bullet3/examples/pybullet/gym/trpo_tf_cartpole_bullet_gym.py
2017-03-10 13:41:05 -08:00

36 lines
1011 B
Python

from envs.bullet.cartpole_bullet import CartPoleBulletEnv
from sandbox.rocky.tf.algos.trpo import TRPO
from sandbox.rocky.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy
from sandbox.rocky.tf.envs.base import TfEnv
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
from rllab.envs.gym_env import GymEnv
from rllab.envs.normalized_env import normalize
env = TfEnv(normalize(GymEnv("CartPoleBulletEnv-v0")))
policy = GaussianMLPPolicy(
name = "tf_gaussian_mlp",
env_spec=env.spec,
# The neural network policy should have two hidden layers, each with 32 hidden units.
hidden_sizes=(8,)
)
baseline = LinearFeatureBaseline(env_spec=env.spec)
algo = TRPO(
env=env,
policy=policy,
baseline=baseline,
batch_size=5000,
max_path_length=env.horizon,
n_itr=50,
discount=0.999,
step_size=0.01,
force_batch_sampler=True,
# Uncomment both lines (this and the plot parameter below) to enable plotting
#plot=True,
)
algo.train()