f;
|
|
gBreakingForce = defaultBreakingForce;
|
|
handled=true;
|
|
break;
|
|
}
|
|
case B3G_LEFT_ARROW:
|
|
case B3G_RIGHT_ARROW:
|
|
{
|
|
lockLiftHinge();
|
|
handled=true;
|
|
break;
|
|
}
|
|
default:
|
|
|
|
break;
|
|
}
|
|
}
|
|
return handled;
|
|
}
|
|
|
|
void ForkLiftDemo::specialKeyboardUp(int key, int x, int y)
|
|
{
|
|
#if 0
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
void ForkLiftDemo::specialKeyboard(int key, int x, int y)
|
|
{
|
|
#if 0
|
|
if (key==GLUT_KEY_END)
|
|
return;
|
|
|
|
// printf("key = %i x=%i y=%i\n",key,x,y);
|
|
|
|
int state;
|
|
state=glutGetModifiers();
|
|
if (state & GLUT_ACTIVE_SHIFT)
|
|
{
|
|
switch (key)
|
|
{
|
|
case GLUT_KEY_LEFT :
|
|
{
|
|
|
|
m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
|
|
m_liftHinge->enableAngularMotor(true, -0.1, maxMotorImpulse);
|
|
break;
|
|
}
|
|
case GLUT_KEY_RIGHT :
|
|
{
|
|
|
|
m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
|
|
m_liftHinge->enableAngularMotor(true, 0.1, maxMotorImpulse);
|
|
break;
|
|
}
|
|
case GLUT_KEY_UP :
|
|
{
|
|
m_forkSlider->setLowerLinLimit(0.1f);
|
|
m_forkSlider->setUpperLinLimit(3.9f);
|
|
m_forkSlider->setPoweredLinMotor(true);
|
|
m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
|
|
m_forkSlider->setTargetLinMotorVelocity(1.0);
|
|
break;
|
|
}
|
|
case GLUT_KEY_DOWN :
|
|
{
|
|
m_forkSlider->setLowerLinLimit(0.1f);
|
|
m_forkSlider->setUpperLinLimit(3.9f);
|
|
m_forkSlider->setPoweredLinMotor(true);
|
|
m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
|
|
m_forkSlider->setTargetLinMotorVelocity(-1.0);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
DemoApplication::specialKeyboard(key,x,y);
|
|
break;
|
|
}
|
|
|
|
} else
|
|
{
|
|
switch (key)
|
|
{
|
|
case GLUT_KEY_LEFT :
|
|
{
|
|
gVehicleSteering += steeringIncrement;
|
|
if ( gVehicleSteering > steeringClamp)
|
|
gVehicleSteering = steeringClamp;
|
|
|
|
break;
|
|
}
|
|
case GLUT_KEY_RIGHT :
|
|
{
|
|
gVehicleSteering -= steeringIncrement;
|
|
if ( gVehicleSteering < -steeringClamp)
|
|
gVehicleSteering = -steeringClamp;
|
|
|
|
break;
|
|
}
|
|
case GLUT_KEY_UP :
|
|
{
|
|
gEngineForce = maxEngineForce;
|
|
gBreakingForce = 0.f;
|
|
break;
|
|
}
|
|
case GLUT_KEY_DOWN :
|
|
{
|
|
gEngineForce = -maxEngineForce;
|
|
gBreakingForce = 0.f;
|
|
break;
|
|
}
|
|
|
|
case GLUT_KEY_F7:
|
|
{
|
|
btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*)m_dynamicsWorld;
|
|
world->setLatencyMotionStateInterpolation(!world->getLatencyMotionStateInterpolation());
|
|
printf("world latencyMotionStateInterpolation = %d\n", world->getLatencyMotionStateInterpolation());
|
|
break;
|
|
}
|
|
case GLUT_KEY_F6:
|
|
{
|
|
//switch solver (needs demo restart)
|
|
useMCLPSolver = !useMCLPSolver;
|
|
printf("switching to useMLCPSolver = %d\n", useMCLPSolver);
|
|
|
|
delete m_constraintSolver;
|
|
if (useMCLPSolver)
|
|
{
|
|
btDantzigSolver* mlcp = new btDantzigSolver();
|
|
//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
|
|
btMLCPSolver* sol = new btMLCPSolver(mlcp);
|
|
m_constraintSolver = sol;
|
|
} else
|
|
{
|
|
m_constraintSolver = new btSequentialImpulseConstraintSolver();
|
|
}
|
|
|
|
m_dynamicsWorld->setConstraintSolver(m_constraintSolver);
|
|
|
|
|
|
//exitPhysics();
|
|
//initPhysics();
|
|
break;
|
|
}
|
|
|
|
case GLUT_KEY_F5:
|
|
m_useDefaultCamera = !m_useDefaultCamera;
|
|
break;
|
|
default:
|
|
DemoApplication::specialKeyboard(key,x,y);
|
|
break;
|
|
}
|
|
|
|
}
|
|
// glutPostRedisplay();
|
|
|
|
#endif
|
|
}
|
|
|
|
void ForkLiftDemo::updateCamera()
|
|
{
|
|
|
|
#if 0
|
|
//#define DISABLE_CAMERA 1
|
|
if(m_useDefaultCamera)
|
|
{
|
|
DemoApplication::updateCamera();
|
|
return;
|
|
}
|
|
|
|
glMatrixMode(GL_PROJECTION);
|
|
glLoadIdentity();
|
|
|
|
btTransform chassisWorldTrans;
|
|
|
|
//look at the vehicle
|
|
m_carChassis->getMotionState()->getWorldTransform(chassisWorldTrans);
|
|
m_cameraTargetPosition = chassisWorldTrans.getOrigin();
|
|
|
|
//interpolate the camera height
|
|
#ifdef FORCE_ZAXIS_UP
|
|
m_cameraPosition[2] = (15.0*m_cameraPosition[2] + m_cameraTargetPosition[2] + m_cameraHeight)/16.0;
|
|
#else
|
|
m_cameraPosition[1] = (15.0*m_cameraPosition[1] + m_cameraTargetPosition[1] + m_cameraHeight)/16.0;
|
|
#endif
|
|
|
|
btVector3 camToObject = m_cameraTargetPosition - m_cameraPosition;
|
|
|
|
//keep distance between min and max distance
|
|
float cameraDistance = camToObject.length();
|
|
float correctionFactor = 0.f;
|
|
if (cameraDistance < m_minCameraDistance)
|
|
{
|
|
correctionFactor = 0.15*(m_minCameraDistance-cameraDistance)/cameraDistance;
|
|
}
|
|
if (cameraDistance > m_maxCameraDistance)
|
|
{
|
|
correctionFactor = 0.15*(m_maxCameraDistance-cameraDistance)/cameraDistance;
|
|
}
|
|
m_cameraPosition -= correctionFactor*camToObject;
|
|
|
|
//update OpenGL camera settings
|
|
btScalar aspect = m_glutScreenWidth / (btScalar)m_glutScreenHeight;
|
|
glFrustum (-aspect, aspect, -1.0, 1.0, 1.0, 10000.0);
|
|
|
|
glMatrixMode(GL_MODELVIEW);
|
|
glLoadIdentity();
|
|
|
|
gluLookAt(m_cameraPosition[0],m_cameraPosition[1],m_cameraPosition[2],
|
|
m_cameraTargetPosition[0],m_cameraTargetPosition[1], m_cameraTargetPosition[2],
|
|
m_cameraUp.getX(),m_cameraUp.getY(),m_cameraUp.getZ());
|
|
|
|
|
|
#endif
|
|
}
|
|
|
|
void ForkLiftDemo::lockLiftHinge(void)
|
|
{
|
|
btScalar hingeAngle = m_liftHinge->getHingeAngle();
|
|
btScalar lowLim = m_liftHinge->getLowerLimit();
|
|
btScalar hiLim = m_liftHinge->getUpperLimit();
|
|
m_liftHinge->enableAngularMotor(false, 0, 0);
|
|
if(hingeAngle < lowLim)
|
|
{
|
|
// m_liftHinge->setLimit(lowLim, lowLim + LIFT_EPS);
|
|
m_liftHinge->setLimit(lowLim, lowLim);
|
|
}
|
|
else if(hingeAngle > hiLim)
|
|
{
|
|
// m_liftHinge->setLimit(hiLim - LIFT_EPS, hiLim);
|
|
m_liftHinge->setLimit(hiLim, hiLim);
|
|
}
|
|
else
|
|
{
|
|
// m_liftHinge->setLimit(hingeAngle - LIFT_EPS, hingeAngle + LIFT_EPS);
|
|
m_liftHinge->setLimit(hingeAngle, hingeAngle);
|
|
}
|
|
return;
|
|
} // ForkLiftDemo::lockLiftHinge()
|
|
|
|
void ForkLiftDemo::lockForkSlider(void)
|
|
{
|
|
btScalar linDepth = m_forkSlider->getLinearPos();
|
|
btScalar lowLim = m_forkSlider->getLowerLinLimit();
|
|
btScalar hiLim = m_forkSlider->getUpperLinLimit();
|
|
m_forkSlider->setPoweredLinMotor(false);
|
|
if(linDepth <= lowLim)
|
|
{
|
|
m_forkSlider->setLowerLinLimit(lowLim);
|
|
m_forkSlider->setUpperLinLimit(lowLim);
|
|
}
|
|
else if(linDepth > hiLim)
|
|
{
|
|
m_forkSlider->setLowerLinLimit(hiLim);
|
|
m_forkSlider->setUpperLinLimit(hiLim);
|
|
}
|
|
else
|
|
{
|
|
m_forkSlider->setLowerLinLimit(linDepth);
|
|
m_forkSlider->setUpperLinLimit(linDepth);
|
|
}
|
|
return;
|
|
} // ForkLiftDemo::lockForkSlider()
|
|
|
|
btRigidBody* ForkLiftDemo::localCreateRigidBody(btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
|
|
{
|
|
btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE));
|
|
|
|
//rigidbody is dynamic if and only if mass is non zero, otherwise static
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0,0,0);
|
|
if (isDynamic)
|
|
shape->calculateLocalInertia(mass,localInertia);
|
|
|
|
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
|
|
|
|
#define USE_MOTIONSTATE 1
|
|
#ifdef USE_MOTIONSTATE
|
|
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
|
|
|
|
btRigidBody::btRigidBodyConstructionInfo cInfo(mass,myMotionState,shape,localInertia);
|
|
|
|
btRigidBody* body = new btRigidBody(cInfo);
|
|
//body->setContactProcessingThreshold(m_defaultContactProcessingThreshold);
|
|
|
|
#else
|
|
btRigidBody* body = new btRigidBody(mass,0,shape,localInertia);
|
|
body->setWorldTransform(startTransform);
|
|
#endif//
|
|
|
|
m_dynamicsWorld->addRigidBody(body);
|
|
return body;
|
|
}
|
|
|
|
ExampleInterface* ForkLiftCreateFunc(struct PhysicsInterface* pint, struct GUIHelperInterface* helper, int option)
|
|
{
|
|
return new ForkLiftDemo(helper);
|
|
}
|