bullet3/examples/ExampleBrowser/OpenGLGuiHelper.cpp
2018-05-01 09:23:08 -07:00

1352 lines
42 KiB
C++

#include "OpenGLGuiHelper.h"
#include "btBulletDynamicsCommon.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "Bullet3Common/b3Scalar.h"
#include "CollisionShape2TriangleMesh.h"
#include "BulletSoftBody/btSoftBodyHelpers.h"
#include "../OpenGLWindow/ShapeData.h"
#include "../OpenGLWindow/SimpleCamera.h"
#define BT_LINE_BATCH_SIZE 512
struct MyDebugVec3
{
MyDebugVec3(const btVector3& org)
:x(org.x()),
y(org.y()),
z(org.z())
{
}
float x;
float y;
float z;
};
ATTRIBUTE_ALIGNED16( class )MyDebugDrawer : public btIDebugDraw
{
CommonGraphicsApp* m_glApp;
int m_debugMode;
btAlignedObjectArray<MyDebugVec3> m_linePoints;
btAlignedObjectArray<unsigned int> m_lineIndices;
btVector3 m_currentLineColor;
DefaultColors m_ourColors;
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
MyDebugDrawer(CommonGraphicsApp* app)
: m_glApp(app)
,m_debugMode(btIDebugDraw::DBG_DrawWireframe|btIDebugDraw::DBG_DrawAabb),
m_currentLineColor(-1,-1,-1)
{
}
virtual ~MyDebugDrawer()
{
}
virtual DefaultColors getDefaultColors() const
{
return m_ourColors;
}
///the default implementation for setDefaultColors has no effect. A derived class can implement it and store the colors.
virtual void setDefaultColors(const DefaultColors& colors)
{
m_ourColors = colors;
}
virtual void drawLine(const btVector3& from1,const btVector3& to1,const btVector3& color1)
{
//float from[4] = {from1[0],from1[1],from1[2],from1[3]};
//float to[4] = {to1[0],to1[1],to1[2],to1[3]};
//float color[4] = {color1[0],color1[1],color1[2],color1[3]};
//m_glApp->m_instancingRenderer->drawLine(from,to,color);
if (m_currentLineColor!=color1 || m_linePoints.size() >= BT_LINE_BATCH_SIZE)
{
flushLines();
m_currentLineColor = color1;
}
MyDebugVec3 from(from1);
MyDebugVec3 to(to1);
m_linePoints.push_back(from);
m_linePoints.push_back(to);
m_lineIndices.push_back(m_lineIndices.size());
m_lineIndices.push_back(m_lineIndices.size());
}
virtual void drawContactPoint(const btVector3& PointOnB,const btVector3& normalOnB,btScalar distance,int lifeTime,const btVector3& color)
{
drawLine(PointOnB,PointOnB+normalOnB*distance,color);
btVector3 ncolor(0, 0, 0);
drawLine(PointOnB, PointOnB + normalOnB*0.01, ncolor);
}
virtual void reportErrorWarning(const char* warningString)
{
}
virtual void draw3dText(const btVector3& location,const char* textString)
{
}
virtual void setDebugMode(int debugMode)
{
m_debugMode = debugMode;
}
virtual int getDebugMode() const
{
return m_debugMode;
}
virtual void flushLines()
{
int sz = m_linePoints.size();
if (sz)
{
float debugColor[4];
debugColor[0] = m_currentLineColor.x();
debugColor[1] = m_currentLineColor.y();
debugColor[2] = m_currentLineColor.z();
debugColor[3] = 1.f;
m_glApp->m_renderer->drawLines(&m_linePoints[0].x,debugColor,
m_linePoints.size(),sizeof(MyDebugVec3),
&m_lineIndices[0],
m_lineIndices.size(),
1);
m_linePoints.clear();
m_lineIndices.clear();
}
}
};
static btVector4 sColors[4] =
{
btVector4(60./256.,186./256.,84./256.,1),
btVector4(244./256.,194./256.,13./256.,1),
btVector4(219./256.,50./256.,54./256.,1),
btVector4(72./256.,133./256.,237./256.,1),
//btVector4(1,1,0,1),
};
struct MyHashShape
{
int m_shapeKey;
int m_shapeType;
btVector3 m_sphere0Pos;
btVector3 m_sphere1Pos;
btScalar m_radius0;
btScalar m_radius1;
btTransform m_childTransform;
int m_deformFunc;
int m_upAxis;
btScalar m_halfHeight;
MyHashShape()
:m_shapeKey(0),
m_shapeType(0),
m_sphere0Pos(btVector3(0,0,0)),
m_sphere1Pos(btVector3(0,0,0)),
m_radius0(0),
m_radius1(0),
m_deformFunc(0),
m_upAxis(-1),
m_halfHeight(0)
{
m_childTransform.setIdentity();
}
bool equals(const MyHashShape& other) const
{
bool sameShapeType = m_shapeType==other.m_shapeType;
bool sameSphere0= m_sphere0Pos == other.m_sphere0Pos;
bool sameSphere1= m_sphere1Pos == other.m_sphere1Pos;
bool sameRadius0 = m_radius0== other.m_radius0;
bool sameRadius1 = m_radius1== other.m_radius1;
bool sameTransform = m_childTransform== other.m_childTransform;
bool sameUpAxis = m_upAxis == other.m_upAxis;
bool sameHalfHeight = m_halfHeight == other.m_halfHeight;
return sameShapeType && sameSphere0 && sameSphere1 && sameRadius0 && sameRadius1 && sameTransform && sameUpAxis && sameHalfHeight;
}
//to our success
SIMD_FORCE_INLINE unsigned int getHash()const
{
unsigned int key = m_shapeKey;
// Thomas Wang's hash
key += ~(key << 15); key ^= (key >> 10); key += (key << 3); key ^= (key >> 6); key += ~(key << 11); key ^= (key >> 16);
return key;
}
};
struct OpenGLGuiHelperInternalData
{
struct CommonGraphicsApp* m_glApp;
class MyDebugDrawer* m_debugDraw;
bool m_vrMode;
int m_vrSkipShadowPass;
btAlignedObjectArray<unsigned char> m_rgbaPixelBuffer1;
btAlignedObjectArray<float> m_depthBuffer1;
btHashMap<MyHashShape, int> m_hashShapes;
VisualizerFlagCallback m_visualizerFlagCallback;
int m_checkedTexture;
int m_checkedTextureGrey;
OpenGLGuiHelperInternalData()
:m_vrMode(false),
m_vrSkipShadowPass(0),
m_visualizerFlagCallback(0),
m_checkedTexture(-1),
m_checkedTextureGrey(-1)
{
}
};
void OpenGLGuiHelper::setVRMode(bool vrMode)
{
m_data->m_vrMode = vrMode;
m_data->m_vrSkipShadowPass = 0;
}
OpenGLGuiHelper::OpenGLGuiHelper(CommonGraphicsApp* glApp, bool useOpenGL2)
{
m_data = new OpenGLGuiHelperInternalData;
m_data->m_glApp = glApp;
m_data->m_debugDraw = 0;
}
OpenGLGuiHelper::~OpenGLGuiHelper()
{
delete m_data->m_debugDraw;
delete m_data;
}
struct CommonRenderInterface* OpenGLGuiHelper::getRenderInterface()
{
return m_data->m_glApp->m_renderer;
}
const struct CommonRenderInterface* OpenGLGuiHelper::getRenderInterface() const
{
return m_data->m_glApp->m_renderer;
}
void OpenGLGuiHelper::createRigidBodyGraphicsObject(btRigidBody* body, const btVector3& color)
{
createCollisionObjectGraphicsObject(body,color);
}
void OpenGLGuiHelper::createCollisionObjectGraphicsObject(btCollisionObject* body, const btVector3& color)
{
if (body->getUserIndex()<0)
{
btCollisionShape* shape = body->getCollisionShape();
btTransform startTransform = body->getWorldTransform();
int graphicsShapeId = shape->getUserIndex();
if (graphicsShapeId>=0)
{
// btAssert(graphicsShapeId >= 0);
//the graphics shape is already scaled
btVector3 localScaling(1,1,1);
int graphicsInstanceId = m_data->m_glApp->m_renderer->registerGraphicsInstance(graphicsShapeId, startTransform.getOrigin(), startTransform.getRotation(), color, localScaling);
body->setUserIndex(graphicsInstanceId);
}
}
}
int OpenGLGuiHelper::registerTexture(const unsigned char* texels, int width, int height)
{
int textureId = m_data->m_glApp->m_renderer->registerTexture(texels,width,height);
return textureId;
}
void OpenGLGuiHelper::removeTexture(int textureUid)
{
m_data->m_glApp->m_renderer->removeTexture(textureUid);
}
void OpenGLGuiHelper::changeTexture(int textureUniqueId, const unsigned char* rgbTexels, int width, int height)
{
bool flipPixelsY = true;
m_data->m_glApp->m_renderer->updateTexture(textureUniqueId, rgbTexels,flipPixelsY);
}
int OpenGLGuiHelper::registerGraphicsShape(const float* vertices, int numvertices, const int* indices, int numIndices,int primitiveType, int textureId)
{
if (textureId == -2)
{
if (m_data->m_checkedTextureGrey<0)
{
m_data->m_checkedTextureGrey = createCheckeredTexture(192, 192, 192);
}
textureId = m_data->m_checkedTextureGrey;
}
int shapeId = m_data->m_glApp->m_renderer->registerShape(vertices, numvertices,indices,numIndices,primitiveType, textureId);
return shapeId;
}
int OpenGLGuiHelper::registerGraphicsInstance(int shapeIndex, const float* position, const float* quaternion, const float* color, const float* scaling)
{
return m_data->m_glApp->m_renderer->registerGraphicsInstance(shapeIndex,position,quaternion,color,scaling);
}
void OpenGLGuiHelper::removeAllGraphicsInstances()
{
m_data->m_hashShapes.clear();
m_data->m_glApp->m_renderer->removeAllInstances();
}
void OpenGLGuiHelper::removeGraphicsInstance(int graphicsUid)
{
if (graphicsUid>=0)
{
m_data->m_glApp->m_renderer->removeGraphicsInstance(graphicsUid);
};
}
int OpenGLGuiHelper::getShapeIndexFromInstance(int instanceUid)
{
return m_data->m_glApp->m_renderer->getShapeIndexFromInstance(instanceUid);
}
void OpenGLGuiHelper::replaceTexture(int shapeIndex, int textureUid)
{
if (shapeIndex>=0)
{
m_data->m_glApp->m_renderer->replaceTexture(shapeIndex, textureUid);
};
}
void OpenGLGuiHelper::changeRGBAColor(int instanceUid, const double rgbaColor[4])
{
if (instanceUid>=0)
{
m_data->m_glApp->m_renderer->writeSingleInstanceColorToCPU(rgbaColor,instanceUid);
};
}
void OpenGLGuiHelper::changeSpecularColor(int instanceUid, const double specularColor[3])
{
if (instanceUid>=0)
{
m_data->m_glApp->m_renderer->writeSingleInstanceSpecularColorToCPU(specularColor,instanceUid);
};
}
int OpenGLGuiHelper::createCheckeredTexture(int red,int green, int blue)
{
int texWidth=1024;
int texHeight=1024;
btAlignedObjectArray<unsigned char> texels;
texels.resize(texWidth*texHeight*3);
for (int i=0;i<texWidth*texHeight*3;i++)
texels[i]=255;
for (int i=0;i<texWidth;i++)
{
for (int j=0;j<texHeight;j++)
{
int a = i<texWidth/2? 1 : 0;
int b = j<texWidth/2? 1 : 0;
if (a==b)
{
texels[(i+j*texWidth)*3+0] = red;
texels[(i+j*texWidth)*3+1] = green;
texels[(i+j*texWidth)*3+2] = blue;
// texels[(i+j*texWidth)*4+3] = 255;
}
/*else
{
texels[i*3+0+j*texWidth] = 255;
texels[i*3+1+j*texWidth] = 255;
texels[i*3+2+j*texWidth] = 255;
}
*/
}
}
int texId = registerTexture(&texels[0],texWidth,texHeight);
return texId;
}
void OpenGLGuiHelper::createCollisionShapeGraphicsObject(btCollisionShape* collisionShape)
{
//already has a graphics object?
if (collisionShape->getUserIndex()>=0)
return;
if (m_data->m_checkedTexture<0)
{
m_data->m_checkedTexture = createCheckeredTexture(192,192,255);
}
if (m_data->m_checkedTextureGrey<0)
{
m_data->m_checkedTextureGrey = createCheckeredTexture(192,192,192);
}
btAlignedObjectArray<GLInstanceVertex> gfxVertices;
btAlignedObjectArray<int> indices;
int strideInBytes = 9*sizeof(float);
//if (collisionShape->getShapeType()==BOX_SHAPE_PROXYTYPE)
{
}
if (collisionShape->getShapeType() == SOFTBODY_SHAPE_PROXYTYPE)
{
computeSoftBodyVertices(collisionShape, gfxVertices, indices);
if (gfxVertices.size() && indices.size())
{
int shapeId = registerGraphicsShape(&gfxVertices[0].xyzw[0], gfxVertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES,
m_data->m_checkedTexture);
b3Assert(shapeId >= 0);
collisionShape->setUserIndex(shapeId);
}
}
if (collisionShape->getShapeType()==MULTI_SPHERE_SHAPE_PROXYTYPE)
{
btMultiSphereShape* ms = (btMultiSphereShape*) collisionShape;
if (ms->getSphereCount()==2)
{
btAlignedObjectArray<float> transformedVertices;
int numVertices = sizeof(textured_detailed_sphere_vertices)/strideInBytes;
transformedVertices.resize(numVertices*9);
btVector3 sphere0Pos = ms->getSpherePosition(0);
btVector3 sphere1Pos = ms->getSpherePosition(1);
btVector3 fromTo = sphere1Pos-sphere0Pos;
MyHashShape shape;
shape.m_sphere0Pos = sphere0Pos;
shape.m_sphere1Pos = sphere1Pos;
shape.m_radius0 = 2.*ms->getSphereRadius(0);
shape.m_radius1 = 2.*ms->getSphereRadius(1);
shape.m_deformFunc = 1;//vert.dot(fromTo)
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
//cache hit
graphicsShapeIndex = *graphicsShapeIndexPtr;
} else
{
//cache miss
for (int i=0;i<numVertices;i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i*9+0],
textured_detailed_sphere_vertices[i*9+1],
textured_detailed_sphere_vertices[i*9+2]);
btVector3 trVer(0,0,0);
if (vert.dot(fromTo)>0)
{
btScalar radiusScale = 2.*ms->getSphereRadius(1);
trVer = radiusScale*vert;
trVer+=sphere1Pos;
} else
{
btScalar radiusScale = 2.*ms->getSphereRadius(0);
trVer = radiusScale*vert;
trVer+=sphere0Pos;
}
transformedVertices[i*9+0] = trVer[0];
transformedVertices[i*9+1] = trVer[1];
transformedVertices[i*9+2] = trVer[2];
transformedVertices[i*9+3] =textured_detailed_sphere_vertices[i*9+3];
transformedVertices[i*9+4] =textured_detailed_sphere_vertices[i*9+4];
transformedVertices[i*9+5] =textured_detailed_sphere_vertices[i*9+5];
transformedVertices[i*9+6] =textured_detailed_sphere_vertices[i*9+6];
transformedVertices[i*9+7] =textured_detailed_sphere_vertices[i*9+7];
transformedVertices[i*9+8] =textured_detailed_sphere_vertices[i*9+8];
}
int numIndices = sizeof(textured_detailed_sphere_indices)/sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0],numVertices,textured_detailed_sphere_indices,numIndices,B3_GL_TRIANGLES,m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape,graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
}
if (collisionShape->getShapeType()==SPHERE_SHAPE_PROXYTYPE)
{
btSphereShape* sphereShape = (btSphereShape*) collisionShape;
btScalar radius = sphereShape->getRadius();
btScalar sphereSize = 2.*radius;
btVector3 radiusScale(sphereSize,sphereSize,sphereSize);
btAlignedObjectArray<float> transformedVertices;
MyHashShape shape;
shape.m_radius0 = sphereSize;
shape.m_deformFunc = 0;////no deform
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
} else
{
int numVertices = sizeof(textured_detailed_sphere_vertices)/strideInBytes;
transformedVertices.resize(numVertices*9);
for (int i=0;i<numVertices;i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i*9+0],
textured_detailed_sphere_vertices[i*9+1],
textured_detailed_sphere_vertices[i*9+2]);
btVector3 trVer = radiusScale*vert;
transformedVertices[i*9+0] = trVer[0];
transformedVertices[i*9+1] = trVer[1];
transformedVertices[i*9+2] = trVer[2];
transformedVertices[i*9+3] =textured_detailed_sphere_vertices[i*9+3];
transformedVertices[i*9+4] =textured_detailed_sphere_vertices[i*9+4];
transformedVertices[i*9+5] =textured_detailed_sphere_vertices[i*9+5];
transformedVertices[i*9+6] =textured_detailed_sphere_vertices[i*9+6];
transformedVertices[i*9+7] =textured_detailed_sphere_vertices[i*9+7];
transformedVertices[i*9+8] =textured_detailed_sphere_vertices[i*9+8];
}
int numIndices = sizeof(textured_detailed_sphere_indices)/sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0],numVertices,textured_detailed_sphere_indices,numIndices,B3_GL_TRIANGLES,m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape,graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
if (collisionShape->getShapeType()==COMPOUND_SHAPE_PROXYTYPE)
{
btCompoundShape* compound = (btCompoundShape*)collisionShape;
if (compound->getNumChildShapes()==1)
{
if (compound->getChildShape(0)->getShapeType()==SPHERE_SHAPE_PROXYTYPE)
{
btSphereShape* sphereShape = (btSphereShape*) compound->getChildShape(0);
btScalar radius = sphereShape->getRadius();
btScalar sphereSize = 2.*radius;
btVector3 radiusScale(sphereSize,sphereSize,sphereSize);
MyHashShape shape;
shape.m_radius0 = sphereSize;
shape.m_deformFunc = 0;//no deform
shape.m_childTransform = compound->getChildTransform(0);
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
btAlignedObjectArray<float> transformedVertices;
int numVertices = sizeof(textured_detailed_sphere_vertices)/strideInBytes;
transformedVertices.resize(numVertices*9);
for (int i=0;i<numVertices;i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i*9+0],
textured_detailed_sphere_vertices[i*9+1],
textured_detailed_sphere_vertices[i*9+2]);
btVector3 trVer = compound->getChildTransform(0)*(radiusScale*vert);
transformedVertices[i*9+0] = trVer[0];
transformedVertices[i*9+1] = trVer[1];
transformedVertices[i*9+2] = trVer[2];
transformedVertices[i*9+3] =textured_detailed_sphere_vertices[i*9+3];
transformedVertices[i*9+4] =textured_detailed_sphere_vertices[i*9+4];
transformedVertices[i*9+5] =textured_detailed_sphere_vertices[i*9+5];
transformedVertices[i*9+6] =textured_detailed_sphere_vertices[i*9+6];
transformedVertices[i*9+7] =textured_detailed_sphere_vertices[i*9+7];
transformedVertices[i*9+8] =textured_detailed_sphere_vertices[i*9+8];
}
int numIndices = sizeof(textured_detailed_sphere_indices)/sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0],numVertices,textured_detailed_sphere_indices,numIndices,B3_GL_TRIANGLES,m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape,graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
if (compound->getChildShape(0)->getShapeType()==CAPSULE_SHAPE_PROXYTYPE)
{
btCapsuleShape* sphereShape = (btCapsuleShape*) compound->getChildShape(0);
int up = sphereShape->getUpAxis();
btScalar halfHeight = sphereShape->getHalfHeight();
btScalar radius = sphereShape->getRadius();
btScalar sphereSize = 2.*radius;
btVector3 radiusScale = btVector3(sphereSize,sphereSize,sphereSize);
MyHashShape shape;
shape.m_radius0 = sphereSize;
shape.m_deformFunc = 2;//no deform
shape.m_childTransform = compound->getChildTransform(0);
shape.m_upAxis = up;
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
btAlignedObjectArray<float> transformedVertices;
int numVertices = sizeof(textured_detailed_sphere_vertices)/strideInBytes;
transformedVertices.resize(numVertices*9);
for (int i=0;i<numVertices;i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i*9+0],
textured_detailed_sphere_vertices[i*9+1],
textured_detailed_sphere_vertices[i*9+2]);
btVector3 trVer = (radiusScale*vert);
if (trVer[up]>0)
trVer[up]+=halfHeight;
else
trVer[up]-=halfHeight;
trVer = compound->getChildTransform(0)*trVer;
transformedVertices[i*9+0] = trVer[0];
transformedVertices[i*9+1] = trVer[1];
transformedVertices[i*9+2] = trVer[2];
transformedVertices[i*9+3] =textured_detailed_sphere_vertices[i*9+3];
transformedVertices[i*9+4] =textured_detailed_sphere_vertices[i*9+4];
transformedVertices[i*9+5] =textured_detailed_sphere_vertices[i*9+5];
transformedVertices[i*9+6] =textured_detailed_sphere_vertices[i*9+6];
transformedVertices[i*9+7] =textured_detailed_sphere_vertices[i*9+7];
transformedVertices[i*9+8] =textured_detailed_sphere_vertices[i*9+8];
}
int numIndices = sizeof(textured_detailed_sphere_indices)/sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0],numVertices,textured_detailed_sphere_indices,numIndices,B3_GL_TRIANGLES,m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape,graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
if (compound->getChildShape(0)->getShapeType()==MULTI_SPHERE_SHAPE_PROXYTYPE)
{
btMultiSphereShape* ms = (btMultiSphereShape*) compound->getChildShape(0);
if (ms->getSphereCount()==2)
{
btAlignedObjectArray<float> transformedVertices;
int numVertices = sizeof(textured_detailed_sphere_vertices)/strideInBytes;
transformedVertices.resize(numVertices*9);
btVector3 sphere0Pos = ms->getSpherePosition(0);
btVector3 sphere1Pos = ms->getSpherePosition(1);
btVector3 fromTo = sphere1Pos-sphere0Pos;
btScalar radiusScale1 = 2.0*ms->getSphereRadius(1);
btScalar radiusScale0 = 2.0*ms->getSphereRadius(0);
MyHashShape shape;
shape.m_radius0 = radiusScale0;
shape.m_radius1 = radiusScale1;
shape.m_deformFunc = 4;
shape.m_sphere0Pos = sphere0Pos;
shape.m_sphere1Pos = sphere1Pos;
shape.m_childTransform = compound->getChildTransform(0);
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
for (int i=0;i<numVertices;i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i*9+0],
textured_detailed_sphere_vertices[i*9+1],
textured_detailed_sphere_vertices[i*9+2]);
btVector3 trVer(0,0,0);
if (vert.dot(fromTo)>0)
{
trVer = vert*radiusScale1;
trVer+=sphere1Pos;
trVer = compound->getChildTransform(0)*trVer;
} else
{
trVer = vert*radiusScale0;
trVer+=sphere0Pos;
trVer=compound->getChildTransform(0)*trVer;
}
transformedVertices[i*9+0] = trVer[0];
transformedVertices[i*9+1] = trVer[1];
transformedVertices[i*9+2] = trVer[2];
transformedVertices[i*9+3] =textured_detailed_sphere_vertices[i*9+3];
transformedVertices[i*9+4] =textured_detailed_sphere_vertices[i*9+4];
transformedVertices[i*9+5] =textured_detailed_sphere_vertices[i*9+5];
transformedVertices[i*9+6] =textured_detailed_sphere_vertices[i*9+6];
transformedVertices[i*9+7] =textured_detailed_sphere_vertices[i*9+7];
transformedVertices[i*9+8] =textured_detailed_sphere_vertices[i*9+8];
}
int numIndices = sizeof(textured_detailed_sphere_indices)/sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0],numVertices,textured_detailed_sphere_indices,numIndices,B3_GL_TRIANGLES,m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape,graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
}
}
}
if (collisionShape->getShapeType()==CAPSULE_SHAPE_PROXYTYPE)
{
btCapsuleShape* sphereShape = (btCapsuleShape*) collisionShape;//Y up
int up = sphereShape->getUpAxis();
btScalar halfHeight = sphereShape->getHalfHeight();
btScalar radius = sphereShape->getRadius();
btScalar sphereSize = 2.*radius;
btVector3 radiusScale(sphereSize,sphereSize,sphereSize);
MyHashShape shape;
shape.m_radius0 = sphereSize;
shape.m_deformFunc = 3;
shape.m_upAxis = up;
shape.m_halfHeight = halfHeight;
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
btAlignedObjectArray<float> transformedVertices;
int numVertices = sizeof(textured_detailed_sphere_vertices)/strideInBytes;
transformedVertices.resize(numVertices*9);
for (int i=0;i<numVertices;i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i*9+0],
textured_detailed_sphere_vertices[i*9+1],
textured_detailed_sphere_vertices[i*9+2]);
btVector3 trVer = radiusScale*vert;
if (trVer[up]>0)
trVer[up]+=halfHeight;
else
trVer[up]-=halfHeight;
transformedVertices[i*9+0] = trVer[0];
transformedVertices[i*9+1] = trVer[1];
transformedVertices[i*9+2] = trVer[2];
transformedVertices[i*9+3] =textured_detailed_sphere_vertices[i*9+3];
transformedVertices[i*9+4] =textured_detailed_sphere_vertices[i*9+4];
transformedVertices[i*9+5] =textured_detailed_sphere_vertices[i*9+5];
transformedVertices[i*9+6] =textured_detailed_sphere_vertices[i*9+6];
transformedVertices[i*9+7] =textured_detailed_sphere_vertices[i*9+7];
transformedVertices[i*9+8] =textured_detailed_sphere_vertices[i*9+8];
}
int numIndices = sizeof(textured_detailed_sphere_indices)/sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0],numVertices,textured_detailed_sphere_indices,numIndices,B3_GL_TRIANGLES,m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape,graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
if (collisionShape->getShapeType()==STATIC_PLANE_PROXYTYPE)
{
const btStaticPlaneShape* staticPlaneShape = static_cast<const btStaticPlaneShape*>(collisionShape);
btScalar planeConst = staticPlaneShape->getPlaneConstant();
const btVector3& planeNormal = staticPlaneShape->getPlaneNormal();
btVector3 planeOrigin = planeNormal * planeConst;
btVector3 vec0,vec1;
btPlaneSpace1(planeNormal,vec0,vec1);
btScalar vecLen = 128;
btVector3 verts[4];
verts[0] = planeOrigin + vec0*vecLen + vec1*vecLen;
verts[1] = planeOrigin - vec0*vecLen + vec1*vecLen;
verts[2] = planeOrigin - vec0*vecLen - vec1*vecLen;
verts[3] = planeOrigin + vec0*vecLen - vec1*vecLen;
int startIndex = 0;
indices.push_back(startIndex+0);
indices.push_back(startIndex+1);
indices.push_back(startIndex+2);
indices.push_back(startIndex+0);
indices.push_back(startIndex+2);
indices.push_back(startIndex+3);
btTransform parentTransform;
parentTransform.setIdentity();
btVector3 triNormal = parentTransform.getBasis()*planeNormal;
gfxVertices.resize(4);
for (int i=0;i<4;i++)
{
btVector3 vtxPos;
btVector3 pos =parentTransform*verts[i];
gfxVertices[i].xyzw[0] = pos[0];
gfxVertices[i].xyzw[1] = pos[1];
gfxVertices[i].xyzw[2] = pos[2];
gfxVertices[i].xyzw[3] = 1;
gfxVertices[i].normal[0] = triNormal[0];
gfxVertices[i].normal[1] = triNormal[1];
gfxVertices[i].normal[2] = triNormal[2];
}
//verts[0] = planeOrigin + vec0*vecLen + vec1*vecLen;
//verts[1] = planeOrigin - vec0*vecLen + vec1*vecLen;
//verts[2] = planeOrigin - vec0*vecLen - vec1*vecLen;
//verts[3] = planeOrigin + vec0*vecLen - vec1*vecLen;
gfxVertices[0].uv[0] = vecLen/2;
gfxVertices[0].uv[1] = vecLen/2;
gfxVertices[1].uv[0] = -vecLen/2;
gfxVertices[1].uv[1] = vecLen/2;
gfxVertices[2].uv[0] = -vecLen/2;
gfxVertices[2].uv[1] = -vecLen/2;
gfxVertices[3].uv[0] = vecLen/2;
gfxVertices[3].uv[1] = -vecLen/2;
int shapeId = registerGraphicsShape(&gfxVertices[0].xyzw[0],gfxVertices.size(),&indices[0],indices.size(),B3_GL_TRIANGLES,m_data->m_checkedTexture);
collisionShape->setUserIndex(shapeId);
return;
}
btTransform startTrans;startTrans.setIdentity();
//todo: create some textured objects for popular objects, like plane, cube, sphere, capsule
{
btAlignedObjectArray<btVector3> vertexPositions;
btAlignedObjectArray<btVector3> vertexNormals;
CollisionShape2TriangleMesh(collisionShape,startTrans,vertexPositions,vertexNormals,indices);
gfxVertices.resize(vertexPositions.size());
for (int i=0;i<vertexPositions.size();i++)
{
for (int j=0;j<4;j++)
{
gfxVertices[i].xyzw[j] = vertexPositions[i][j];
}
for (int j=0;j<3;j++)
{
gfxVertices[i].normal[j] = vertexNormals[i][j];
}
for (int j=0;j<2;j++)
{
gfxVertices[i].uv[j] = 0.5;//we don't have UV info...
}
}
}
if (gfxVertices.size() && indices.size())
{
int shapeId = registerGraphicsShape(&gfxVertices[0].xyzw[0],gfxVertices.size(),&indices[0],indices.size(),B3_GL_TRIANGLES,-1);
collisionShape->setUserIndex(shapeId);
}
}
void OpenGLGuiHelper::syncPhysicsToGraphics(const btDiscreteDynamicsWorld* rbWorld)
{
//in VR mode, we skip the synchronization for the second eye
if (m_data->m_vrMode && m_data->m_vrSkipShadowPass==1)
return;
int numCollisionObjects = rbWorld->getNumCollisionObjects();
{
B3_PROFILE("write all InstanceTransformToCPU");
for (int i = 0; i<numCollisionObjects; i++)
{
//B3_PROFILE("writeSingleInstanceTransformToCPU");
btCollisionObject* colObj = rbWorld->getCollisionObjectArray()[i];
btCollisionShape* collisionShape = colObj->getCollisionShape();
if (collisionShape->getShapeType()==SOFTBODY_SHAPE_PROXYTYPE && collisionShape->getUserIndex() >=0) {
btAlignedObjectArray<GLInstanceVertex> gfxVertices;
btAlignedObjectArray<int> indices;
computeSoftBodyVertices(collisionShape, gfxVertices, indices);
m_data->m_glApp->m_renderer->updateShape(collisionShape->getUserIndex(), &gfxVertices[0].xyzw[0]);
continue;
}
btVector3 pos = colObj->getWorldTransform().getOrigin();
btQuaternion orn = colObj->getWorldTransform().getRotation();
int index = colObj->getUserIndex();
if (index >= 0)
{
m_data->m_glApp->m_renderer->writeSingleInstanceTransformToCPU(pos, orn, index);
}
}
}
{
B3_PROFILE("writeTransforms");
m_data->m_glApp->m_renderer->writeTransforms();
}
}
void OpenGLGuiHelper::render(const btDiscreteDynamicsWorld* rbWorld)
{
if (m_data->m_vrMode)
{
//in VR, we skip the shadow generation for the second eye
if (m_data->m_vrSkipShadowPass>=1)
{
m_data->m_glApp->m_renderer->renderSceneInternal(B3_USE_SHADOWMAP_RENDERMODE);
m_data->m_vrSkipShadowPass=0;
} else
{
m_data->m_glApp->m_renderer->renderScene();
m_data->m_vrSkipShadowPass++;
}
} else
{
m_data->m_glApp->m_renderer->renderScene();
}
}
void OpenGLGuiHelper::createPhysicsDebugDrawer(btDiscreteDynamicsWorld* rbWorld)
{
btAssert(rbWorld);
if (m_data->m_debugDraw)
{
delete m_data->m_debugDraw;
m_data->m_debugDraw = 0;
}
m_data->m_debugDraw = new MyDebugDrawer(m_data->m_glApp);
rbWorld->setDebugDrawer(m_data->m_debugDraw );
m_data->m_debugDraw->setDebugMode(
btIDebugDraw::DBG_DrawWireframe
+btIDebugDraw::DBG_DrawAabb
//btIDebugDraw::DBG_DrawContactPoints
);
}
struct Common2dCanvasInterface* OpenGLGuiHelper::get2dCanvasInterface()
{
return m_data->m_glApp->m_2dCanvasInterface;
}
CommonParameterInterface* OpenGLGuiHelper::getParameterInterface()
{
return m_data->m_glApp->m_parameterInterface;
}
void OpenGLGuiHelper::setUpAxis(int axis)
{
m_data->m_glApp->setUpAxis(axis);
}
void OpenGLGuiHelper::setVisualizerFlagCallback(VisualizerFlagCallback callback)
{
m_data->m_visualizerFlagCallback = callback;
}
void OpenGLGuiHelper::setVisualizerFlag(int flag, int enable)
{
if (getRenderInterface() && flag==16)//COV_ENABLE_PLANAR_REFLECTION
{
getRenderInterface()->setPlaneReflectionShapeIndex(enable);
}
if (m_data->m_visualizerFlagCallback)
(m_data->m_visualizerFlagCallback)(flag,enable);
}
void OpenGLGuiHelper::resetCamera(float camDist, float yaw, float pitch, float camPosX,float camPosY, float camPosZ)
{
if (getRenderInterface() && getRenderInterface()->getActiveCamera())
{
getRenderInterface()->getActiveCamera()->setCameraDistance(camDist);
getRenderInterface()->getActiveCamera()->setCameraPitch(pitch);
getRenderInterface()->getActiveCamera()->setCameraYaw(yaw);
getRenderInterface()->getActiveCamera()->setCameraTargetPosition(camPosX,camPosY,camPosZ);
}
}
bool OpenGLGuiHelper::getCameraInfo(int* width, int* height, float viewMatrix[16], float projectionMatrix[16], float camUp[3], float camForward[3],float hor[3], float vert[3], float* yaw, float* pitch, float* camDist, float cameraTarget[3]) const
{
if (getRenderInterface() && getRenderInterface()->getActiveCamera())
{
*width = m_data->m_glApp->m_window->getWidth()*m_data->m_glApp->m_window->getRetinaScale();
*height = m_data->m_glApp->m_window->getHeight()*m_data->m_glApp->m_window->getRetinaScale();
getRenderInterface()->getActiveCamera()->getCameraViewMatrix(viewMatrix);
getRenderInterface()->getActiveCamera()->getCameraProjectionMatrix(projectionMatrix);
getRenderInterface()->getActiveCamera()->getCameraUpVector(camUp);
getRenderInterface()->getActiveCamera()->getCameraForwardVector(camForward);
float top = 1.f;
float bottom = -1.f;
float tanFov = (top-bottom)*0.5f / 1;
float fov = btScalar(2.0) * btAtan(tanFov);
btVector3 camPos,camTarget;
getRenderInterface()->getActiveCamera()->getCameraPosition(camPos);
getRenderInterface()->getActiveCamera()->getCameraTargetPosition(camTarget);
btVector3 rayFrom = camPos;
btVector3 rayForward = (camTarget-camPos);
rayForward.normalize();
float farPlane = 10000.f;
rayForward*= farPlane;
btVector3 rightOffset;
btVector3 cameraUp=btVector3(camUp[0],camUp[1],camUp[2]);
btVector3 vertical = cameraUp;
btVector3 hori;
hori = rayForward.cross(vertical);
hori.normalize();
vertical = hori.cross(rayForward);
vertical.normalize();
float tanfov = tanf(0.5f*fov);
hori *= 2.f * farPlane * tanfov;
vertical *= 2.f * farPlane * tanfov;
btScalar aspect = float(*width) / float(*height);
hori*=aspect;
//compute 'hor' and 'vert' vectors, useful to generate raytracer rays
hor[0] = hori[0];
hor[1] = hori[1];
hor[2] = hori[2];
vert[0] = vertical[0];
vert[1] = vertical[1];
vert[2] = vertical[2];
*yaw = getRenderInterface()->getActiveCamera()->getCameraYaw();
*pitch = getRenderInterface()->getActiveCamera()->getCameraPitch();
*camDist = getRenderInterface()->getActiveCamera()->getCameraDistance();
cameraTarget[0] = camTarget[0];
cameraTarget[1] = camTarget[1];
cameraTarget[2] = camTarget[2];
return true;
}
return false;
}
void OpenGLGuiHelper::setProjectiveTextureMatrices(const float viewMatrix[16], const float projectionMatrix[16])
{
m_data->m_glApp->m_renderer->setProjectiveTextureMatrices(viewMatrix, projectionMatrix);
}
void OpenGLGuiHelper::setProjectiveTexture(bool useProjectiveTexture)
{
m_data->m_glApp->m_renderer->setProjectiveTexture(useProjectiveTexture);
}
void OpenGLGuiHelper::copyCameraImageData(const float viewMatrix[16], const float projectionMatrix[16],
unsigned char* pixelsRGBA, int rgbaBufferSizeInPixels,
float* depthBuffer, int depthBufferSizeInPixels,
int* segmentationMaskBuffer, int segmentationMaskBufferSizeInPixels,
int startPixelIndex, int destinationWidth,
int destinationHeight, int* numPixelsCopied)
{
int sourceWidth = m_data->m_glApp->m_window->getWidth()*m_data->m_glApp->m_window->getRetinaScale();
int sourceHeight = m_data->m_glApp->m_window->getHeight()*m_data->m_glApp->m_window->getRetinaScale();
if (numPixelsCopied)
*numPixelsCopied = 0;
int numTotalPixels = destinationWidth*destinationHeight;
int numRemainingPixels = numTotalPixels - startPixelIndex;
int numBytesPerPixel = 4;//RGBA
int numRequestedPixels = btMin(rgbaBufferSizeInPixels,numRemainingPixels);
if (numRequestedPixels)
{
if (startPixelIndex==0)
{
CommonCameraInterface* oldCam = getRenderInterface()->getActiveCamera();
SimpleCamera tempCam;
getRenderInterface()->setActiveCamera(&tempCam);
getRenderInterface()->getActiveCamera()->setVRCamera(viewMatrix,projectionMatrix);
{
BT_PROFILE("renderScene");
getRenderInterface()->renderScene();
}
getRenderInterface()->setActiveCamera(oldCam);
{
BT_PROFILE("copy pixels");
btAlignedObjectArray<unsigned char> sourceRgbaPixelBuffer;
btAlignedObjectArray<float> sourceDepthBuffer;
//copy the image into our local cache
sourceRgbaPixelBuffer.resize(sourceWidth*sourceHeight*numBytesPerPixel);
sourceDepthBuffer.resize(sourceWidth*sourceHeight);
{
BT_PROFILE("getScreenPixels");
m_data->m_glApp->getScreenPixels(&(sourceRgbaPixelBuffer[0]),sourceRgbaPixelBuffer.size(), &sourceDepthBuffer[0],sizeof(float)*sourceDepthBuffer.size());
}
m_data->m_rgbaPixelBuffer1.resize(destinationWidth*destinationHeight*numBytesPerPixel);
m_data->m_depthBuffer1.resize(destinationWidth*destinationHeight);
//rescale and flip
{
BT_PROFILE("resize and flip");
for (int j=0;j<destinationHeight;j++)
{
for (int i=0;i<destinationWidth;i++)
{
int xIndex = int(float(i)*(float(sourceWidth)/float(destinationWidth)));
int yIndex = int(float(destinationHeight-1-j)*(float(sourceHeight)/float(destinationHeight)));
btClamp(xIndex,0,sourceWidth);
btClamp(yIndex,0,sourceHeight);
int bytesPerPixel = 4; //RGBA
int sourcePixelIndex = (xIndex+yIndex*sourceWidth)*bytesPerPixel;
int sourceDepthIndex = xIndex+yIndex*sourceWidth;
#define COPY4PIXELS 1
#ifdef COPY4PIXELS
int* dst = (int*)&m_data->m_rgbaPixelBuffer1[(i+j*destinationWidth)*4+0];
int* src = (int*)&sourceRgbaPixelBuffer[sourcePixelIndex+0];
*dst = *src;
#else
m_data->m_rgbaPixelBuffer1[(i+j*destinationWidth)*4+0] = sourceRgbaPixelBuffer[sourcePixelIndex+0];
m_data->m_rgbaPixelBuffer1[(i+j*destinationWidth)*4+1] = sourceRgbaPixelBuffer[sourcePixelIndex+1];
m_data->m_rgbaPixelBuffer1[(i+j*destinationWidth)*4+2] = sourceRgbaPixelBuffer[sourcePixelIndex+2];
m_data->m_rgbaPixelBuffer1[(i+j*destinationWidth)*4+3] = 255;
#endif
if (depthBuffer)
{
m_data->m_depthBuffer1[i+j*destinationWidth] = sourceDepthBuffer[sourceDepthIndex];
}
}
}
}
}
if (1)
{
getRenderInterface()->getActiveCamera()->disableVRCamera();
DrawGridData dg;
dg.upAxis = m_data->m_glApp->getUpAxis();
getRenderInterface()->updateCamera(dg.upAxis);
m_data->m_glApp->m_window->startRendering();
}
}
if (pixelsRGBA)
{
BT_PROFILE("copy rgba pixels");
for (int i=0;i<numRequestedPixels*numBytesPerPixel;i++)
{
pixelsRGBA[i] = m_data->m_rgbaPixelBuffer1[i+startPixelIndex*numBytesPerPixel];
}
}
if (depthBuffer)
{
BT_PROFILE("copy depth buffer pixels");
for (int i=0;i<numRequestedPixels;i++)
{
depthBuffer[i] = m_data->m_depthBuffer1[i+startPixelIndex];
}
}
if (numPixelsCopied)
*numPixelsCopied = numRequestedPixels;
}
}
struct MyConvertPointerSizeT
{
union
{
const void* m_ptr;
size_t m_int;
};
};
bool shapePointerCompareFunc(const btCollisionObject* colA, const btCollisionObject* colB)
{
MyConvertPointerSizeT a,b;
a.m_ptr = colA->getCollisionShape();
b.m_ptr = colB->getCollisionShape();
return (a.m_int<b.m_int);
}
void OpenGLGuiHelper::autogenerateGraphicsObjects(btDiscreteDynamicsWorld* rbWorld)
{
//sort the collision objects based on collision shape, the gfx library requires instances that re-use a shape to be added after eachother
btAlignedObjectArray<btCollisionObject*> sortedObjects;
sortedObjects.reserve(rbWorld->getNumCollisionObjects());
for (int i=0;i<rbWorld->getNumCollisionObjects();i++)
{
btCollisionObject* colObj = rbWorld->getCollisionObjectArray()[i];
sortedObjects.push_back(colObj);
}
sortedObjects.quickSort(shapePointerCompareFunc);
for (int i=0;i<sortedObjects.size();i++)
{
btCollisionObject* colObj = sortedObjects[i];
//btRigidBody* body = btRigidBody::upcast(colObj);
//does this also work for btMultiBody/btMultiBodyLinkCollider?
btSoftBody* sb = btSoftBody::upcast(colObj);
if (sb)
{
colObj->getCollisionShape()->setUserPointer(sb);
}
createCollisionShapeGraphicsObject(colObj->getCollisionShape());
int colorIndex = colObj->getBroadphaseHandle()->getUid() & 3;
btVector4 color;
color = sColors[colorIndex];
if (colObj->getCollisionShape()->getShapeType()==STATIC_PLANE_PROXYTYPE)
{
color.setValue(1,1,1,1);
}
createCollisionObjectGraphicsObject(colObj,color);
}
}
void OpenGLGuiHelper::drawText3D( const char* txt, float position[3], float orientation[4], float color[4], float size, int optionFlags)
{
B3_PROFILE("OpenGLGuiHelper::drawText3D");
btAssert(m_data->m_glApp);
m_data->m_glApp->drawText3D(txt,position, orientation, color,size, optionFlags);
}
void OpenGLGuiHelper::drawText3D( const char* txt, float posX, float posY, float posZ, float size)
{
B3_PROFILE("OpenGLGuiHelper::drawText3D");
btAssert(m_data->m_glApp);
m_data->m_glApp->drawText3D(txt,posX,posY,posZ,size);
}
struct CommonGraphicsApp* OpenGLGuiHelper::getAppInterface()
{
return m_data->m_glApp;
}
void OpenGLGuiHelper::dumpFramesToVideo(const char* mp4FileName)
{
if (m_data->m_glApp)
{
m_data->m_glApp->dumpFramesToVideo(mp4FileName);
}
}
void OpenGLGuiHelper::computeSoftBodyVertices(btCollisionShape* collisionShape,
btAlignedObjectArray<GLInstanceVertex>& gfxVertices,
btAlignedObjectArray<int>& indices)
{
if (collisionShape->getUserPointer()==0)
return;
b3Assert(collisionShape->getUserPointer());
btSoftBody* psb = (btSoftBody*)collisionShape->getUserPointer();
gfxVertices.resize(psb->m_faces.size() * 3);
int i, j, k;
for (i = 0; i < psb->m_faces.size(); i++) // Foreach face
{
for (k = 0; k < 3; k++) // Foreach vertex on a face
{
int currentIndex = i * 3 + k;
for (int j = 0; j < 3; j++)
{
gfxVertices[currentIndex].xyzw[j] = psb->m_faces[i].m_n[k]->m_x[j];
}
for (int j = 0; j < 3; j++)
{
gfxVertices[currentIndex].normal[j] = psb->m_faces[i].m_n[k]->m_n[j];
}
for (int j = 0; j < 2; j++)
{
gfxVertices[currentIndex].uv[j] = 0.5; //we don't have UV info...
}
indices.push_back(currentIndex);
}
}
}