bullet3/Extras/CDTestFramework/IceHelpers.cpp
erwin.coumans 1ef4c721a0 CDTestFramework, OPCODE, ICE redistributed under the ZLib License, with permission of Pierre Terdiman
Added Bullet SAP/MultiSAP support by Erwin Coumans (BulletSAPCompleteBoxPruningTest.*)
AABB tree broadphase by Nathanael Presson (btDbvt.*, DbvtTest.*)
2008-04-02 18:05:36 +00:00

359 lines
8.3 KiB
C++

/*
CDTestFramework http://codercorner.com
Copyright (c) 2007-2008 Pierre Terdiman, pierre@codercorner.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "stdafx.h"
#include "IceHelpers.h"
// Misc functions borrowed & adapted from ICE
void RotX(Matrix3x3& m, float angle)
{
float Cos = cosf(angle);
float Sin = sinf(angle);
m.Identity();
m.m[1][1] = m.m[2][2] = Cos;
m.m[2][1] = -Sin;
m.m[1][2] = Sin;
}
void RotY(Matrix3x3& m, float angle)
{
float Cos = cosf(angle);
float Sin = sinf(angle);
m.Identity();
m.m[0][0] = m.m[2][2] = Cos;
m.m[2][0] = Sin;
m.m[0][2] = -Sin;
}
void RotZ(Matrix3x3& m, float angle)
{
float Cos = cosf(angle);
float Sin = sinf(angle);
m.Identity();
m.m[0][0] = m.m[1][1] = Cos;
m.m[1][0] = -Sin;
m.m[0][1] = Sin;
}
bool SegmentSphere(const Point& origin, const Point& dir, float length, const Point& center, float radius, float& dist, Point& hit_pos)
{
// get the offset vector
Point offset = center - origin;
// get the distance along the ray to the center point of the sphere
float ray_dist = dir | offset;
// get the squared distances
float off2 = offset | offset;
float rd2 = radius * radius;
if(off2 <= rd2)
{
// we're in the sphere
hit_pos = origin;
dist = 0.0f;
return true;
}
if(ray_dist <= 0 || (ray_dist - length) > radius)
{
// moving away from object or too far away
return false;
}
// find hit distance squared
float d = rd2 - (off2 - ray_dist * ray_dist);
if(d<0.0f)
{
// ray passes by sphere without hitting
return false;
}
// get the distance along the ray
dist = ray_dist - sqrtf(d);
if(dist > length)
{
// hit point beyond length
return false;
}
// sort out the details
hit_pos = origin + dir * dist;
return true;
}
bool /*Ctc::*/RayAABB2(const Point& min, const Point& max, const Point& origin, const Point& dir, Point& coord)
{
BOOL Inside = TRUE;
Point MaxT;
MaxT.x=MaxT.y=MaxT.z=-1.0f;
// Find candidate planes.
for(udword i=0;i<3;i++)
{
if(origin[i] < min[i])
{
coord[i] = min[i];
Inside = FALSE;
// Calculate T distances to candidate planes
if(IR(dir[i])) MaxT[i] = (min[i] - origin[i]) / dir[i];
}
else if(origin[i] > max[i])
{
coord[i] = max[i];
Inside = FALSE;
// Calculate T distances to candidate planes
if(IR(dir[i])) MaxT[i] = (max[i] - origin[i]) / dir[i];
}
}
// Ray origin inside bounding box
if(Inside)
{
coord = origin;
return true;
}
// Get largest of the maxT's for final choice of intersection
udword WhichPlane = 0;
if(MaxT[1] > MaxT[WhichPlane]) WhichPlane = 1;
if(MaxT[2] > MaxT[WhichPlane]) WhichPlane = 2;
// Check final candidate actually inside box
if(IR(MaxT[WhichPlane])&0x80000000) return false;
for(udword i=0;i<3;i++)
{
if(i!=WhichPlane)
{
coord[i] = origin[i] + MaxT[WhichPlane] * dir[i];
#ifdef RAYAABB_EPSILON
if(coord[i] < min[i] - RAYAABB_EPSILON || coord[i] > max[i] + RAYAABB_EPSILON) return false;
#else
if(coord[i] < min[i] || coord[i] > max[i]) return false;
#endif
}
}
return true; // ray hits box
}
static const bool gNormalize = true;
udword /*Ctc::*/RayCapsuleOverlap(const Point& origin, const Point& dir, const LSS& capsule, float s[2])
{
// set up quadratic Q(t) = a*t^2 + 2*b*t + c
Point kU, kV, kW, capsDir;
capsule.ComputeDirection(capsDir);
kW = capsDir;
float fWLength = kW.Magnitude();
kW.Normalize();
// generate orthonormal basis
float fInvLength;
if ( fabsf(kW.x) >= fabsf(kW.y) )
{
// W.x or W.z is the largest magnitude component, swap them
fInvLength = 1.0f/sqrtf(kW.x*kW.x + kW.z*kW.z);
kU.x = -kW.z*fInvLength;
kU.y = 0.0f;
kU.z = +kW.x*fInvLength;
}
else
{
// W.y or W.z is the largest magnitude component, swap them
fInvLength = 1.0f/sqrtf(kW.y*kW.y + kW.z*kW.z);
kU.x = 0.0f;
kU.y = +kW.z*fInvLength;
kU.z = -kW.y*fInvLength;
}
kV = kW^kU;
kU.Normalize();
if(gNormalize)
kV.Normalize();
// compute intersection
Point kD(kU|dir, kV|dir, kW|dir);
float fDLength = kD.Magnitude();
kD.Normalize();
float fInvDLength = 1.0f/fDLength;
Point kDiff = origin - capsule.mP0;
Point kP(kU|kDiff, kV|kDiff, kW|kDiff);
float fRadiusSqr = capsule.mRadius*capsule.mRadius;
float fInv, fA, fB, fC, fDiscr, fRoot, fT, fTmp;
// Is the velocity parallel to the capsule direction? (or zero)
if ( fabsf(kD.z) >= 1.0f - FLT_EPSILON || fDLength < FLT_EPSILON )
{
float fAxisDir = dir|capsDir;
fDiscr = fRadiusSqr - kP.x*kP.x - kP.y*kP.y;
if ( fAxisDir < 0 && fDiscr >= 0.0f )
{
// Velocity anti-parallel to the capsule direction
fRoot = sqrtf(fDiscr);
s[0] = (kP.z + fRoot)*fInvDLength;
s[1] = -(fWLength - kP.z + fRoot)*fInvDLength;
return 2;
}
else if ( fAxisDir > 0 && fDiscr >= 0.0f )
{
// Velocity parallel to the capsule direction
fRoot = sqrtf(fDiscr);
s[0] = -(kP.z + fRoot)*fInvDLength;
s[1] = (fWLength - kP.z + fRoot)*fInvDLength;
return 2;
}
else
{
// sphere heading wrong direction, or no velocity at all
return 0;
}
}
// test intersection with infinite cylinder
fA = kD.x*kD.x + kD.y*kD.y;
fB = kP.x*kD.x + kP.y*kD.y;
fC = kP.x*kP.x + kP.y*kP.y - fRadiusSqr;
fDiscr = fB*fB - fA*fC;
if ( fDiscr < 0.0f )
{
// line does not intersect infinite cylinder
return 0;
}
int iQuantity = 0;
if ( fDiscr > 0.0f )
{
// line intersects infinite cylinder in two places
fRoot = sqrtf(fDiscr);
fInv = 1.0f/fA;
fT = (-fB - fRoot)*fInv;
fTmp = kP.z + fT*kD.z;
if ( 0.0f <= fTmp && fTmp <= fWLength )
s[iQuantity++] = fT*fInvDLength;
fT = (-fB + fRoot)*fInv;
fTmp = kP.z + fT*kD.z;
if ( 0.0f <= fTmp && fTmp <= fWLength )
s[iQuantity++] = fT*fInvDLength;
if ( iQuantity == 2 )
{
// line intersects capsule wall in two places
return 2;
}
}
else
{
// line is tangent to infinite cylinder
fT = -fB/fA;
fTmp = kP.z + fT*kD.z;
if ( 0.0f <= fTmp && fTmp <= fWLength )
{
s[0] = fT*fInvDLength;
return 1;
}
}
// test intersection with bottom hemisphere
// fA = 1
fB += kP.z*kD.z;
fC += kP.z*kP.z;
fDiscr = fB*fB - fC;
if ( fDiscr > 0.0f )
{
fRoot = sqrtf(fDiscr);
fT = -fB - fRoot;
fTmp = kP.z + fT*kD.z;
if ( fTmp <= 0.0f )
{
s[iQuantity++] = fT*fInvDLength;
if ( iQuantity == 2 )
return 2;
}
fT = -fB + fRoot;
fTmp = kP.z + fT*kD.z;
if ( fTmp <= 0.0f )
{
s[iQuantity++] = fT*fInvDLength;
if ( iQuantity == 2 )
return 2;
}
}
else if ( fDiscr == 0.0f )
{
fT = -fB;
fTmp = kP.z + fT*kD.z;
if ( fTmp <= 0.0f )
{
s[iQuantity++] = fT*fInvDLength;
if ( iQuantity == 2 )
return 2;
}
}
// test intersection with top hemisphere
// fA = 1
fB -= kD.z*fWLength;
fC += fWLength*(fWLength - 2.0f*kP.z);
fDiscr = fB*fB - fC;
if ( fDiscr > 0.0f )
{
fRoot = sqrtf(fDiscr);
fT = -fB - fRoot;
fTmp = kP.z + fT*kD.z;
if ( fTmp >= fWLength )
{
s[iQuantity++] = fT*fInvDLength;
if ( iQuantity == 2 )
return 2;
}
fT = -fB + fRoot;
fTmp = kP.z + fT*kD.z;
if ( fTmp >= fWLength )
{
s[iQuantity++] = fT*fInvDLength;
if ( iQuantity == 2 )
return 2;
}
}
else if ( fDiscr == 0.0f )
{
fT = -fB;
fTmp = kP.z + fT*kD.z;
if ( fTmp >= fWLength )
{
s[iQuantity++] = fT*fInvDLength;
if ( iQuantity == 2 )
return 2;
}
}
return iQuantity;
}