mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-07 08:10:08 +00:00
258 lines
7.0 KiB
C++
258 lines
7.0 KiB
C++
#include "float_math.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
|
|
/*----------------------------------------------------------------------
|
|
Copyright (c) 2004 Open Dynamics Framework Group
|
|
www.physicstools.org
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification, are permitted provided
|
|
that the following conditions are met:
|
|
|
|
Redistributions of source code must retain the above copyright notice, this list of conditions
|
|
and the following disclaimer.
|
|
|
|
Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
Neither the name of the Open Dynamics Framework Group nor the names of its contributors may
|
|
be used to endorse or promote products derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE INTEL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
-----------------------------------------------------------------------*/
|
|
|
|
// http://codesuppository.blogspot.com
|
|
//
|
|
// mailto: jratcliff@infiniplex.net
|
|
//
|
|
// http://www.amillionpixels.us
|
|
//
|
|
|
|
void fm_inverseRT(const float *matrix,const float *pos,float *t) // inverse rotate translate the point.
|
|
{
|
|
|
|
float _x = pos[0] - matrix[3*4+0];
|
|
float _y = pos[1] - matrix[3*4+1];
|
|
float _z = pos[2] - matrix[3*4+2];
|
|
|
|
// Multiply inverse-translated source vector by inverted rotation transform
|
|
|
|
t[0] = (matrix[0*4+0] * _x) + (matrix[0*4+1] * _y) + (matrix[0*4+2] * _z);
|
|
t[1] = (matrix[1*4+0] * _x) + (matrix[1*4+1] * _y) + (matrix[1*4+2] * _z);
|
|
t[2] = (matrix[2*4+0] * _x) + (matrix[2*4+1] * _y) + (matrix[2*4+2] * _z);
|
|
|
|
}
|
|
|
|
|
|
void fm_identity(float *matrix) // set 4x4 matrix to identity.
|
|
{
|
|
matrix[0*4+0] = 1;
|
|
matrix[1*4+1] = 1;
|
|
matrix[2*4+2] = 1;
|
|
matrix[3*4+3] = 1;
|
|
|
|
matrix[1*4+0] = 0;
|
|
matrix[2*4+0] = 0;
|
|
matrix[3*4+0] = 0;
|
|
|
|
matrix[0*4+1] = 0;
|
|
matrix[2*4+1] = 0;
|
|
matrix[3*4+1] = 0;
|
|
|
|
matrix[0*4+2] = 0;
|
|
matrix[1*4+2] = 0;
|
|
matrix[3*4+2] = 0;
|
|
|
|
matrix[0*4+3] = 0;
|
|
matrix[1*4+3] = 0;
|
|
matrix[2*4+3] = 0;
|
|
|
|
}
|
|
|
|
void fm_eulerMatrix(float ax,float ay,float az,float *matrix) // convert euler (in radians) to a dest 4x4 matrix (translation set to zero)
|
|
{
|
|
float quat[4];
|
|
fm_eulerToQuat(ax,ay,az,quat);
|
|
fm_quatToMatrix(quat,matrix);
|
|
}
|
|
|
|
void fm_getAABB(unsigned int vcount,const float *points,unsigned int pstride,float *bmin,float *bmax)
|
|
{
|
|
|
|
const unsigned char *source = (const unsigned char *) points;
|
|
|
|
bmin[0] = points[0];
|
|
bmin[1] = points[1];
|
|
bmin[2] = points[2];
|
|
|
|
bmax[0] = points[0];
|
|
bmax[1] = points[1];
|
|
bmax[2] = points[2];
|
|
|
|
|
|
for (unsigned int i=1; i<vcount; i++)
|
|
{
|
|
source+=pstride;
|
|
const float *p = (const float *) source;
|
|
|
|
if ( p[0] < bmin[0] ) bmin[0] = p[0];
|
|
if ( p[1] < bmin[1] ) bmin[1] = p[1];
|
|
if ( p[2] < bmin[2] ) bmin[2] = p[2];
|
|
|
|
if ( p[0] > bmax[0] ) bmax[0] = p[0];
|
|
if ( p[1] > bmax[1] ) bmax[1] = p[1];
|
|
if ( p[2] > bmax[2] ) bmax[2] = p[2];
|
|
|
|
}
|
|
}
|
|
|
|
|
|
void fm_eulerToQuat(float roll,float pitch,float yaw,float *quat) // convert euler angles to quaternion.
|
|
{
|
|
roll *= 0.5f;
|
|
pitch *= 0.5f;
|
|
yaw *= 0.5f;
|
|
|
|
float cr = cosf(roll);
|
|
float cp = cosf(pitch);
|
|
float cy = cosf(yaw);
|
|
|
|
float sr = sinf(roll);
|
|
float sp = sinf(pitch);
|
|
float sy = sinf(yaw);
|
|
|
|
float cpcy = cp * cy;
|
|
float spsy = sp * sy;
|
|
float spcy = sp * cy;
|
|
float cpsy = cp * sy;
|
|
|
|
quat[0] = ( sr * cpcy - cr * spsy);
|
|
quat[1] = ( cr * spcy + sr * cpsy);
|
|
quat[2] = ( cr * cpsy - sr * spcy);
|
|
quat[3] = cr * cpcy + sr * spsy;
|
|
}
|
|
|
|
void fm_quatToMatrix(const float *quat,float *matrix) // convert quaterinion rotation to matrix, zeros out the translation component.
|
|
{
|
|
|
|
float xx = quat[0]*quat[0];
|
|
float yy = quat[1]*quat[1];
|
|
float zz = quat[2]*quat[2];
|
|
float xy = quat[0]*quat[1];
|
|
float xz = quat[0]*quat[2];
|
|
float yz = quat[1]*quat[2];
|
|
float wx = quat[3]*quat[0];
|
|
float wy = quat[3]*quat[1];
|
|
float wz = quat[3]*quat[2];
|
|
|
|
matrix[0*4+0] = 1 - 2 * ( yy + zz );
|
|
matrix[1*4+0] = 2 * ( xy - wz );
|
|
matrix[2*4+0] = 2 * ( xz + wy );
|
|
|
|
matrix[0*4+1] = 2 * ( xy + wz );
|
|
matrix[1*4+1] = 1 - 2 * ( xx + zz );
|
|
matrix[2*4+1] = 2 * ( yz - wx );
|
|
|
|
matrix[0*4+2] = 2 * ( xz - wy );
|
|
matrix[1*4+2] = 2 * ( yz + wx );
|
|
matrix[2*4+2] = 1 - 2 * ( xx + yy );
|
|
|
|
matrix[3*4+0] = matrix[3*4+1] = matrix[3*4+2] = 0.0f;
|
|
matrix[0*4+3] = matrix[1*4+3] = matrix[2*4+3] = 0.0f;
|
|
matrix[3*4+3] = 1.0f;
|
|
|
|
}
|
|
|
|
|
|
void fm_quatRotate(const float *quat,const float *v,float *r) // rotate a vector directly by a quaternion.
|
|
{
|
|
float left[4];
|
|
|
|
left[0] = quat[3]*v[0] + quat[1]*v[2] - v[1]*quat[2];
|
|
left[1] = quat[3]*v[1] + quat[2]*v[0] - v[2]*quat[0];
|
|
left[2] = quat[3]*v[2] + quat[0]*v[1] - v[0]*quat[1];
|
|
left[3] = - quat[0]*v[0] - quat[1]*v[1] - quat[2]*v[2];
|
|
|
|
r[0] = (left[3]*-quat[0]) + (quat[3]*left[0]) + (left[1]*-quat[2]) - (-quat[1]*left[2]);
|
|
r[1] = (left[3]*-quat[1]) + (quat[3]*left[1]) + (left[2]*-quat[0]) - (-quat[2]*left[0]);
|
|
r[2] = (left[3]*-quat[2]) + (quat[3]*left[2]) + (left[0]*-quat[1]) - (-quat[0]*left[1]);
|
|
|
|
}
|
|
|
|
|
|
void fm_getTranslation(const float *matrix,float *t)
|
|
{
|
|
t[0] = matrix[3*4+0];
|
|
t[1] = matrix[3*4+1];
|
|
t[2] = matrix[3*4+2];
|
|
}
|
|
|
|
void fm_matrixToQuat(const float *matrix,float *quat) // convert the 3x3 portion of a 4x4 matrix into a quaterion as x,y,z,w
|
|
{
|
|
|
|
float tr = matrix[0*4+0] + matrix[1*4+1] + matrix[2*4+2];
|
|
|
|
// check the diagonal
|
|
|
|
if (tr > 0.0f )
|
|
{
|
|
float s = (float) sqrt ( (double) (tr + 1.0f) );
|
|
quat[3] = s * 0.5f;
|
|
s = 0.5f / s;
|
|
quat[0] = (matrix[1*4+2] - matrix[2*4+1]) * s;
|
|
quat[1] = (matrix[2*4+0] - matrix[0*4+2]) * s;
|
|
quat[2] = (matrix[0*4+1] - matrix[1*4+0]) * s;
|
|
|
|
}
|
|
else
|
|
{
|
|
// diagonal is negative
|
|
int nxt[3] = {1, 2, 0};
|
|
float qa[4];
|
|
|
|
int i = 0;
|
|
|
|
if (matrix[1*4+1] > matrix[0*4+0]) i = 1;
|
|
if (matrix[2*4+2] > matrix[i*4+i]) i = 2;
|
|
|
|
int j = nxt[i];
|
|
int k = nxt[j];
|
|
|
|
float s = sqrtf ( ((matrix[i*4+i] - (matrix[j*4+j] + matrix[k*4+k])) + 1.0f) );
|
|
|
|
qa[i] = s * 0.5f;
|
|
|
|
if (s != 0.0f ) s = 0.5f / s;
|
|
|
|
qa[3] = (matrix[j*4+k] - matrix[k*4+j]) * s;
|
|
qa[j] = (matrix[i*4+j] + matrix[j*4+i]) * s;
|
|
qa[k] = (matrix[i*4+k] + matrix[k*4+i]) * s;
|
|
|
|
quat[0] = qa[0];
|
|
quat[1] = qa[1];
|
|
quat[2] = qa[2];
|
|
quat[3] = qa[3];
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
float fm_sphereVolume(float radius) // return's the volume of a sphere of this radius (4/3 PI * R cubed )
|
|
{
|
|
return (4.0f / 3.0f ) * FM_PI * radius * radius * radius;
|
|
}
|