mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-07 08:10:08 +00:00
203 lines
5.7 KiB
C++
203 lines
5.7 KiB
C++
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include "fitsphere.h"
|
|
|
|
|
|
/*----------------------------------------------------------------------
|
|
Copyright (c) 2004 Open Dynamics Framework Group
|
|
www.physicstools.org
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification, are permitted provided
|
|
that the following conditions are met:
|
|
|
|
Redistributions of source code must retain the above copyright notice, this list of conditions
|
|
and the following disclaimer.
|
|
|
|
Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
Neither the name of the Open Dynamics Framework Group nor the names of its contributors may
|
|
be used to endorse or promote products derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE INTEL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
-----------------------------------------------------------------------*/
|
|
|
|
// http://codesuppository.blogspot.com
|
|
//
|
|
// mailto: jratcliff@infiniplex.net
|
|
//
|
|
// http://www.amillionpixels.us
|
|
//
|
|
/*
|
|
An Efficient Bounding Sphere
|
|
by Jack Ritter
|
|
from "Graphics Gems", Academic Press, 1990
|
|
*/
|
|
|
|
/* Routine to calculate tight bounding sphere over */
|
|
/* a set of points in 3D */
|
|
/* This contains the routine find_bounding_sphere(), */
|
|
/* the struct definition, and the globals used for parameters. */
|
|
/* The abs() of all coordinates must be < BIGNUMBER */
|
|
/* Code written by Jack Ritter and Lyle Rains. */
|
|
|
|
#define BIGNUMBER 100000000.0 /* hundred million */
|
|
|
|
static inline void Set(float *n,float x,float y,float z)
|
|
{
|
|
n[0] = x;
|
|
n[1] = y;
|
|
n[2] = z;
|
|
}
|
|
|
|
static inline void Copy(float *dest,const float *source)
|
|
{
|
|
dest[0] = source[0];
|
|
dest[1] = source[1];
|
|
dest[2] = source[2];
|
|
}
|
|
|
|
float computeBoundingSphere(unsigned int vcount,const float *points,float *center)
|
|
{
|
|
|
|
float mRadius;
|
|
float mRadius2;
|
|
|
|
float xmin[3];
|
|
float xmax[3];
|
|
float ymin[3];
|
|
float ymax[3];
|
|
float zmin[3];
|
|
float zmax[3];
|
|
float dia1[3];
|
|
float dia2[3];
|
|
|
|
/* FIRST PASS: find 6 minima/maxima points */
|
|
Set(xmin,BIGNUMBER,BIGNUMBER,BIGNUMBER);
|
|
Set(xmax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
|
|
Set(ymin,BIGNUMBER,BIGNUMBER,BIGNUMBER);
|
|
Set(ymax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
|
|
Set(zmin,BIGNUMBER,BIGNUMBER,BIGNUMBER);
|
|
Set(zmax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
|
|
|
|
for (unsigned i=0; i<vcount; i++)
|
|
{
|
|
const float *caller_p = &points[i*3];
|
|
|
|
if (caller_p[0]<xmin[0])
|
|
Copy(xmin,caller_p); /* New xminimum point */
|
|
if (caller_p[0]>xmax[0])
|
|
Copy(xmax,caller_p);
|
|
if (caller_p[1]<ymin[1])
|
|
Copy(ymin,caller_p);
|
|
if (caller_p[1]>ymax[1])
|
|
Copy(ymax,caller_p);
|
|
if (caller_p[2]<zmin[2])
|
|
Copy(zmin,caller_p);
|
|
if (caller_p[2]>zmax[2])
|
|
Copy(zmax,caller_p);
|
|
}
|
|
|
|
/* Set xspan = distance between the 2 points xmin & xmax (squared) */
|
|
float dx = xmax[0] - xmin[0];
|
|
float dy = xmax[1] - xmin[1];
|
|
float dz = xmax[2] - xmin[2];
|
|
float xspan = dx*dx + dy*dy + dz*dz;
|
|
|
|
/* Same for y & z spans */
|
|
dx = ymax[0] - ymin[0];
|
|
dy = ymax[1] - ymin[1];
|
|
dz = ymax[2] - ymin[2];
|
|
float yspan = dx*dx + dy*dy + dz*dz;
|
|
|
|
dx = zmax[0] - zmin[0];
|
|
dy = zmax[1] - zmin[1];
|
|
dz = zmax[2] - zmin[2];
|
|
float zspan = dx*dx + dy*dy + dz*dz;
|
|
|
|
/* Set points dia1 & dia2 to the maximally separated pair */
|
|
Copy(dia1,xmin);
|
|
Copy(dia2,xmax); /* assume xspan biggest */
|
|
float maxspan = xspan;
|
|
|
|
if (yspan>maxspan)
|
|
{
|
|
maxspan = yspan;
|
|
Copy(dia1,ymin);
|
|
Copy(dia2,ymax);
|
|
}
|
|
|
|
if (zspan>maxspan)
|
|
{
|
|
Copy(dia1,zmin);
|
|
Copy(dia2,zmax);
|
|
}
|
|
|
|
|
|
/* dia1,dia2 is a diameter of initial sphere */
|
|
/* calc initial center */
|
|
center[0] = (dia1[0]+dia2[0])*0.5f;
|
|
center[1] = (dia1[1]+dia2[1])*0.5f;
|
|
center[2] = (dia1[2]+dia2[2])*0.5f;
|
|
|
|
/* calculate initial radius**2 and radius */
|
|
|
|
dx = dia2[0]-center[0]; /* x component of radius vector */
|
|
dy = dia2[1]-center[1]; /* y component of radius vector */
|
|
dz = dia2[2]-center[2]; /* z component of radius vector */
|
|
|
|
mRadius2 = dx*dx + dy*dy + dz*dz;
|
|
mRadius = float(sqrt(mRadius2));
|
|
|
|
/* SECOND PASS: increment current sphere */
|
|
|
|
if ( 1 )
|
|
{
|
|
for (unsigned i=0; i<vcount; i++)
|
|
{
|
|
const float *caller_p = &points[i*3];
|
|
|
|
dx = caller_p[0]-center[0];
|
|
dy = caller_p[1]-center[1];
|
|
dz = caller_p[2]-center[2];
|
|
|
|
float old_to_p_sq = dx*dx + dy*dy + dz*dz;
|
|
|
|
if (old_to_p_sq > mRadius2) /* do r**2 test first */
|
|
{ /* this point is outside of current sphere */
|
|
float old_to_p = float(sqrt(old_to_p_sq));
|
|
/* calc radius of new sphere */
|
|
mRadius = (mRadius + old_to_p) * 0.5f;
|
|
mRadius2 = mRadius*mRadius; /* for next r**2 compare */
|
|
float old_to_new = old_to_p - mRadius;
|
|
|
|
/* calc center of new sphere */
|
|
|
|
float recip = 1.0f /old_to_p;
|
|
|
|
float cx = (mRadius*center[0] + old_to_new*caller_p[0]) * recip;
|
|
float cy = (mRadius*center[1] + old_to_new*caller_p[1]) * recip;
|
|
float cz = (mRadius*center[2] + old_to_new*caller_p[2]) * recip;
|
|
|
|
Set(center,cx,cy,cz);
|
|
}
|
|
}
|
|
}
|
|
|
|
return mRadius;
|
|
}
|
|
|
|
|